LECTURE 15: SUMMARY

In today’s lecture, we proved the following result (which is half of David’s conjecture from last
lecture):

Theorem 1. If (m,n) = 1, then o(mn) = p(m)e(n).

Right off the bat, note that the hypothesis that m and n are relatively prime is necessary. For
example, ¢(12) # ¢(2)¢(6). We also practiced using this theorem to calculate p(n). As we saw,
whenever we could factor n, the theorem made it easy to figure out ¢(n). Unfortunately, if n is not
easy to factor, then it’s less clear how to determine ¢(n). We will discuss this in more depth later,
when talking about the RSA encryption algorithm.

Before writing down the proof of theorem, we discuss the strategy. By definition, we have
p(mn) = |Zp,,]-
What about ¢(m)@(n)? A bit of thought showed that this, too, measures the size of a set:
p(m)e(n) = |2y, < Zy|

where A x B := {(a,b) : a € A,b € B}. Thus, if we can show that the two sets Z5, and Z5 x Z
have the same size, we win. How will we do this? We look for a bijection between the two sets,
i.e. a way of pairing off elements of the two sets. Shichu suggested the following function:

oLy, — Ly X L
a — (a (mod m), a (mod n))

where x (mod d) denotes the unique element of Z,; which is congruent to x modulo d. If we can
show that this is a bijection — i.e. that for every (x,y) € Z), x Z, there exists a unique a € Z
such that o(a) = (z,y) — then it would immediately follow that Z,, and Z), x Z) have the same
number of elements.

Before going into the proof of the theorem, we state a useful tool:

Lemma 2. Suppose (a, N) = 1. Then the integer a (mod N) is also relatively prime to N, i.e.
a (mod N) € Zy.

I leave the proof of this lemma as an exercise.

Proof. Consider the function ¢ defined above. We prove that it’s a bijection in three steps:

(1) o is well-defined, i.e. for all x € Z),, there exists a unique (a,b) € Z) x Z* such that
o(z) = (a,b);
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(2) o is surjective, i.e. for all (a,b) € Z), x Z there exists at least one € Z) . such that
o(x) = (a,b); and

(3) o is injective, i.e. for all (a,b) € Z) x Z) there exists at most one = € Z),, such that
o(x) = (a,b).

First, why is o well-defined? Well, certainly o(z) € Z,, X Z,; what’s not immediate is that
o(x) € Z x Z). However, armed with the Lemma above this isn’t so difficult. Since x € Z* ,
we know that (z,mn) = 1. It follows that (x,m) = 1, whence (by the lemma) the integer
x (mod m) € Z),. The same goes for x (mod n), of course.

Next, why is o surjective? Given (a,b) € Z) x Z), can we find an = € ZJ,, such that o(z) =
(a,b)? It’s easy to see that this is equivalent to finding an = € Z = such that
r = a (mod m) and r = b (mod n).

The trick is to write x = (---)m + (---)n, and find appropriate ways to fill in the blanks. The
advantage of writing x this way is that when we reduce = (mod m) we can focus on just the second
term, while when we reduce (mod n) we can focus on just the first term. A bit of thought showed
that we should choose the first blank to be bm !, where m~! denotes the inverse of m in Z), and
the second blank to be an~!, where n~' denotes the inverse of n in Zﬁl.l In any event, let

r = (bm™Ym + (an")n.
It’s easy to check that x (mod m) = a and x (mod n) = b. The only remaining difficulty is that =
is just some integer; it might not be an element of Z ! Fortunately, this can be fixed. I leave this
as an exercise.
Finally, why is o injective? Well, suppose o(x) = o(y) for some x,y € Z~ . Then
r =y (mod m) and r =y (mod n).

It follows that m | x — y and also n | x — y. By problem 1.9 from your homework, it follows that
mn | z — y, i.e. that z = y (mod m)n. Thus, x = y, so o is injective. 0

Make sure that you go through and understand the theorem properly; there were some gaps in the
sketch above. Among other questions, you should ask yourself: where did we use that (m,n) = 1?

1Actually, if we were being super careful, we should be referring to n (mod m) and m (mod n) in the previous
sentence, rather than to n and m themselves.



