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Abstract. One of the great achievements of the Greeks was to discover that there
exist numbers other than the rationals. In particular, they proved that

√
2 (which

arose naturally as the diagonal of a unit square) is irrational. Since then, there have
been many other proofs of this. Here I present two particularly striking proofs.

1. Arithmetic Proof

Suppose
√

2 = a
b

for some a, b ∈ Z. Then 2 = a2

b2
, whence b2 | a2. By the fundamental

theorem of arithmetic, we deduce that b | a. But this would imply that
√

2 = a
b
∈ Z.
�

This proof immediately gives the following generalization:

Theorem 1.1. For any n ∈ N, either
√
n ∈ N or

√
n 6∈ Q.

2. Algebraic Proof

Let A = {n ∈ N : n
√

2 ∈ N}, and observe that n ∈ A =⇒ n(
√

2 − 1) ∈ A. Since
n(
√

2− 1) < n, we deduce that A has no least element, and must therefore be empty.
�

This proof also generalizes quite nicely. Recall that α ∈ R is called an algebraic
number if it is the root of some polynomial in Z[x]. If α happens to be the root of
some monic polynomial in Z[x], it is called an algebraic integer. To emphasize the
distinction between algebraic integers and the ordinary integers, the latter are often
called the rational integers. We prove the following:

Theorem 2.1. Every non-rational algebraic integer is irrational. In other words,
any non-integral root of a monic polynomial over Z is irrational.

Proof. Let α be a non-rational algebraic integer. Then it is the root of some monic
polynomial P (x) ∈ Z[x], of degree d, say. Since P (x) is monic, it follows that any
power of α can be written as a linear combination of 1, α, α2, . . . , αd−1 over Z.

Let g(x) = (x− bαc)d−1, and consider the set B = {n ∈ N : nα, nα2, . . . , nαd−1 ∈ Z}.
Observe that n ∈ B =⇒ ng(α) ∈ B. Since ng(α) < n, we deduce that B has no least
element, and must therefore be empty. �

I am grateful to Trevor Wooley for introducing me to the algebraic proof.
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3. Remarks

It is evident that α is irrational if and only if its minimal polynomial has degree > 2,
thus seemingly making the above theorem redundant. This is not the case, since
proving the minimality of a polynomial is no easier than proving irrationality! The
strength of Theorem 2.1 is precisely that one doesn’t need the minimal polynomial of
α; any monic polynomial which has α as a root will do. Incidentally, the restriction of
the polynomial being monic cannot in general be removed. For example, 5x2 + x− 4
has 4/5 as a root.

Most proofs of the irrationality of
√

2 are either arithmetic, in the sense that they rely
on unique factorization, or algebraic, in that they use instead some algebraic relation
satisfied by

√
2. The proof of Theorem 2.1 given above is algebraic, but one can also

give a simple arithmetic proof by deducing it from the Rational Roots theorem.

Neither the arithmetic nor the algebraic approach seems to be useful for numbers
such as γ, π + e, or πe, for which we do not know any algebraic relations.
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