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ABSTRACT. The Cauchy-Schwarz inequality is fundamental to many areas of mathematics, physics, engineering,
and computer science. We introduce and motivate this inequality, show some applications, and indicate some
generalizations, including a simpler form of Hölder’s inequality than is usually presented.

1. MOTIVATING CAUCHY-SCHWARZ

Recall that the standard distance (aka “Euclidean metric”) between two points x,y ∈ R2 is defined

d(x,y) :=
√
(x1 − y1)2 + (x2 − y2)2,

a simple consequence of the pythagorean theorem.
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Calculating the distance between x = (x1, x2) and y = (y1, y2)

The Euclidean metric famously satisfies the triangle inequality

d(x,y) ≤ d(x, z) + d(z,y), (1.1)

which asserts that the shortest path from one point of the plane to another is via a straight line. This is intuitively
clear, but the proof isn’t immediately obvious. We warm up by thinking about a special case:

Proposition 1.1. d(x,y) ≤ d(x, 0) + d(0,y) for all x,y ∈ R2.

Exercise 1. Show that the proposition implies (1.1).

Scratchwork for proof of the Proposition:
Writing out the claim in terms of the formal definition of the Euclidean distance,
we see that we’re trying to prove√

(x1 − y1)2 + (x2 − y2)2 ≤
√
x21 + x22 +

√
y21 + y22.

Squaring both sides and simplifying shows this is equivalent to proving

−2x1y1 − 2x2y2 ≤ 2
√
x21 + x22

√
y21 + y22.

Dividing by 2 and squaring both sides, we see that our claim is equivalent to

(x1y1 + x2y2)
2 ≤ (x21 + x22)(y

2
1 + y22). (†)

Thus the triangle inequality for the Euclidean metric in R2 is equivalent to the inequality (†). A similar argu-
ment shows that the triangle inequality for the Euclidean metric in Rn is equivalent to the following:



Theorem 1.2 (Cauchy-Schwarz). For any real numbers xi, yi we have

(x1y1 + x2y2 + · · ·+ xnyn)
2 ≤ (x21 + x22 + · · ·+ x2n)(y

2
1 + y22 + · · ·+ y2n).

We’ll prove this below, but for now let’s explore some easy consequences of this inequality. Taking all the
yi = 1, we immediately deduce

(x1 + x2 + · · ·+ xn)
2 ≤ (x21 + x22 + · · ·+ x2n)n. (*)

Rearranging yields

x1 + x2 + · · ·+ xn
n

≤
√
x21 + x22 + · · ·+ x2n

n
,

or in words, that the mean is bounded above by the root mean square. This already hints at a connection to
probability and statistics. Inspired by this, let’s impose the additional condition x1 + x2 + · · · + xn = 1 (the
sum of probabilities of all possible events is 1); if this is the case, (∗) implies

x21 + x22 + · · ·+ x2n ≥
1

n
.

For example, this shows that if I roll a 6-sided die twice, the probability that both rolls produce the same number
is at least 1/6 – no matter whether or not the die is fairly weighted.

Let’s reconsider the original Cauchy-Schwarz inequality from a different perspective. What does the quantity
x1y1+x2y2+ · · ·+xnyn remind you of? The dot product of x,y ∈ Rn! Thus we can rewrite Cauchy-Schwarz
in the more compact form

(x · y)2 ≤ (x · x)(y · y).
This change of perspective is not merely notationally convenient, but also suggests a short proof. Recall that
for any two vectors, a ·b = |a| |b| cos θ where θ is the angle between a and b (this is a consequence of the law
of cosines).

Proof of Cauchy-Schwarz. Given x,y ∈ Rn, we have

(x · y)2 = (|x| |y| cos θ)2 = |x|2 |y|2 cos2 θ
≤ |x|2 |y|2 = (x · x)(y · y). �

In fact, examining this proof we see that equality holds in Cauchy-Schwarz iff the angle between x and y is a
multiple of π, or in other words, iff x is a rescaling of y. Thus, we can write the theorem in a stronger form:

Theorem 1.3 (Cauchy-Schwarz, v2.0). Given x,y ∈ Rn, we have

(x · y)2 ≤ (x · x)(y · y)

with equality if and only if x is a rescaling of y.

This refinement of Cauchy-Schwarz is quite useful, as the following example demonstrates.

Example 1. What is the maximum of 2x+ 3y + 5z over all the points (x, y, z) on the unit sphere?

By Cauchy-Schwarz we have

(2x+ 3y + 5z)2 ≤ (22 + 32 + 52)(x2 + y2 + z2) = 38,

with equality iff (x, y, z) is a rescaling of (2, 3, 5). Thus the function 2x+ 3y + 5z
takes on a maximal value of

√
38, and this happens precisely at the points

±
(

2√
38
, 3√

38
, 5√

38

)
.

We’ve now seen applications of Cauchy-Schwarz to problems in geometry, probability, and optimization. This
is the tip of the iceberg; Cauchy-Schwarz is extremely useful throughout mathematics, physics, engineering,
and computer science.



2. GENERALIZING CAUCHY-SCHWARZ

Returning to Cauchy-Schwarz in the form presented in Theorem 1.2, observe that the right hand side of the
inequality doesn’t change if we replace any of the xi by −xi. Right away we deduce the stronger bound

(|x1y1|+ |x2y2|+ · · ·+ |xnyn|)2 ≤ (x21 + x22 + · · ·+ x2n)(y
2
1 + y22 + · · ·+ y2n).

The take-home message here is that it suffices to state the Cauchy-Schwarz inequality (as well as other inequal-
ities) for the special case of non-negative real numbers; inserting absolute values often produces a stronger
version for free!

As a student I found Cauchy-Schwarz difficult to remember, and came up with the following mnemonic:

The square of the sum of products ≤ the product of the sum of squares.

To be useful one must remember the direction of the inequality, but this doesn’t need to be memorized: a single
random example suffices to determine this, e.g. x = (1, 0) and y = (0, 1). As with any mnemonic, however,
there’s a possibility of misinterpretation. In this case, the word product is potentially misleading; how many
variables are we taking the product of? This is important, since taking the trivial product of a single variable
leads to the false conclusion (a + b)2 ≤ a2 + b2. What we actually mean by “product” is the product of two
variables. Thus a more precise version of the mnemonic might read the square of the sum of products (of two
variables)≤ the product of the sum of the squares, but this is clunkier so in practice I suppress the parenthetical
remark.

One nice feature of the above mnemonic is that it inspires generalizations. For example, one might guess

The cube of the sum of products (of three variables) ≤ the product of the sum of cubes.

This turns out to be true, with one caveat: all the variables have to be non-negative. (As above, one can remove
this restriction by inserting absolute values into the inequality.) Taking this idea and running with it, we might
be led to conjecture the following:

Theorem 2.1 (Hölder’s inequality). For any positive integer m, we have(∑
i

αiβi · · ·ωi︸ ︷︷ ︸
m variables

)m
≤

(∑
i

αmi

)(∑
i

βmi

)
· · ·

(∑
i

ωmi

)
︸ ︷︷ ︸

m factors

(♥)

assuming all of the αi, βi, . . . , ωi are non-negative real numbers.

The proof of this is outlined in the exercises. Just as Cauchy-Schwarz is the natural tool for proving the triangle
inequality in Rn with respect to the Euclidean metric, Hölder’s inequality is useful for proving the triangle
inequality in some other spaces that arise in analysis (called Lp spaces).

Recasting Cauchy-Schwarz in the language of vectors (as in Theorem 1.3) provides a different avenue for
generalization, to arbitrary vector spaces endowed with an inner product (a generalization of the dot product).
We won’t discuss this here, but you will encounter this in any course on functional analysis or Hilbert spaces.
An example of this is a version of Cauchy-Schwarz for integrals rather than sums; see exercise 1.d below.

3. EXERCISES

1. Practice with Cauchy-Schwarz:
(a) Prove that |x1y1 + · · ·+ xnyn|2 ≤ (|x1|2 + · · ·+ |xn|2)(|y1|2 + · · ·+ |yn|2) for any xi, yi ∈ C.
(b) Prove that for any a, b, c > 0,

a

b+ c
+

b

a+ c
+

c

a+ b
≥ 3

2
.

(c) Given θ1, θ2, · · · , θn ∈ [0, π
2
), prove that

1

cos2 θ1
+ · · ·+ 1

cos2 θn
≥ n+

(sin θ1 + · · ·+ sin θn)
2

cos2 θ1 + · · ·+ cos2 θn
.



(d) Prove that
∣∣∣ ∫ b

a

f(x)g(x) dx
∣∣∣2 ≤ (∫ b

a

|f(x)|2 dx
)(∫ b

a

|g(x)|2 dx
)

.

2. The purpose of this problem is to discover a few more proofs of Cauchy-Schwarz.
(a) Prove directly that (x1y1 + x2y2)

2 ≤ (x21 + x22)(y
2
1 + y22). Then deduce Theorem 1.2 by induction.

(b) Given real numbers ai and bi, consider the function

F (x) :=
∑
i

(aix− bi)2.

Observe that F (x) is quadratic in x, i.e. can be written in the form Ax2 + Bx+ C. What can you
deduce about the discriminant B2 − 4AC? Use this to prove Theorem 1.3.

(c) Prove that (∑
i

xiyi

)2

=

(∑
i

x2i

)(∑
i

y2i

)
− 1

2

∑
i,j

(xiyj − xjyi)2,

and deduce Theorem 1.3.
3. The goal of this problem is to prove Theorem 2.1, i.e. that the inequality (♥) holds for all positive

integers m.
(a) Prove that if (♥) holds when m = a and when m = b, then it also must hold for m = ab.
(b) Prove that (♥) holds whenever m is a power of 2.
(c) Prove that for any non-negative real numbers an, bn, cn we have∑

anbncn ≤
(∑

anbncn

)1/4 (∑
a3n

)1/4 (∑
b3n

)1/4 (∑
c3n

)1/4
.

(d) Prove (♥) for m = 3. [Hint: use the previous part!]
(e) Prove Theorem 2.1. [Hint: use strong induction. m is either even or odd...]

4. Frequently in the literature, Hölder’s inequality refers to the bound

a1b1 + · · ·+ anbn ≤ (ap1 + · · ·+ apn)
1/p(bq1 + · · ·+ bqn)

1/q (‡)

for any positive real numbers p, q satisfying 1/p + 1/q = 1 and any non-negative ai, bi ∈ R. The goal
of this exercise is to prove that (‡) is equivalent to Theorem 2.1.
(a) Prove that (‡) implies Theorem 2.1.
(b) Show that Theorem 2.1 implies (‡) for all p ∈ Q. [Hint: Warm up with the case p = 3.]
(c) Deduce that (‡) holds for all real numbers p > 1. [Hint: Think of the numbers ai, bi being fixed

and of p as the variable.]
5. In this exercise we outline a beautiful argument (due to Orr Shalit) that deduces (‡) directly from

Cauchy-Schwarz.1 Throughout, let

S := {1/p ∈ (0, 1) : the bound (‡) holds for all positive real choices of ai, bi}.
(a) Prove that if 1

p
∈ S, then 1

2p
∈ S. [Hint: Write akbk = (akb

σ
k)(b

1−σ
k ), and apply Cauchy-Schwarz

to
∑
akbk. Then choose σ appropriately.]

(b) Deduce that a
2k
∈ S for all positive integers k and all a ∈ {1, 2, . . . , 2k−1}. [Hint: Do you happen

to know any elements of S a priori?]
(c) Conclude that S = (0, 1).
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1For a completely different proof of (‡), see my article Hölder’s inequality as a convexity result, available online.
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