
Assignment 2 Solutions

by Pinar Colak

(1) Note that n2 − 1 = (n− 1)(n + 1). Hence n2 − 1 is prime if and only if n− 1 = 1.

(2) (a) If d | n and d | n+ 1, then d divides their difference: d | (n+ 1)−n = 1. Hence
d = 1.

(b) If d | n(n+ 1) + 1 and d | n+ 1, then d | (n(n+ 1) + 1)− (n+ 1)(n) = 1, hence
d = 1.

(c) Observing the pattern, we see that (n(n + 1) + 1)(n + 1)(n) + 1 is relatively
prime to n, n + 1 and n(n + 1) + 1.

(d) We see that we can create infinitely many numbers that are relatively prime
to each other by multiplying all the existing ones and adding 1 to them. By
Fundamental Thm of Arithmetic (FTA), the kth term of this sequence is divis-
ible by some prime pk. All these primes must be distinct (else those two terms
wouldn’t be relatively prime).

(3) (a) Let 1 6 a 6 b 6 n, x = 1 + a(n!) and y = 1 + b(n!). So x and y both belong to
An. We want to show that they are relatively prime. Towards a contradiction,
assume they are not. Then there must be a prime number p such that p|x and
p|y. Then p divides their difference as well, that is, p|y − x = (b− a)n!. Since
p is a prime number, we either have p|n! or p|(b − a). If p|n!, however, then
p|x− a(n!) = 1, which is not possible. Since p does not divide n!, we get that
p > n. Now we should have p|(b− a), however, b− a is less than n, hence this
is not possible either. We get a contradiction.

(b) We can keep contructing larger and larger sets An, which consist of relatively
prime numbers. As in question 2(d), we will get infinitely prime numbers.

(4) Note that (logx)k

x → 0 if and only if ( (logx)
k

x )1/k = logx
x1/k → 0 as x goes to infinity, so

we will show the latter. Both log x and x1/k tend to ∞ with x, so we may apply
L’Hôpital’s rule:

1
x

x(1−k)/k

k

=
k

x1/k
,

which clearly goes to 0 as x→∞.

(5) We again use L’Hôpital’s rule. First, we need to check that both functions go to
infinity. We have log t 6 t for all t > 2, whence

∫ x

2

dt

log t
>
∫ x

2

dt

t
= log x− log 2
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for every x > 2; it immediately follows that

∫ x

2

dt

log t
tends to infinity with x.

Similarly, log x 6
√
x for all x > 0, whence

x

log x
>
√
x.

It follows that x
log x also tends to infinity with x.

Now we can apply L’Hôpital’s rule:

lim
x→∞

∫ x
2

dt
log t
x

log x

= lim
x→∞

1
log x

log x−1
(log x)2

= lim
x→∞

1

1− 1
log x

= 1.

Hence
∫ x
2

dt
log t ∼

x
log x .

(6) (a) We solve for log x:

log x

log 2
+ 1 6 2 log x

log 2 6 log x(2 log 2− 1)

log x >
log 2

2 log 2− 1

x > e
log 2

2 log 2−1 .

(b) We solve for log x:
log x

log 3
+ 1 6 log x

log 3 6 log x(log 3− 1)

log x >
log 3

log 3− 1

x > e
log 3

log 3−1 .

(c) We solve for log n:

(1 + log 2)n

log n
2

6
2n

log n

(1 + log 2)

log n− log 2
6

2

log n

(1 + log 2)n log n 6 2n(log n− log 2)

(1 + log 2) log n 6 2 log n− 2 log 2

log n(2− 1− log 2) > 2 log 2

log n >
2 log 2

1− log 2

n > e
log 4

1−log 2 .
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(d) This is a bit more complicated than the previous parts, but the idea is straight-
forward. We are trying to show that

2n log 2

log(2n + 1)
− 1 >

log 2

2
· 2n

log(2n)

for all large n. We will prove this by showing that

LHS >
n log 2

log n
> RHS

whenever n is large enough. The second inequality is easily seen to hold for all n,
so we focus on the first inequality. This is equivalent to showing

1

2n log 2
+

1

2 log n
6

1

log(2n + 1)
.

To prove this, it suffices to show

1

n
+

1

2 log n
6

1

1 + log n
, (*)

since 1
2n log 2 6 1

n for all n and 1
1+logn = 1

log(en) 6 1
log(2n+1) for all n > 2. Now, to

prove (*) it suffices to prove

1

n
+

1

2 log n
6

1
6
5 log n

(**)

because 1
6
5
logn

6 1
log(2n+1) whenever n > e5. The bound (**) is equivalent to

3 log n 6 n,

which holds for all n > e2 (a good calculus exercise; compare the initial values /
derivatives). This proves the claim.

(7) It is obvious that xn(1− x)n is positive for 0 6 x 6 1. Hence 0 6 In. For the other
bound, it is an easy calculus exercise to find that the maximum of x(1− x) on the
interval [0, 1] occurs at x = 1/2; it follows that

In =

∫ 1

0
xn(1− x)n dx 6

∫ 1

0

1

2n

(
1− 1

2

)n
dx =

∫ 1

0

1

4n
dx =

1

4n

as claimed.


