ASSIGNMENT 2 SOLUTIONS
by Pinar Colak

(1) Note that n? — 1 = (n — 1)(n + 1). Hence n? — 1 is prime if and only if n — 1 = 1.

(2) (a)
(b)
(c)
(d)

(b)

If d| nandd|n+1, then d divides their difference: d | (n+ 1) —n = 1. Hence
d=1.

Ifd|nn+1)+1andd|n+1,thend| (n(n+1)+1)—(n+1)(n) =1, hence
d=1.

Observing the pattern, we see that (n(n + 1) + 1)(n + 1)(n) + 1 is relatively
prime to n, n+ 1 and n(n + 1) + 1.

We see that we can create infinitely many numbers that are relatively prime
to each other by multiplying all the existing ones and adding 1 to them. By
Fundamental Thm of Arithmetic (FTA), the k' term of this sequence is divis-
ible by some prime pj. All these primes must be distinct (else those two terms
wouldn’t be relatively prime).

Let 1<a<b<n,z=1+a(n!)and y =1+b(n!). So z and y both belong to
A,. We want to show that they are relatively prime. Towards a contradiction,
assume they are not. Then there must be a prime number p such that p|z and
ply. Then p divides their difference as well, that is, p|ly — x = (b — a)n!. Since
p is a prime number, we either have p|n! or p|(b — a). If p|n!, however, then
plz — a(n!) = 1, which is not possible. Since p does not divide n!, we get that
p > n. Now we should have p|(b — a), however, b — a is less than n, hence this
is not possible either. We get a contradiction.

We can keep contructing larger and larger sets A,, which consist of relatively
prime numbers. As in question 2(d), we will get infinitely prime numbers.

(4) Note that M — 0 if and only if (M)l/k = lol—g/,‘f — 0 as x goes to infinity, so

we will show the latter. Both logx and x

z x

1/k tend to oo with z, so we may apply

L’Hopital’s rule:

Tk
ﬁl;:)/k SV

which clearly goes to 0 as x — co.

(5) We again use L’Hopital’s rule. First, we need to check that both functions go to
infinity. We have logt < t for all ¢ > 2, whence

Todt Tdt
— 2 — =logx —log?2
2 lOgt 2 t
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rodt
for every x > 2; it immediately follows that / ot tends to infinity with .
2 108

Similarly, log z < y/z for all x > 0, whence
L
log
also tends to infinity with x.

It follows that logéx
Now we can apply L’Hopital’s rule:
T _dt 1 1
lim =2 ;Ogt = lim loloifl = lim ——~— =1
T—00 Togz T—>00 (lfgac)2 r—o00 ] — gz
d
Hence [ @ ~ Toea-
(6) (a) We solve for log x:
1
o8z + 1< 2logx
log 2
log2 < logxz(2log2 — 1)
| log 2
ogzr >
8% 2 Slog2 -1
log 2
€T > e2log2-1
(b) We solve for log z:
log x
1<1
log 3 + ogx
log3 < logz(log3 — 1)
log 3
logz > °8
log3 —1
log 3
T > elog3—1
(c) We solve for log n:
(1+log2)n < 2n
log 5 = logn
(1+log?2) 2

logn —log?2 ~ logn
(1 +log2)nlogn < 2n(logn — log 2)
(1+1log2)logn < 2logn — 2log 2
logn(2 —1—1og2) > 2log?2
logn > 2log2
1 —log?2

log 4
n 2 el-log2




Solutions 3

(d) This is a bit more complicated than the previous parts, but the idea is straight-

forward. We are trying to show that
2nlog 2 S log 2 2n

log(2n + 1) ~ 2 log(2n)
for all large n. We will prove this by showing that

nlog2

LHS > i > RHS

ogn
whenever n is large enough. The second inequality is easily seen to hold for all n,
so we focus on the first inequality. This is equivalent to showing
1 n 1 o 1
2nlog2 = 2logn  log(2n+1)
To prove this, it suffices to show
1 1 1
— _|_ < ,
n  2logn ~ 1+logn

)

. 1 1 1 1 1
since 54505 <5 for all n and TFlogn — Tog(en) < oz @) for all n > 2. Now, to

prove (*) it suffices to prove
1 n 1 1
n  2logn glogn

(**)

whenever n > €. The bound (**) is equivalent to

1 1
because Tiogn S Toglnt)

3logn < n,

which holds for all n > €2 (a good calculus exercise; compare the initial values /
derivatives). This proves the claim.

It is obvious that 2"(1 — x)™ is positive for 0 < x < 1. Hence 0 < I,,. For the other
bound, it is an easy calculus exercise to find that the maximum of z(1 — x) on the
interval [0, 1] occurs at = 1/2; it follows that

1 1 1
1 1 1 1
In:/ x”(lx)”d:cg/ (1)nd:z:/ —dr = —

as claimed.



