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ABSTRACT. We give a proof of the Cantor-Schröder-Bernstein theorem: if A injects into B and
B injects into A, then there is a bijection between A and B. This seemingly obvious statement is
surprisingly difficult to prove. The proof presented here is modeled on the argument given in section
2.6 of [1]; the only differences are expository.

1. STATEMENT OF THE THEOREM AND SKETCH OF PROOF

Given two sets X and Y , we will write X ∼ Y to denote the existence of a bijection from X to
Y . One easily checks that ∼ is transitive, i.e. if X ∼ Y and Y ∼ Z, then X ∼ Z. The purpose of
this note is to prove the following result:

Theorem 1 (Cantor-Schröder-Bernstein). If f : A → B and g : B → A are both injections, then
A ∼ B.

Here’s the strategy of the proof. First, we apply f to all of A to obtain a set B1 ⊆ B. Next, apply
g to all of B1 to get a set A2 ⊆ A. Iterating this, we keep bouncing back and forth between smaller
and smaller subsets of A and B until the process stabilizes and we end up with some sets A ⊆ A
and B ⊆ B for which f(A) = B and g(B) = A. This implies that A ∼ B. The next task is to
show that A− A ∼ B −B, which turns out to be not so hard. Finally, we conclude that A ∼ B.

2. PROOF OF THE THEOREM

Let
A0 = A B0 = B

A1 = g(B0) B1 = f(A0)
A2 = g(B1) B2 = f(A1)

...
...

An = g(Bn−1) Bn = f(An−1)
...

...
We make two observations, both of which are consequences of injectivity:

Lemma 2.
A = A0 ∼ B1 ∼ A2 ∼ B3 ∼ A4 ∼ · · ·
B = B0 ∼ A1 ∼ B2 ∼ A3 ∼ B4 ∼ · · ·

Lemma 3.
A0 ⊇ A1 ⊇ A2 ⊇ · · ·
B0 ⊇ B1 ⊇ B2 ⊇ · · ·



Remark. If AN = AN+1 for some N , then Lemma 2 immediately implies that A ∼ B. We will
therefore assume that the inclusions in Lemma 3 are all strict.

At this point, it may seem that we have all the tools necessary to prove the theorem. Indeed,
Lemma 2 implies that A ∼ B1 and A1 ∼ B, whence we might be tempted to deduce that A∪A1 ∼
B ∪B1; since A ⊇ A1 and B ⊇ B1, this would immediately imply that A ∼ B. The problem with
this approach is that the two conditions X1 ∼ Y1 and X2 ∼ Y2 do not imply X1 ∪X2 ∼ Y1 ∪ Y2 in
general. However, we have the following result.

Lemma 4. Suppose we have sets {Xi} and {Yi} satisfying Xi ∼ Yi for all i. If all the Xi are
pairwise disjoint, and all the Yi are pairwise disjoint, then⋃

i

Xi ∼
⋃
i

Yi.

Thus, to continue our line of argument, we require analogues of the sets Ai which are pairwise
disjoint. Fortunately, this isn’t difficult to cook up. For each n, set A∗

n := An − An+1. By the
remark directly after Lemma 3, we see that all of the sets A∗

n are nonempty; moreover, they are
pairwise disjoint. Similarly defining sets B∗

n, we have the following analogue of Lemma 2:

Lemma 2*.
A∗

0 ∼ B∗
1 ∼ A∗

2 ∼ B∗
3 ∼ A∗

4 ∼ · · ·
B∗

0 ∼ A∗
1 ∼ B∗

2 ∼ A∗
3 ∼ B∗

4 ∼ · · ·

We can now carry out our prior attack. Since A∗
0 ∼ B∗

1 and A∗
1 ∼ B∗

0 , Lemma 4 implies that

A∗
0 ∪ A∗

1 ∼ B∗
0 ∪B∗

1 .

More generally, we deduce that

A∗
2n ∪ A∗

2n+1 ∼ B∗
2n ∪B∗

2n+1

for all n. Taking the union over all n and once again applying Lemma 4, we conclude that⋃
n≥0

A∗
n ∼

⋃
n≥0

B∗
n.

At this point, we’re nearly finished; the left hand side looks a lot like A, and the right hand side
like B. For brevity, denote the left hand side by Ã and the right hand side by B̃, so that we have

Ã ∼ B̃. (1)

Does A = Ã? Somewhat surprisingly, the answer is no in general. To fill in the missing piece, we
introduce one final notation: set A =

⋂
n≥0

An and B =
⋂
n≥0

Bn. We have the following result:

Lemma 5. A = A ∪ Ã is a partition of A, and B = B ∪ B̃ is a partition of B.

Once again by Lemma 4, we see that to conclude the proof of the theorem it suffices to show that
A ∼ B. This is an immediate consequence of the following:

Lemma 6. f(A) = B and g(B) = A.

This concludes the proof of the theorem. �
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