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ABSTRACT. Euler’s theorem on the Euler characteristic of planar graphs is a fundamental result, and is usually
proved using induction. Here I present a totally different proof, discovered jointly by Stephanie Mathew (an
undergraduate at the time) and Red Burton (a computer program). I learned of this proof thanks to the remarkable
website of David Eppstein, who has compiled twenty proofs of Euler’s formula (as well as many other lovely
expository articles).

1. EULERIAN TOURS AND EULER’S FORMULA

Given a planar1 graph G, let V (G) denote the number of vertices of G, E(G) the number of edges of G, and
F (G) the number of faces of G (i.e. the number of two dimensional pieces G partitions the plane into). When
there is no ambiguity, we shall simply write V , E, and F . Our goal is to prove the following fundamental
discovery of Euler:

Theorem 1.1 (Euler’s Formula). For any connected planar graph, V − E + F = 2.

Remark. The quantity V − E + F is called the Euler characteristic of a graph.

The main idea in our proof is to study the Euler characteristic of a particularly nice family of graphs. Recall
that a graph has an Eulerian tour iff there exists a path that starts and ends at the same vertex of the graph,
visiting every vertex of the graph along the way and traversing each edge of the graph precisely once. Euler,
inspired by the bridges of Königsberg, famously characterized all such graphs:

Theorem 1.2. A graph has an Eulerian tour if and only if it’s connected and every vertex has even degree.

We relegate the proof of this well-known result to the last section.
Our approach to Theorem 1.1 is to reduce it to the following special case:

Proposition 1.3. Euler’s formula V − E + F = 2 holds for any graph that has an Eulerian tour.

With this in hand, the proof of Theorem 1.1 becomes a simple matter. The following argument was devised by
Stephanie Mathew when she was a second-year engineering undergraduate at the University of Houston.

Proof of Theorem 1.1. Given a connected planar graph G, we form a new graph G′ on the same set of vertices
as G as follows. For every edge e in G, add an edge parallel to it (see picture below). Note that each edge
we add in this way adds precisely one face, whence the Euler characteristic of G′ is the same as the Euler
characteristic of G. But by Theorem 1.2 we know G′ has an Eulerian tour, so Proposition 1.3 implies that the
Euler characteristic of G′ is 2. It follows that the Euler characteristic of G is also 2, as claimed. �

The graph G The graph G′

1Recall that a graph is planar iff it can be drawn in the plane in such a way that edges only intersect at shared vertices.
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It remains only to prove Proposition 1.3. The proof was inspired by an observation of Red Burton, a computer
program written by Siemion Fajtlowicz that specializes in making conjectures. Red Burton’s key insight was
that each time one revisits a vertex on an Eulerian tour, this adds a face to the graph. Formalizing this quickly
leads to the following proof:

Proof of Proposition 1.3. Let G be a graph that has an Eulerian tour. This Eulerian tour visits every vertex at
least once; let r(v) denote the number of times the Eulerian tour revisits v (see example below). Since we are
considering an Eulerian tour, we immediately see that∑

v∈V

r(v) = E + 1− V.

On the other hand, each visit to a vertex (beyond the first visit) creates a new interior face, which produces a
different interpretation of the left hand side of the above equation:∑

v∈V

r(v) = F − 1.

Combining the above two identities proves the claim. �
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r(x) = r(y) = 0, while r(v) = r(w) = 1

2. EULERIAN TOURS

In the above proof we took for granted Theorem 1.2, Euler’s characterization of graphs with Eulerian tours.
The goal of this section is to prove this result. We handle the two directions of the theorem separately.

Proposition 2.1. If G has an Eulerian tour, then it is connected and every vertex has even degree.

Proof. Let’s say there’s an Eulerian tour that starts and ends at vertex v0:

v0 → v1 → v2 → · · · → vk → · · · → vn−1 → v0.

Here we denote the kth vertex visited along the tour by vk, but note that the vi need not be distinct; it’s possible
for the tour to revisit a vertex. However, since every single vertex of G must appear somewhere on the tour, we
immediately deduce that G must be connected. Moreover, because each edge is traversed exactly once along
our tour, we see that

deg(v) = 2 ·#{i ∈ [0, n− 1] : vi = v}.
for any vertex v of G. In particular, the degree of each vertex is even. �

Having dispatched with the forward direction of Theorem 1.2, we now prove the converse:

Proposition 2.2. Any connected graph whose vertices all have even degree has an Eulerian tour.

We sketch the proof before writing it down formally. Given a graph G, pick a random vertex v0 and take a
random walk along the edges of G, labeling each vertex on your walk and deleting any edge you traverse.
Eventually you’ll get back to v0 and get stuck (see illustration below). Whatever’s left of the original graph
consists of a bunch of small connected graphs: G1 containing v1, G2 containing v2, etc. All the vertices in all
the Gi’s still have even degree, so by induction, each of these graphs must have an Eulerian tour. This gives us



an Eulerian tour of our original graph G: start at v0, walk to v1, take an Eulerian tour of G1, walk to v2, take an
Eulerian tour of G2, etc!
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What’s left of G after our random walk

Proof. We induct on the number of edges of the graph. Consider a connected graph G in which each vertex
has even degree, and pick any vertex v0 of G. Start walking from v0 along edges at random, labeling vi the ith

vertex you arrive at along the walk. As you walk, delete every edge you traverse. Keep walking until you get
stuck somewhere (i.e. until you get to a vertex where there are no edges you can take to leave). This vertex
must be v0, since otherwise it would have odd degree!

Now consider the graph G′ that remains after taking the above walk. First observe that since we walked along
an Eulerian tour, we’ve removed an even number of edges from each of the vertices vi; this means that every
vertex in G′ still has even degree. For each j ≥ 1, let Gj denote the connected component of G′ that contains
vj , unless vj is already a vertex in some previously defined Gi with i < j, in which case set Gj to be the lone
vertex vj with no edges.

Note that each Gj is a connected graph in which every vertex has even degree. Since Gj has a smaller
number of edges than G, our inductive hypothesis guarantees that Gj has an Eulerian tour for every j. We’ve
thus constructed an Eulerian tour of our original graph G: starting at v0, walk to v1 and take the Eulerian tour
of G1, then walk to v2 and take the Eulerian tour of G2, etc. �

This completes our proof of Theorem 1.2.
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