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Problem Set 1
I recommend proceeding in order, as some problems are easier to solve using the results of prior problems.

1.1 Is the fraction 110257
110385 reduced? Justify your answer (without using calculators, computers, etc.).

1.2 Given an integer a and a positive integer d, we proved in class that there exist integers q and r such
a = qd + r and 0 ≤ r < d. Prove (without using the Euclidean algorithm) that (a, d) = (d, r). [Note that this
gives another proof that the Euclidean algorithm outputs the greatest common divisor of the two inputs.]

1.3 Use the Euclidean algorithm to determine (a, b), where:

(i) a = 37, b = 50

(ii) a = 2709, b = 5518

1.4 Find x, y ∈ Z such that 37x + 50y = 1. [Hint: use your work from 1.3(i).]

1.5 Given a, b ∈ Z, let d := (a, b), and set a′ := a/d and b′ := b/d. Prove that (a′, b′) = 1.

1.6 Suppose a, b, c ∈ Z, and define a′ as in 1.5 above. Prove that a | bc if and only if a′ | c.

1.7 Given a, b, c ∈ Z, consider the equation

(*) ax + by = c.

Suppose that x = x0, y = y0 is an integral solution to (*), i.e. that x0 and y0 are integers satisfying ax0+by0 = c.

(i) Prove that x = x0 + b′k, y = y0 − a′k is an integral solution to (*) for every k ∈ Z. [See problem 1.5 for
the definitions of a′ and b′.]

(ii) Conversely, show that if x, y is an integral solution to (*), then there exists some integer k such that
x = x0 + b′k and y = y0 − a′k. [Hint: you may find problem 1.6 helpful.]

1.8 Prove that (a, a + k) | k for all integers a and k.

1.9 Suppose a | n and b | n.

(i) If (a, b) = 1, prove that ab | n.

(ii) Does the same conclusion hold if (a, b) 6= 1? Either prove that it does, or else find a counterexample.

1.10 Given positive integers a and b with a > b, set n1 = b, and let n2, n3, ..., nk−1 be the set of all
nonzero remainders outputted by the Euclidean algorithm. Recall that the Euclidean algorithm asserts that
nk−1 = (a, b).

(i) Prove that nj+2 < 1
2nj for all j ≥ 1.

(ii) Conclude that the Euclidean algorithm terminates after at most 2 log2 b steps, where log2 denotes the
logarithm base 2.
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