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ABSTRACT. Gauss famously discovered that the magnitude of the gauss sum (mod p) is precisely
√
p, and for

quadratic gauss sums he went further and determined the value of the sum itself. We present Dirichlet’s 1835 proof
of Gauss’ formula, with the language modernized.

Recall that the fourier transform of a function f : Z/qZ → C is defined

f̂(a) :=
1
√
q

∑
n≤q

f(n)e

(
−an

q

)
,

where e(α) := e2πiα and the range of summation is over all positive integers n. It turns out that the fourier
transform of a primitive Dirichlet character χ (mod q) is proportional to the complex conjugate of χ:

χ̂(a) =
χ(−1)τ(χ)

√
q

χ(a), where τ(χ) :=
∑
n≤q

χ(n)e

(
n

q

)
.

When (a, q) = 1, this formula holds for imprimitive characters as well, and follows from a straightforward
change of variables. By contrast, the case (a, q) > 1 requires primitivity:

Exercise 1. Throughout, let χ (mod q) denote a primitive character, and let d denote a proper divisor of q.
(a) Prove that

∑
n≤q

n≡r (mod d)

χ(n) = 0 for every r. [Hint: If not, construct a character (mod d) inducing χ.]

(b) Deduce that
∑
n≤q

χ(n)e
(
an
d

)
= 0. [Hint: Rewrite as a double sum and use part (a).]

(d) Conclude that χ̂(a) = 0 whenever (a, q) > 1.

From the formula above we see that the behavior of χ̂ is transparent, apart from the factor τ(χ). This quantity
is called the gauss sum and is ubiquitous in number theory, for example appearing in the functional equation of
Dirichlet L-functions and in the study of quadratic forms. In applications it’s desirable to have a simple way to
evaluate τ(χ), but this seems to be a difficult problem; the only cases for which we know a simple expression
for τ(χ) are for real characters χ, a result going back to Gauss. What is known for arbitrary characters, however,
is the magnitude of the gauss sum:

Theorem 2. For any primitive χ (mod q) we have |τ(χ)| = √
q (or equivalently, |χ̂| = |χ|).

Proof. Expanding the modulus squared, making the change of variable h = mn−1, and applying Exercise 1 to
extend the sum to all of Z/qZ yields

|τ(χ)|2 =
∑

m,n≤q

χ(m)χ(n)e

(
m− n

q

)
=

∑
h,n∈(Z/qZ)×

χ(h)e

(
hn− n

q

)

=
∑

n∈(Z/qZ)×
e

(
−n

q

) ∑
h∈(Z/qZ)×

χ(h)e

(
hn

q

)
=

∑
n≤q

e

(
−n

q

)∑
h≤q

χ(h)e

(
hn

q

)

=
∑
h≤q

χ(h)
∑
n≤q

e

(
(h− 1)n

q

)
.

The inner sum on the last line vanishes unless h = 1, and the claim follows. □
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As Gauss discovered, computing the precise value of the gauss sum is more challenging. Since τ(χ) is closely
related to the fourier transform of χ, it’s natural to employ fourier analysis techniques to study it. Dirichlet was
the first to explicitly do this, and his approach (which we describe below) gives the cleanest proof of Gauss’
theorem.

Theorem 3 (Gauss). If χ (mod p) is the nontrivial real character, then

τ(χ) =

{√
p if p ≡ 1 (mod 4)

i
√
p if p ≡ −1 (mod 4).

Remark. We can restate this in terms of fourier transforms: for quadratic χ (mod p) we have

χ̂ =

{
χ if p ≡ 1 (mod 4)
−iχ if p ≡ −1 (mod 4).

In other words, quadratic characters are eigenfunctions of the fourier transform, with eigenvalue either 1 or −i.

One of the primary challenges in studying gauss sums is that they mix a multiplicative character with an
additive one; indeed, the key idea in the proof of Theorem 2 was to disentangle the two. Although we cannot
emulate this when evaluating τ(χ), it turns out that when χ is quadratic we can rewrite the sum in a way that
doesn’t involve multiplicative characters at all.

Exercise 4. Prove that τ(χ) =
∑
n∈Fp

e

(
n2

p

)
for the quadratic character χ (mod p).

We can thus interpret a quadratic gauss sum as a discrete analogue of the gaussian integral. Indeed, in the proof
below we will see that this analogy is made rigorous.

Dirichlet’s proof of Theorem 3. Recall Poisson summation: for any f that’s piecewise smooth and of compact
support, ∑

n∈Z

f(n) =
∑
k∈Z

f̂(k),

where f̂ denotes the fourier transform of f . As usual in fourier analysis, for this to hold we need to interpret
f as being slightly fuzzy: f(n) doesn’t literally mean the value of f at n, but rather, the typical behavior in a
neighborhood of n. If f is continuous at n then this really is the value at n, but if, for example, f has a jump
discontinuity at n, then we interpret f(n) as the average of the limits from the left and from the right.

Dirichlet’s key idea is to use Poisson summation by choosing f to make
∑
n∈Z

f(n) = τ(χ). The easiest way

to do this is to set f(x) := e
(

x2

p

)
on [0, p] and f(x) := 0 otherwise, so that Poisson summation yields

∑
n≤p

e

(
n2

p

)
=

∑
k∈Z

f̂(k). (1)

(As usual, the range n ≤ p on the left hand side denotes all positive integers ≤ p.) Writing out the definition of
the fourier transform and applying standard tricks—completing the square and changing variables—we find

f̂(k) = e

(
−pk2

4

)
√
p

∫ (1− k
2 )

√
p

− k
2

√
p

e
(
x2
)
dx.

In particular, we deduce that∑
k even

f̂(k) =
√
p

∫ ∞

−∞
e
(
x2
)
dx and

∑
k odd

f̂(k) = e
(
−p

4

)√
p

∫ ∞

−∞
e
(
x2
)
dx.



Equation (1) therefore implies∑
n≤p

e

(
n2

p

)
=

(
1 + e

(
−p

4

))√
p

∫ ∞

−∞
e
(
x2
)
dx. (2)

It remains only to compute the value of the integral on the right hand side. With some elbow grease this can be
done directly, but there’s a slicker approach that eschews calculus. Observe that nowhere in the above argument
did we require that p be prime. We may thus take p = 1 in equation (2), which implies∫ ∞

−∞
e
(
x2
)
dx =

1

1− i
.

Plugging this back into (2) and applying Exercise 4 yields the claim. □
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