Instructor: Leo Goldmakher

NAME: _____

University of Toronto Scarborough Department of Computer and Mathematical Sciences

MATC15: NUMBER THEORY

Problem Set 2 – due Thursday, February 14th, during the first five minutes of lecture.

INSTRUCTIONS: Please print and attach this page as the first page of your submitted problem set.

PROBLEM	MARK
2.1	
2.2	
2.3	
2.4	
2.5	
2.6	
2.7	
Total	

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to assist (in any way) with this assignment. I also understand that I must write down the final version of my assignment in isolation from any other person.

SIGNATURE:

Problem Set 2

2.1 Prove that $n^2 - 1$ is prime for exactly one value of n.

2.2 In lecture we discussed Euclid's proof that there are infinitely many primes. The purpose of this problem is to give a different proof, which was apparently discovered only a few years ago by F. Saidak.

- (a) Let n > 1 be an integer. Show that n and n + 1 are relatively prime (i.e. have no common factor larger than 1).
- (b) Show that n(n+1) + 1 is relatively prime to both n and n + 1.
- (c) Construct a number which is relatively prime to n, n+1, and n(n+1)+1.
- (d) Use the above to prove that there are infinitely many prime numbers.
- (e) Recall that from the Euclidean proof we were able to deduce that $\pi(x) \ge \log \log x$. What's the best lower bound you can deduce from Saidak's proof?

2.3 In this problem, you will prove the infinitude of primes in yet another way. Consider the sets

$$A_n = \{1 + k(n!) : 1 \le k \le n\},\$$

where the parameter k is assumed to be an integer.

- (a) Show that any two elements of A_n are relatively prime.
- (b) Use this to give another proof that there are infinitely many primes.
- (c) What's the best lower bound on $\pi(x)$ you can derive from this proof?

2.4 Fix $k \ge 1$. Prove that $\frac{(\log x)^k}{x} \to 0$ as $x \to \infty$. [*Hint: there is a very short proof!*]

2.5 Prove that
$$\int_2^x \frac{dt}{\log t} \sim \frac{x}{\log x}$$
. (Recall that $f(x) \sim g(x)$ means $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$.)

2.6 In this exercise, we fill in some gaps from proofs given in class.

- (a) Prove that $\log x / \log 2 + 1 \le 2 \log x$ for all sufficiently large x. What does 'sufficiently large' mean? Be as specific as possible (i.e. give a value x_0 such that for all $x \ge x_0$, the inquality above holds; this requires proof!).
- (b) Prove that $\log x / \log 3 + 1 \le \log x$ for all x large enough. What does 'sufficiently large' mean? As above, be as specific as possible.
- (c) Prove that for all sufficiently large n,

$$\frac{(1+\log 2)n}{\log \frac{n}{2}} \le \frac{2n}{\log n}$$

What does sufficiently large mean? As above, be as specific as possible.

(d) Prove that for all sufficiently large n,

$$\frac{2n\log 2}{\log(2n+1)} - 1 \ge \frac{\log 2}{2} \cdot \frac{2n}{\log 2n}$$

What does sufficiently large mean? As above, be as specific as possible.

2.7 Let $I_n = \int_0^1 x^n (1-x)^n dx$, as in our proof of Chebyshev's lower bound. Prove that $0 < I_n \leq \frac{1}{4^n}$ for all $n \in \mathbb{N}$.