
1. LEGENDRE, JACOBI, AND KRONECKER SYMBOLS

by Leo Goldmakher

1.1. Legendre symbol. Efficient algorithms for solving quadratic equations have been known
for several millennia. However, the classical methods only apply to quadratic equations over C;
efficiently solving quadratic equations over a finite field is a much harder problem. For a typical in-
teger a and an odd prime p, it’s not even obvious a priori whether the congruence x2 ≡ a (mod p)
has any solutions, much less what they are. By Fermat’s Little Theorem and some thought, it
can be seen that a(p−1)/2 ≡ −1 (mod p) if and only if a is not a perfect square in the finite field
Fp = Z/pZ; otherwise, it is ≡ 1 (or 0, in the trivial case a ≡ 0). This provides a simple com-
putational method of distinguishing squares from nonsquares in Fp, and is the beginning of the
Miller-Rabin primality test.

Motivated by this observation, Legendre introduced the following notation:

(
a

p

)
=


0 if p | a
1 if x2 ≡ a (mod p) has a nonzero solution
−1 if x2 ≡ a (mod p) has no solutions.

Note from above that
(
a
p

)
≡ a(p−1)/2 (mod p). The Legendre symbol

(
a
p

)
enjoys several nice

properties. Viewed as a function of a (for fixed p), it is a Dirichlet character (mod p), i.e. it is
completely multiplicative and periodic with period p. Moreover, it satisfies a duality property: for
any odd primes p and q,

(1)
(
p

q

)
= 〈p, q〉

(
q

p

)
where 〈m,n〉 = 1 unless both m and n are ≡ 3 (mod 4), in which case 〈m,n〉 = −1. The relation
(1) is known as quadratic reciprocity, and its proof was one of Gauss’ proudest achievements.

It can be shown that if one fixes a rather than p, the Legendre symbol depends only on the residue
class of p in some finite group (Z/nZ)∗, where n depends on a. For example,(

−1
p

)
=

{
1 if p ≡ 1 (mod 4)
−1 if p ≡ −1 (mod 4)(

2

p

)
=

{
1 if p ≡ ±1 (mod 8)
−1 if p ≡ ±3 (mod 8)

(
3

p

)
=

{
1 if p ≡ ±1 (mod 12)
−1 if p ≡ ±5 (mod 12)(

5

p

)
=

{
1 if p ≡ ±1 (mod 5)
−1 if p ≡ ±2 (mod 5)

1.2. Jacobi symbol. It is convenient to extend the Legendre symbol
(
a
p

)
to a symbol

(
a
b

)
, where

b is an arbitrary odd integer; this generalization is called the Jacobi symbol. Whenever b is an
odd prime, we take

(
a
b

)
to be the Legendre symbol. We now extend this by multiplicativity to all

positive odd integers b. In other words, if b = pe11 · · · p
ek
k where the pi are odd primes, set(a

b

)
=

(
a

p1

)e1

· · ·
(
a

pk

)ek

.



As usual with empty products, we set
(
a
1

)
= 1. We can further extend this to all odd negative

integers b by setting
(

a
−1

)
= sgn(a) for all nonzero a.

It can be checked that for fixed b and variable a, the Jacobi symbol is a Dirichlet character (mod |b|),
so long as |b| ≥ 2. It also satisfies a quadratic reciprocity law:(a

b

)
= 〈a, b〉

(
b

a

)
.

1.3. Kronecker symbol. We saw above that for a fixed odd integer b and arbitrary integer a, the
Jacobi symbol

(
a
b

)
gives a Dirichlet character (mod |b|). What if instead we fixed a and let b

vary; is this, too, a Dirichlet character? After all, it’s completely multiplicative by definition. One
immediate difficulty is that the Jacobi symbol doesn’t admit even values of b. One can formally
circumvent this difficulty by defining the behavior of the symbol for b = 0 and b = 2 and extending
to all integers b by multiplicativity. We must have

(
a
0

)
= 0 for the symbol

(
a
·

)
to stand a chance

of being a character. Defining the symbol
(
a
2

)
is more subtle, but taking a clue from the behavior

of
(
2
p

)
(described at the end of the first section) we might guess that a good choice is

(a
2

)
=


0 if 2 | a
1 if a ≡ ±1 (mod 8)
−1 if a ≡ ±3 (mod 8).

Extending the Jacobi symbol by multiplicativity, we now have a symbol
(
a
b

)
defined for all integers

a and b; this is called the Kronecker symbol.

1.4. Primitive quadratic characters. As it turns out, one can give a simple characterization of the
primitive quadratic characters in terms of the Kronecker symbol. We first recall that a fundamental
discriminant is any integer which is the discriminant of some quadratic extension of Q.

Theorem 1.1. For every fundamental discriminantD, χD :=
(
D
·

)
is a primitive quadratic charac-

ter of conductor |D|. Conversely, given any primitive quadratic character χ, there exists a unique
fundamental discriminant D such that χ = χD.

The proof of this theorem can be found in Section 2.2.4 of [1]. We make a few remarks.
• By convention, 1 is a fundamental discriminant, since it is the discriminant of the degen-

erate quadratic extension K = Q. Appropriately, the corresponding character χ1 is the
principal character (mod 1). Note that χ1 is the unique primitive principal character, as it
induces all other principal characters.
• The set of fundamental discriminants can be explicitly determined. Recall that any qua-

dratic extensionK/Q can be written uniquely in the form K = Q(
√
d) with |d| squarefree.

Then the discriminant of K is

discK =

{
d if d ≡ 1 (mod 4)
4d if d ≡ 2 or 3 (mod 4)

Thus for example the set of all fundamental discriminants of magnitude smaller than 16 is

{. . . ,−15,−11,−8,−7,−4,−3, 1, 5, 8, 12, 13, . . .}
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• The theorem says nothing about χa when a is not a fundamental discriminant. Such χa

might be primitive Dirichlet characters (e.g. χ2), imprimitive characters (e.g. χ4), or even
not a character at all (e.g. χ3).

We expand on the last remark above. The smallest integers which are not fundamental discrimi-
nants are±2. From our definition, it is easy to see that both of χ±2 are primitive characters (mod 8):

χ2(n) =

{
1 if n ≡ ±1 (mod 8)
−1 if n ≡ ±3 (mod 8) χ−2(n) =

{
1 if n ≡ 1, 3 (mod 8)
−1 if n ≡ −1,−3 (mod 8)

At first sight, this seems to contradict our classification of primitive real characters. However, a
little thought shows that each of these characters can be written in terms of a fundamental discrim-
inant: χ±2 = χ±8.

The remaining two characters (mod 8) are χ±4. χ4 is the principal character (mod 8), which also
happens to the principal character (mod 2) and (mod 4). Note that it is imprimitive, being induced
by the primitive principal character χ1. χ−4 is the nonprincipal primitive character (mod 4); not
a surprise, since −4 is a fundamental discriminant. Of course, when considered as a character
(mod 8) it is imprimitive.

Thus, even when a is not the discriminant of a quadratic extension of Q, the Kronecker symbol χa

might be a primitive or imprimitive character. However, there’s another possibility: that χa isn’t a
character at all. This is the case for χ3, as we now show.

Proposition 1.2. χ3(2) = −1 and χ3(6k ± 1) = (−1)k for all integers k.

Note that this proposition completely determines χ3, since any integer is either a multiple of 3 or
can be written uniquely in the form 2`(6k ± 1).

Corollary 1.3. χ3 is not a periodic function, and hence, not a character.

Proof. Suppose χ3 were periodic, with period q > 0. Then χ3(q) = χ3(0) = 0, whence 3 | q.
Write q = 3k. Then 1 = χ3(1 + 2q) = χ3(6k + 1) = (−1)k. This implies that k is even, i.e. that
6 | q. We can now proceed by induction to prove that 2` × 6 | q for all ` ≥ 0. Indeed, suppose
2` × 6 | q, say q = 2` × 6k. Then

χ3(2
`) = χ3(2

` + q) = χ3(2
`)χ3(1 + 6k) = (−1)kχ3(2

`).

This shows that k must be even, whence 2`+1 × 6 | q. In particular, q is divisible by arbitrarily
large powers of 2, which is impossible. �

1.5. Questions.

1.5.1. Write out an explicit definition of χ1, à la the expressions for χ±2 above.

1.5.2. In the text we saw that χ3 is not a Dirichlet character. Find another a for which χa is not a
character. What nice properties does χa have when it is not a Dirichlet character?

1.5.3. In the text, we saw that χ±2 are primitive characters, despite the fact that neither ±2 are
fundamental discriminants. Can you find other such a, not fundamental discriminants, for which
χa is a primitive Dirichlet character? What can you say about the set of all such a?
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