THE CANTOR-SCHRODER-BERNSTEIN THEOREM

LEO GOLDMAKHER

ABSTRACT. We give a proof of the Cantor-Schroder-Bernstein theorem: if A injects into B and
B injects into A, then there is a bijection between A and B. This seemingly obvious statement is
surprisingly difficult to prove. The proof presented here is modeled on the argument given in section
2.6 of [1]; the only differences are expository.

1. STATEMENT OF THE THEOREM AND SKETCH OF PROOF

Given two sets X and Y, we will write X ~ Y to denote the existence of a bijection from X to
Y. One easily checks that ~ is transitive, i.e. if X ~ Y and Y ~ Z, then X ~ Z. The purpose of
this note is to prove the following result:

Theorem 1 (Cantor-Schroder-Bernstein). If f : A — B and g : B — A are both injections, then
A~ B.

Here’s the strategy of the proof. First, we apply f to all of A to obtain a set B; C B. Next, apply
g to all of By to geta set A, C A. Iterating this, we keep bouncing back and forth between smaller
and smaller subsets of A and B until the process stabilizes and we end up with some sets A C A
and B C B for which f(A) = B and g(B) = A. This implies that A ~ B. The next task is to
show that A — A ~ B — B, which turns out to be not so hard. Finally, we conclude that A ~ B.

2. PROOF OF THE THEOREM
Let
Ay =A By=1B
Ay = g(By) By = f(Ao)
Ay = 9(31) By = f(Al)

Ay=g(But)  Bu= f(Au)

We make two observations, both of which are consequences of injectivity:

Lemma 2.
A=Ay~Bi~Ay~ Bz~ A4~ -
B=By~A; ~By~ A3~ By~ ---
Lemma 3.
A2 A DA D
By2 B 2By 2 -



Remark. If Ay = Any1 for some N, then Lemma 2 immediately implies that A ~ B. We will
therefore assume that the inclusions in Lemma 3 are all strict.

At this point, it may seem that we have all the tools necessary to prove the theorem. Indeed,
Lemma 2 implies that A ~ B; and A; ~ B, whence we might be tempted to deduce that AU A; ~
BUBy;since A O A; and B O By, this would immediately imply that A ~ B. The problem with
this approach is that the two conditions X; ~ Y; and X, ~ Y5 do not imply X; U X, ~ Y] U Y5 in
general. However, we have the following result.

Lemma 4. Suppose we have sets {X;} and {Y;} satisfying X; ~ Y; for all i. If all the X; are
pairwise disjoint, and all the Y; are pairwise disjoint, then

Jx~Ur.

Thus, to continue our line of argument, we require analogues of the sets A; which are pairwise
disjoint. Fortunately, this isn’t difficult to cook up. For each n, set A? := A, — A, ;1. By the
remark directly after Lemma 3, we see that all of the sets A’ are nonempty; moreover, they are
pairwise disjoint. Similarly defining sets B, we have the following analogue of Lemma 2:

Lemma 2%,
Ay~ Bl ~ Ay~ By ~ A ~
By~ Al ~ By ~ Ay~ By~ -
We can now carry out our prior attack. Since Aj ~ B} and A} ~ Bj, Lemma 4 implies that
Ay U Al ~ BjU BY.
More generally, we deduce that
Azn U Aszrl ~ B;n U B;nJrl
for all n. Taking the union over all n and once again applying Lemma 4, we conclude that
U4~ B
n>0 n>0

At this point, we're nearly finished; the left hand side looks a lot like A, and the right hand side
like B. For brevity, denote the left hand side by A and the right hand side by B, so that we have

A~ B. (1)

Does A = A? Somewhat surprisingly, the answer is no in general. To fill in the missing piece, we
introduce one final notation: set A = ﬂ A, and B = m B,,. We have the following result:

n>0 n>0
Lemma5. A= AU A is a partition of A, and B = B U Bis a partition of B.

_ Once again by Lemma 4, we see that to conclude the proof of the theorem it suffices to show that
A ~ B. This is an immediate consequence of the following:

Lemma 6. f(A) = B and g(B) = A.

This concludes the proof of the theorem. U



REFERENCES

[1] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, translated by R. A. Silverman, Dover Publica-
tions, New York, 1975. 1

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ON, CANADA
E-mail address: 1goldmak@math.toronto.edu



	1. Statement of the theorem and sketch of proof
	2. Proof of the theorem
	References

