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Quadratic Reciprocity is arguably the most important theorem taught in an elementary number
theory course. Since Gauss’ original 1796 proof (by induction!) appeared, more than 100 different
proofs have been discovered. Here I present one proof which is not particularly well-known, due
to George Rousseau [2]. (The proof was rediscovered more recently by (then) high-schooler Tim
Kunisky [1].) Although not the shortest proof, it is the easiest to remember of all the elementary
proofs I have encountered. In particular, it does not rely on Gauss’ Lemma, or lattice counting, or
Gauss sums; the only ingredients used in the proof are the Chinese Remainder Theorem, Wilson’s
Theorem, and Euler’s Criterion. After proving Quadratic Reciprocity for the case of two odd
primes, I’ll show how to derive the ‘supplementary’ laws directly from the classical case.

1. QUADRATIC RECIPROCITY FOR ODD PRIMES

Let p and q be distinct odd primes. The Chinese Remainder Theorem asserts that the map

σ : (Z/pqZ)× −→ (Z/pZ)× × (Z/qZ)×

defined by σ(k) := (k, k) is a bijection. It follows that if we took half of (Z/pqZ)×, it would get
mapped to half of (Z/pZ)× × (Z/qZ)×. For example, set

L :=
{
k ∈ (Z/pqZ)× : 1 ≤ k <

pq

2

}
and R :=

{
(a, b) ∈ (Z/pZ)× × (Z/qZ)× : 1 ≤ b <

q

2

}
.

A bit of thought shows that for each (a, b) ∈ R, there exists a unique k ∈ L such that σ(k) = ±(a, b).
Thus we have ∏

(a,b)∈R

(a, b) = ε
∏
k∈L

(k, k), (1)

where ε = ±1 and the products are taken in the group (Z/pZ)× × (Z/qZ)×.

Both sides of (1) simplify quite nicely. For brevity, set P := p−1
2

and Q := q−1
2

. We have:∏
(a,b)∈R

(a, b) =
∏
a<p
b<q/2

(a, b) =
(
(p− 1)!Q, Q!2P

)

=
(
(−1)Q,

(
(q − 1)!(−1)Q

)P)
=
(
(−1)Q, (−1)P (−1)PQ

)
.



The right hand side of (1) is slightly more involved, and we compute the two coordinates separately.
First, observe that in (Z/pZ)× we have

∏
k∈L

k =
∏

k<pq/2
(k,pq)=1

k =

( ∏
k<pq/2

p-k

k

)
·

( ∏
k<pq/2

q|k

k

)−1

=

( ∏
0<k<p

k

)( ∏
p<k<2p

k

)
· · ·

 ∏
(Q−1)p<k<Qp

k

 ∏
Qp<k<pq/2

k

 ·( ∏
k<pq/2

q|k

k

)−1

=
(p− 1)!Q · P !

(q)(2q)(3q) · · · (Pq)

=
(−1)Q

qP

= (−1)Q
(q
p

)
.

By symmetry, in (Z/qZ)× we have ∏
k∈L

k = (−1)P
(p
q

)
.

Thus, equation (1) becomes(
(−1)Q, (−1)P (−1)PQ

)
= ε ·

(
(−1)Q

(q
p

)
, (−1)P

(p
q

))
or in other words,(q

p

)
· ε ≡ 1 (mod p) and

(p
q

)
· ε ≡ (−1)PQ (mod q).

The former congruence implies that ε =
(q
p

)
; plugging this into the latter congruence yields the

Quadratic Reciprocity law.

2. EXTENSIONS OF QUADRATIC RECIPROCITY

Quadratic Reciprocity allows us to calculate Legendre symbols like
(

3
47

)
. But what about

(
10
47

)
?

In this section, we’ll prove two results which will allow us to evaluate such symbols as well. The
first is a multiplicative property of the Legendre symbol:

Proposition 1. For any two integers a, b and any odd prime p,(ab
p

)
=
(a
p

)( b
p

)
.

Proof. This is an immediate consequence of Euler’s Criterion. �



Thus,
(
10
47

)
=
(

2
47

) (
5
47

)
. The second factor can now be evaluated by Quadratic Reciprocity, so the

only remaining question is a formula for
(
2
p

)
. We will prove:

Theorem 2. Given any odd prime p, we have(2
p

)
=

{
1 if p ≡ ±1 (mod 8)
−1 if p ≡ ±3 (mod 8)

Our approach to this theorem relies on the observation that
(
2
p

)
=
(
2−p
p

)
=
(−1

p

) (
p−2
p

)
. The

advantage here is that p − 2 is odd, so we can now apply multiplicativity to split p − 2 into its
prime factors and then apply quadratic reciprocity.1 For example,

(
2
11

)
=
(−1
11

) (
9
11

)
=−1 ·1 = −1.

This gives an algorithmic solution to the problem of determining
(
2
p

)
, but doesn’t yield the clean

formula of Theorem 2. Try applying this algorithm to evaluate
(

2
19

)
to get a better feel for it.

To prove Theorem 2, we introduce a generalization of the Legendre symbol which is interesting in
its own right: the Jacobi symbol

(
a
n

)
, which is defined for any odd integer n ≥ 3 and any a ∈ Z.2

The symbol
(
a
n

)
is already defined if n is an odd prime. If n ≥ 3 is composite, then n can be

written as a product of primes, say n = p1p2 · · · pk (the pi are not necessarily distinct). Then we
define (a

n

)
:=
( a
p1

)( a
p2

)
· · ·
( a
pk

)
.

The following properties of the Jacobi symbol are straightforward consequences of the correspond-
ing properties of the Legendre symbol:

Theorem 3. Given m ≥ 3 odd. Then

(1) For any a, b ∈ Z, we have
(ab
m

)
=
( a
m

)( b
m

)
.

(2)
( a
m

)(m
a

)
= (−1)

a−1
2
·m−1

2 for any odd integer a ≥ 3.

(3) If a, b ∈ Z and a ≡ b (mod m), then
(

a
m

)
=
(

b
m

)
.

(4) We have
(−1
m

)
=

{
1 if m ≡ 1 (mod 4)
−1 if m ≡ −1 (mod 4)

Using these properties, we can now evaluate
(
2
n

)
with relative ease for any odd n ≥ 3. In this

context, our first observation from above reads:( 2
n

)
=
(2− n

n

)
=
(−1
n

)(n− 2

n

)
(2)

Now observe that for any odd k ≥ 3, we have(k − 2

k

)
=
( k

k − 2

)
=
(k − 2(k − 2)

k − 2

)
=
( −1
k − 2

)(k − 4

k − 2

)
.

1The first factor,
(

−1
p

)
, is easily evaluated by Euler’s Criterion:

(−1
p

)
=

{
1 if p ≡ 1 (mod 4)
−1 if p ≡ −1 (mod 4)

2This can be extended fairly easily to all odd integers n, and (with a bit more work) to arbitrary integers n; the
latter extension is called the Kronecker symbol.



Applying this relation to (2) and iterating yields( 2
n

)
=
(−1
n

)(n− 2

n

)
=
(−1
n

)( −1
n− 2

)(n− 4

n− 2

)
= · · ·

=
(−1
n

)( −1
n− 2

)
· · ·
(−1

3

)(1
3

)
.

Now
(
1
3

)
is simply 1, and from Theorem 3 we see that

(−1
m

)
= (−1)m−1

2 for any odd m ≥ 3. Thus,( 2
n

)
=
(−1
n

)( −1
n− 2

)
· · ·
(−1

3

)
= (−1)

n−1
2

+n−3
2

+···+ 3−1
2 = (−1)1+2+···+n−1

2 = (−1)
n2−1

8 .

It follows immediately that ( 2
n

)
=

{
1 if n ≡ ±1 (mod 8)
−1 if n ≡ ±3 (mod 8)

which concludes the proof of Theorem 2. QED
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