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ABSTRACT. An overview of quotient groups and the importance of normal subgroups.

The goal of this document is to describe how to ‘divide’ a group by a subgroup. Why would one
wish to do this? The hope is that one can decompose big mysterious groups into smaller, simpler
groups whose properties might tell us about the big group; in other words, exactly the same reason
why we decompose substances into molecules, or whole numbers into products of primes.

As we shall see, given any group G and any subgroup H ≤ G, one can always create a quotient
setG/H . However, this set may or may not be a group. This is reminiscent of quotients of integers;
sometimes the answer isn’t so nice (e.g. 60

7
), but other times it is (e.g. 60

6
). Under this analogy,

subgroups H ≤ G are like integers n ≤ N , and normal subgroups H E G are like integers
dividing N . We’ll return to this below.

Remark. One comment before we begin. One of the most important breakthroughs in abstract al-
gebra was the realization that the proper notion of two groups being the same is not literal equality,
but isomorphism (denoted '). For example, the group Z4 of integers (mod 4) under addition is
not literally the same as the group {±1,±i} under multiplication – they have completely different
elements, and even a different operation! But they are isomorphic, which means that any property
we can prove about Z4 as a group can be translated into a property about {±1,±i}, and conversely.
This is one of the biggest strengths of abstract algebra: it allows us to ignore the special properties
of the elements of a group and focus on the properties of the group as a whole, thus seeing the
forest rather than a bunch of individual trees. Thus, whenever we decide that two groups G1 and
G2 are ‘the same’, we will write G1 ' G2 rather than G1 = G2.

1. MOTIVATING EXAMPLES

Recall that the dihedral group of order 8 is

D8 := {e, r, r2, r3, f, rf, r2f, r3f},
subject to the relations r4 = e, f 2 = e, and fr = r3f . (Sometimes this group is denoted D4.)
Interpreted geometrically, these are the symmetries of the square: r represents counterclockwise
rotation by π/2, and f represents reflection across the horizontal axis.

Example 1. Observe that as written above, the first four elements of D8 form a nice subgroup
H := {e, r, r2, r3} :

D8 = {e, r, r2, r3︸ ︷︷ ︸
H

, f, rf, r2f, r3f︸ ︷︷ ︸
Hf

} = H tHf,

where t denotes the disjoint union. Thus we can “factor out H” and write

D8/H = {[e], [f ]}.
(I’m writing brackets around the elements to indicate that this isn’t strictly speaking true: you
can’t actually divide one set by another set. We’ll discuss a rigorous notion of quotient below.)



The quotient set on the right side looks a lot like the subgroup K := {e, f} of D8, so we might
guess

D8/H ' K. (1)

Instead of factoring out H , we could have factored out K by writing D8 in a different order:

D8 = { e, f︸︷︷︸
K

, r, rf︸︷︷︸
rK

, r2, r2f︸ ︷︷ ︸
r2K

, r3, r3f︸ ︷︷ ︸
r3K

} = K t rK t r2K t r3K.

Thus we write D8/K = {[e], [r], [r2], [r3]}, which leads to the guess

D8/K ' H.

This is reassuring, in view of (1).

Remark. The process in this example is highly reminiscent of factoring polynomials: by writing
the elements of the group in a certain order, we can see a common factor to pull out.

Example 2. Let I := {e, r2} ≤ D8. What’s D8/I? Following the pattern set out in the first
example, we write the elements of D8 in an appropriate order:

D8 = {e, r, r2, r3, f, rf, r2f, r3f}
= {e, r2︸︷︷︸

I

, r, r3︸︷︷︸
rI

, f, r2f︸ ︷︷ ︸
fI

, rf, r3f︸ ︷︷ ︸
rfI

}

= I t rI t fI t rfI.

(Note that these calculation rely on the fact that r2 and f commute.) Factoring out I from each of
these, we deduce

D8/I = {[e], [r], [f ], [rf ]}.
By contrast with the first example, the corresponding set {e, r, f, rf} isn’t a subgroup of D8. (For
example, it doesn’t contain r2.) We’ll discuss this below.

Exercise 1. Show that
D8/J = {[e], [r], [r2], [r3]},

where J := {e, rf}.

Remark. In view of the exercise, one might naturally guess that D8/J ' H . But in the first
example we were led to guess D8/K ' H! This becomes less surprising once we observe that
J ' K.

2. FORMALIZING OUR INTUITION

Given a group G and a subgroup H ≤ G, our first step in the examples above was to write G as
a disjoint union of multiples of H:

G = H t g1H t g2H t · · · t gnH. (2)

for some elements gi ∈ G. Then we factored out H:

G/H = {[e], [g1], [g2], . . . , [gn]}. (3)



Now, we can always do this. But there’s a serious problem with this approach: the choice of the
set on the right hand side is very badly-defined. For example, fix any nontrivial element h ∈ H . A
bit of thought will convince you that H = hH . But this means we can rewrite (2) in the form

G = hH t g1H t g2H t · · · t gnH,
which would give us a different answer for the quotient:

G/H = {[h], [g1], [g2], . . . , [gn]}.
Even worse, if we pick a bunch of elements hi ∈ H , we could similarly deduce

G/H = {[h], [g1h1], [g2h2], . . . , [gnhn]}.
At first glance, this issue seems to destroy our prospects for making this approach rigorous –

it turns out we haven’t even come up with a proper definition of what G/H might be! But now
we introduce a truly bizarre idea: rather than fixing this flaw in our definition, we embrace it. We
saw above that [e] is replaceable by [h], and possibly by other things of the form [x], too. Rather
than thinking of [e] as a single element, let’s declare [e] to be the set of all the objects it could be
replaced by. In other words, set

[e] := {x ∈ G : H = xH}.
Similarly, for any g ∈ G, we set

[g] := {x ∈ G : gH = xH}. (4)

This removes the ambiguity in (3) by fiat: no matter what we replace g1H by in (2), the set [g1]
contains it.

This fixes the potential ambiguity in our definition (3) of G/H , but at a cost: the elements of
G/H are themselves sets. This might be unfamiliar in a mathematical context, but is not as strange
as it may seem. For example, our body is composed of cells, but these are themselves composed
of even smaller components (DNA, organelles, etc.). Same with G/H: it consists of some objects
[g], each of which is also composed of smaller objects (namely, certain elements of G).

We’re almost ready to formalize this as a definition, but now we run into another problem. How
do we formalize the decomposition (2)? How do we find one? And how do we even know such
a decomposition exists? Thus, before we can write down a definition of G/H , we have to prove
something.

Proposition 1. Given H ≤ G, there exists some set S ⊆ G such that

G =
⊔
g∈S

gH.

Proof. First, observe that we can write

G =
⋃
g∈G

gH.

(Stare at this until it becomes obvious to you.) Next, observe that any two sets gH are either the
same or completely disjoint:

Exercise 2. Given any two elements g, g′ ∈ G, we have that either gH = g′H or gH ∩ g′H = ∅.

Applying the exercise, we see that we can simply remove all redundant sets gH from the union
above, until all the sets which remain are disjoint. This completes the proof. �



Terrific! Now we know that a decomposition of the form (2) is always possible. This in turn
implies that the expression in (3) is well-defined.

We are now in a position to formally define G/H , but before we do so we make one final
observation that will make the definition much cleaner.

Exercise 3. For any g ∈ G, we have [g] = gH .

With this, we now arrive at the following

Definition. Given H ≤ G, we define

G/H := {[g] : g ∈ G},
where [g] denotes the set gH .

Note that we’ve employed a cheat here: by definition a set ignores repeated elements (e.g. {1, 2, 3} =
{1, 2, 3, 2}), so the potentially redundant [g]’s in {[g] : g ∈ G} can be safely ignored.

Remark. The sets [g] = gH are called (left) cosets.

Exercise 4. Why do we require H to be a subgroup of G in this construction? In other words, what
goes wrong in the definition of G/H when H is merely a subset of G?

3. IS G/H A GROUP?

Recall that the big idea was to break a group down into simpler groups. This means we’d like the
set G/H to be a group. Is there a natural binary operation which makes it into a group? In other
words, what should we define [a][b] to be? The most natural guess is

[a][b] := [ab]. (5)

Exercise 5. Prove that G/H satisfies all the group axioms with respect to the binary operation
defined in (5): closure, associativity, existence of identity, and existence of inverses.

What might throw you a bit is that sometimes G/H doesn’t look like a group. For instance, in
Example 2 we found that

D8/I = {[e], [r], [f ], [rf ]},
which doesn’t look like it’s closed under our operation: [r]2 = [r2], which doesn’t look like any of
the four elements of D8/I . However, a bit more thought shows that [r2] = [e], which is listed.

Thus, a quotient G/H might not look like a group and still be one. But something much worse
can happen: G/H might look like a group and yet not be one. How is this possible? Didn’t we
just check that all the group axioms are satisfied?

To see what’s going on, we go back to a different example. In Exercise 1 we saw that

D8/J = {[e], [r], [r2], [r3]},
which looks like a perfectly nice group under the binary operation (5). But there’s a horrible
surprise in store: the binary operation (5) isn’t well-defined on this set. For example, we have
[e] = [rf ], but

[e][r] = [r] 6= [f ] = [rf ][r].

Thus, D8/J is not a group under our binary operation.
More generally, in an arbitrary quotient G/H it’s possible that [a] = [a′] and [b] = [b′] but

[a][b] 6= [a′][b′], i.e. that [ab] 6= [a′b′]. If, however, the operation is well-defined, then G/H is an



honest group; a success! This motivates distinguishing those nice subgroups H for which G/H is
actually a group.

Definition. A subgroup N ≤ G is said to be a normal subgroup of G, denoted N E G, iff G/N is
a group with respect to the binary operation [a][b] = [ab] (i.e. iff this operation is well-defined).

What can we say about normal subgroups? Turns out, there’s an easy way to detect whether a
given subgroup is normal. To see this, first recall that [g] = gH . Rewriting our binary operation
on G/H in this language, we are trying to define (aH)(bH) as follows:

(aH)(bH) := abH.

Actually, it’s odd to define this: either the above statement is true or it isn’t! So, a subgroupH ≤ G
is normal iff

aHbH = abH

for all a, b ∈ G. It’s easy to see that if Hb = bH , then the above must be true. It turns out that the
converse also holds:

Proposition 2. H E G if and only if bH = Hb for all b ∈ G.

This is commonly written in a different form: H E G if and only if gHg−1 = H for all g ∈ G.

Exercise 6. Prove that 4Z E Z (both viewed as groups under addition), and determine Z/4Z.
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