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ABSTRACT. Gauss famously proved that F×
p is cyclic. In fact, he proved more: for any d | p−1, there are precisely

φ(d) elements of order d in F×
p . Here we consider how this generalizes to other finite groups. Among other results,

we prove that a finite group is cyclic iff it doesn’t have too many roots of unity.

1. GAUSS’ THEOREM

Gauss explored primitive roots (mod p). Among other things, he proved the following

Theorem 1.1. F×
p is cyclic.

The theorem asserts that ∃a ∈ F×
p that generates all of F×

p , i.e. such that

⟨a⟩︷ ︸︸ ︷
{ak : k ∈ Z} = F×

p . How can we find
such a generator? No idea. In fact, it remains a major open problem to find a generator in some way that’s
significantly more efficient than trial and error.

OK, so we can’t prove the existence of a generator by finding one. Instead, consider the set of all the
generators:

A := {a ∈ F×
p : ⟨a⟩ = F×

p }.
Are there any relationships among the elements of A? A bit of playing around leads to the following:

Proposition 1.2. If r ∈ A, then rk ̸∈ A whenever (k, p− 1) > 1.

Proof. We have

(rk)
p−1

(k,p−1) = (rp−1)
k

(k,p−1) = 1.

Thus, if (k, p− 1) > 1, the order of rk must be less than p− 1, which means rk can’t be a generator. □

Corollary 1.3. |A| ≤ φ(p− 1).

Unfortunately, this is exactly the opposite of what we want: a lower bound on |A|. So it seems we’ve made no
progress.

Remarkably, it turns out that we can derive an exact formula for |A| from these ideas! First, though, we must
generalize our argument a bit. Set

Ad := {a ∈ F×
p : |⟨a⟩| = d},

i.e. the set of all elements of F×
p of order d. Replacing p− 1 by d in the proof of Proposition 1.2 yields:

Proposition 1.4. If r ∈ Ad, then rk ̸∈ Ad whenever (k, d) > 1.

One is tempted to instantly deduce that |Ad| ≤ φ(d), but there’s a wrinkle: there might be elements of order d
that aren’t of the form rk. In fact, it turns out this doesn’t happen, as we now prove.

Corollary 1.5. |Ad| ≤ φ(d).

Proof. If Ad = ∅, the claim is trivial, so we assume there exists some r ∈ Ad. If we knew that every element
of order d can be expressed in the form rk (i.e., that Ad ⊆ ⟨r⟩), then Proposition 1.4 would imply the claim.

Observe that ⟨r⟩ has precisely d elements, each of which is a root of f(x) := xd−1. On the other hand, f has
at most d roots! We deduce that ⟨r⟩ is the set of all roots of xd − 1, from which it follows that Ad ⊆ ⟨r⟩. □



Now comes an amazing step: from these upper bounds we will deduce an exact formula. Observe that∑
d|p−1

|Ad| = p− 1

by Lagrange’s theorem. On the other hand, by considering the fractions 1
n
, 2
n
, 3
n
, · · · , n

n
in reduced form we see∑

d|n

φ(d) = n

for any positive integer n. Combining our previous two displayed equations yields∑
d|p−1

(φ(d)− |Ad|) = 0,

and Corollary 1.5 shows that each term in the sum is non-negative. This is only possible if |Ad| = φ(d) for all
d | p− 1! We’ve therefore proved:

Theorem 1.6. The number of elements of order d in F×
p is 0 if d ∤ p− 1, and φ(d) if d | p− 1.

Taking d = p− 1 instantly implies Theorem 1.1.
Note that during the course of the argument we proved that if there exists r ∈ Ad, then Ad ⊆ {rk : k ∈ Z×

n }.
Since we’ve now proved that |Ad| = φ(d), we deduce

Porism 1.7. If r ∈ F×
p has order d, then the set {rk : k ∈ Z×

n } is the set of all elements of order d.

This tells us that while it might be hard to find an example of an element of order d, but once you do it’s easy
to find all the others.

2. CHARACTERIZING CYCLIC GROUPS

It’s natural to ask whether the above proofs go through for groups other than F×
p . Right away, we see the

answer must be no—the Klein group Z2×Z2, for example, has no generator. But where exactly does the proof
break down?

Careful inspection reveals there’s only one dubious step: in the proof of Corollary 1.5, the polynomial f
might have more than d roots. (This is the case in the Klein group: there are 4 roots of x2 − 1.) We deduce

Proposition 2.1. Suppose G is a finite group of order n and identity element e. If xd = e has at most d solutions
for every d | n, then there are precisely φ(d) elements of order d in G, for any d | n.

Note that the conclusion of the proposition instantly implies that G is cyclic. But now observe that if G is a
finite cyclic group—say, G ≃ Zn—then there are precisely d distinct solutions to xd = 1 for any d | n. Thus,
we’ve proved

Proposition 2.2. Suppose G is a finite group of order n and identity element e. The following are equivalent:
• xd = e has at most d solutions for any d | n.
• There are φ(d) elements of order d for any d | n.
• G is cyclic.

Recall that in a field, degree n polynomials have at most n distinct roots. Proposition 2.2 instantly yields

Corollary 2.3. Let F be a field. Then any finite subgroup of F× is cyclic.

3. ROOTS OF UNITY IN ARBITRARY GROUPS

Proposition 2.2 gives a criterion for a group to be cyclic in terms of the number of solutions to xd = e. What
can we say about the number of solutions for non-cyclic groups?

Theorem 3.1 (Frobenius, 1903). If G is a finite group of order n and identity element e, and d | n, then the
number of solutions to xd = e is a multiple of d.



If G is cyclic, this is trivial—there are precisely d solutions in that case—but it implies that for any noncyclic
group there are at least 2d solutions.

The theorem quoted above is a special case of what Frobenius actually proved:

Theorem 3.2 (Frobenius, 1903). If G is a finite group, the number of solutions to xd = a is a multiple of
(d, |C(a)|), where C(a) is the centralizer of a.

Corollary 3.3. If G is abelian and a ∈ G, then the number of solutions to xd = a is a multiple of (d, |G|).

Frobenius’ theorem tells us about the number of dth roots of a given element. What about the structure of the
set of these roots? When G is abelian, the set of solutions to xd = e is a subgroup of G. If G is non-abelian,
however, this might not be true:

Example 1. Consider the symmetric group S3. The set of solutions to x2 = () is {(), (1 2), (1 3), (2 3)}, which
isn’t a subgroup of S3.

Nonetheless, Frobenius conjectured that if the number of roots of xd − e is precisely d (for some d | n), then
the set of these roots is not only a subgroup, but a normal subgroup of G. This is now known to hold, thanks to
the classification of finite simple groups. Remarkably, no simpler proof has been discovered.
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