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by Pinar Colak

(1) Let d = (110257, 110385). We know that d has to divide the difference of the
numbers: d|(110385 − 110257) = 128. We note that 128 = 27, which means that d
is either 1 or is a power of 2. However, both 110257 and 110385 are odd, hence d
cannot be even. It follows that d = 1 and that 110257

110385 is reduced.
(2) Suppose b = (a, d). Note that

a = qd + r ⇒ r = a− qd.

Since b|d and b|a, we get b|r. Then b is a common divisor of both d and r, implying
that b|(r, d). Since (r, d) is the greatest common divisor, we get

b = (a, d) 6 (r, d).

Similarly, let c = (r, d). Then c|a as a = qd + r. We get that c is a common
divisor of both a and d, implying that c|(a, d). Then we get

c = (r, d) 6 (a, d).

As a result, we get

(a, d) = (r, d).

(3) (i) a = 37, b = 50. By Euclidean Algorithm

50 = 37 + 13

37 = 2(13) + 11

13 = 11 + 2

11 = 5(2) + 1

2 = 2 + 0.

Therefore, (37, 50) = 1.
(ii) a = 2709, b = 5518. By Euclidean Algorithm

5518 = 2(2709) + 100

2709 = 27(100) + 9

100 = 11(9) + 1

9 = 9(1) + 0.

Therefore, (5518, 2709) = 1.
(4) By using 1.3 (i)

1 = 11− 5(2) = 11− 5(13− 11) = 6(11)− 5(13) = 6(37− 2(13))− 5(13)

= 6(37)− 17(13) = 6(37)− 17(50− 37) = 23(37)− 17(50).

Hence x = 23 and y = −17.
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(5) Since (a, b) = d, there exists x and y in Z such that

ax + by = d.

Moreover, d | a and d | b. Divide both sides by d:

a

d
x +

b

d
y = a′x + b′y = 1.

Note that if c = (a′, b′), then c divides left hand side of the equation. Then it
divides the right hand side as well, hence c|1. But this implies that c = 1. Thus,
(a′, b′) = 1.

(6) (⇐=) If a′ | c, then a = a′d | cd, whence a | b′cd as well. But b′d = b, so a | bc.
(=⇒) We first prove a lemma.

Lemma 1. If A,B,C are positive integers such that (A,B) = 1 and A | BC, then
A | C.

Proof. Since (A,B) = 1, there exist x, y ∈ Z such that Ax+By = 1. It follows that
ACx+BCy = C. The left hand side is divisible by A (since both terms are), hence
the right hand side is also divisible. Hence, A | C as claimed. �

Assume that a | bc. Rewrite it as a′d | b′dc, which implies a′ | b′c. From (1.5) we
know that (a′, b′) = 1, so the Lemma implies that a′ | c.

(7) (i) We will substitute x = x0 + b′k and y = y0 − a′k to show that they satisfy the
equation. Let d = (a, b), and observe that ab′ = (a′d)b′ = a′(db′) = a′b. Thus,

ax + by = a(x0 + b′k) + b(y0 − a′k) = ax0 + ab′k + by0 − ba′k

= ax0 + a′bk + by0 − a′bk = ax0 + by0 = c.

(ii) Let d = (a, b). Assume x and y are both integral solution to the given equation,
hence ax + by = c. We also know that ax0 + by0 = c. This means that

ax + by = ax0 + by0

ax− ax0 = by0 − by

a(x− x0) = b(y0 − y)

a′d(x− x0) = b′d(y0 − y)

a′(x− x0) = b′(y0 − y)

.
Since we know from question (1.5) that (a′, b′) = 1, the Lemma above implies

that b′ | (x0 − x). Hence there exists an integer k such that x − x0 = b′k. This
means x = x0 + b′k. Now substitute this back into the last equation we got, then

a′(x0 + b′k − x0) = b′(y0 − y)

a′b′k = b′(y0 − y)

a′k = y0 − y

y = y0 − a′k

as desired.
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(8) Let d = (a, a + k), that means d|a and d|a + k. Then d divides their difference as
well: d|a + k − a = k.

(9) (i) Suppose a|n and b|n. Hence we can find integeres c and d such that n = ac and
n = bd. If (a, b) = 1, then we can find integers x and y such that

ax + by = 1.

Multiply both sides by n:

anx + bny = n

a(bd)x + b(ac)y = n

(ab)dx + (ab)cy = n.

Note that ab divides both of the terms on the left hand side, so it divides right
hand side as well. We get that ab|n.

(ii) No, it doesn’t hold: let a = 2, b = 4 and n = 4. It is clear that 2|4 and 4|4,
however, 2(4) = 8 does not divide 4.

(10) (i) We have
nj = qj+1nj+1 + nj+2

nj+1 = qj+2nj+2 + nj+3

Then we have
nj = qj+1(qj+2nj+2 + nj+3) + nj+2

= nj+2(qj+1qj+2 + 1) + qj+1nj+3.

> 2nj+2 + nj+3.

We know that nj+3 > 0, hence

nj > 2nj+2.

Moreover, with the exception of the last step of the algorithm, nj+3 > 0, so

nj > 2nj+2

for all such j. We conclude that

nj+2 <
1

2
nj

for all j > 1, with the exception of at most one value of j (in which case nj+2 6 1
2nj).

(ii) According to the Euclidean Algorithm, we have the following equations:

a = bq1 + n2

b = n2q2 + n3

n2 = n3q3 + n4

...

nk−3 = nk−2qk−2 + nk−1

nk−2 = nk−1qk−1 + 0.

This means that we have k − 2 steps to get the gcd. We will use the first part of
the question to prove the statement.

If k − 2 is even, then k − 1 is odd, and nk−1 > 1. Then
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b = n1 > 2n3 > 4n5 > 8n7 > · · · > 2
k−2
2 nk−1 > 2

k−2
2 .

b > 2
k−2
2

log2b >
k − 2

2
2log2b > k − 2

as desired.
If k−2 is odd, then nk−2 > 2 (note that it cannot be 1, as then the process would

have ended in the previous step). Then

b = n1 > 2n3 > 4n5 > 8n7 > · · · > 2
k−3
2 nk−2 > 2

k−1
2 > 2

k−2
2 .

b > 2
k−2
2

log2b >
k − 2

2
2log2b > k − 2

as desired.
Hence, in either case, the algorithm terminates after at most 2log2b steps.


