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ABSTRACT. In 2008, Solymosi proved that for any finite set A ⊂ R,

max{|A ·A|, |A+A|} � |A|4/3−o(1).
This is the strongest bound currently available, even in the restricted case that A ⊂ Z. The strength
of this result is particularly remarkable in view of the simplicity of Solymosi’s argument, which is
accessible to a second-year undergraduate and can be explained using a single bar napkin. (These
claims have been empirically tested.) Here I give a longer, self-contained exposition of the proof.

1. INTRODUCING THE PROBLEM

Given two finite subsets A and B of an integral domain1, we define the sumset of A and B to be

A+B = {a+ b : a ∈ A, b ∈ B}

and the productset of A and B to be

A ·B = {ab : a ∈ A, b ∈ B}.

What can be said about the structure of these sets? We begin our exploration with some simple
examples.

Let An = {1, 2, . . . , n}. Then we have An + An = {2, 3, . . . , 2n}. In particular, we see that

|An + An| = 2|An| − 1. (1)

Note that this is as small as possible, since for any set A we have |A + A| ≥ 2|A| − 1. (Are there
sets A 6= An for which equality is achieved in the lower bound?)

Next, we consider the productset An · An. It is a much harder problem to explicitly list the
elements of this set. Nonetheless, we can get a good idea of |An · An| without too much work.
Indeed, let π(n) denote the number of primes in An. Observing that the product of any pair of
primes is unique up to permutation and applying the Prime Number Theorem yields

|An · An| ≥
1

2
π(n)2 � |An|2−o(1) (2)

where o(1) is a quantity which tends to 0 as n→∞ and f � g means the same thing as f = O(g):
that there exists a constant C > 0 such that |f(x)/g(x)| ≤ C for all x in the domain of f/g. The
bound (2) shows that the productset An ·An is essentially as large as possible, since |A ·A| � |A|2
for any set A.

1An integral domain is any commutative ring R satisfying the cancellation property: if ab = ac, then b = c. For
the purposes of this essay, you can think ofR as being R or Z.



Thus, the sumset of An with itself is very small, and the productset of An is very large. Are there
sets which have small productset instead? A little thought leads to the set

Bn = {20, 21, 22, . . . , 2n−1}.

Then we have Bn ·Bn = {20, 21, . . . , 22n−2}, whence

|Bn ·Bn| = 2|Bn| − 1.

How large is the sumset? When written in binary notation, the sum of any two distinct elements
of Bn has precisely two 1’s and at most n digits. Conversely, any such number is the sum of two
distinct elements of Bn. It follows that there are precisely

(
n
2

)
distinct elements of Bn +Bn, which

come from summing two distinct element of Bn. The only elements of Bn + Bn we are missing
are the sums of an element of Bn with itself; it is easily seen that we have not yet counted these
(they all have exactly one digit 1), and that there are precisely n such sums. Putting this together,
we find that

|Bn +Bn| =
(
n

2

)
+ n ≥ 1

2
|Bn|2.

Thus, similarly to the case of An, one of |Bn +Bn|, |Bn ·Bn| is as small as possible, and the other
is essentially as large as possible.

A natural question arises – is it true that for any set A, one of |A + A|, |A · A| is small, and
the other is large? Some playing around shows that it is very unusual for either the sumset or the
productset to be small. By contrast, one of |A+A|, |A ·A| seems to always be exceptionally large.
This guess was formalized by Erdős and Szemerédi [ES]:

Conjecture 1.1 (Erdős-Szemerédi). For any A ⊆ Z we have

max{|A · A|, |A+ A|} � |A|2−o(1)

where o(1)→ 0 as |A| → ∞.

The conjecture remains wide open, and the best exponent currently known is 4/3 − o(1); much
smaller than the conjectured exponent of 2− o(1).

The examples above give some empirical evidence for the conjecture. In the next section, I’ll
outline an argument which lends Conjecture 1.1 further credibility.

2. MOTIVATION: FREIMAN-RUZSA THEOREM

Most sets have exceptionally large sumset and productset.2 But what sort of set has exception-
ally small sumset or productset? Building on our first example An, we see that any arithmetic
progression has small sumset. Remarkably, a converse to this statement also holds:

Theorem 2.1 (Freiman-Ruzsa Theorem). Suppose A ⊆ Z satisfies |A + A| ≤ k|A|. Then A is
contained in a generalized arithmetic progression3 of dimension�k 1 and size�k |A|.

2I’m cheating when I say most – there are multiple ways to make this statement precise. I don’t know of a natural
way to do this over Z.

3A d-dimensional generalized arithmetic progression (often abbreviated gAP) is a natural extension of an arithmetic
progression: rather than having a single constant difference, one has d constant differences.



The k in the subscripts indicates that the implicit constant is allowed to depend on k, but on nothing
else. It might seem odd to leave these dependencies implicit, and actually some explicit bounds
are known. I have purposely suppressed the explicit statement in order to highlight the heart of the
theorem: that the dimension does not depend on the size of A, and that the gAP containing A isn’t
much larger than A itself.

This deep theorem was originally discovered and proved by Freiman in the 1960s [Fr]. However,
it was an elegant proof due to Ruzsa [Ru] which ignited wide interest in the subject. The two
underlying ideas of the proof are:

(i) for any A, sets of the form mA− `A have a lot of additive structure once m and
` are large enough4; and

(ii) if mA− `A contains a large finite-dimensional arithmetic progression, then so
does A.

The latter idea is not difficult to make precise, but proving a precise form of (i) seems to be quite
hard. The starting point is a result of Bogolyubov, who proved that for any A ⊆ Fp of positive
density, the set 2A − 2A contains a large subset with a lot of diophantine structure (called a Bohr
set). A deep result from the geometry of numbers (Minkowski’s 2nd theorem) implies that any
finite-dimensional Bohr set contains a long finite-dimensional arithmetic progression, thus giving
a version of (i) over finite fields (with m = ` = 2). Ruzsa realized that by allowing m and ` to
be larger, one can bootstrap from the finite field case to the integers. To accomplish this, he first
employed a bound of Plünnecke on graph connectivity to show that if A ⊂ Z satisfies |2A| � |A|,
then |mA − `A| � |A| as well. Next, Ruzsa built on Freiman’s original arguments to prove that
given any A ⊂ Z satisfying |mA−mA| � |A|, it is possible to embed almost all of A into some
finite field Fp (with p � |A|) in such a way that finite-dimensional arithmetic progressions are pre-
served under the embedding. Thus, one can translate the problem back and forth between Z and
Fp without much loss, which is how the argument succeeds. (Obviously I’m being vague here; the
actual arguments are quite involved.5 The effort necessary to understand them is amply rewarded,
however.)

It is natural to look for a version of the Freiman-Ruzsa theorem for productsets, and a simple
computation shows that any geometric progression has exceptionally small productset. However,
no converse to this statement has been proved, and a multiplicative analogue of Freiman-Ruzsa
remains a tantalizing open problem. Assuming the existence of a multiplicative Freiman-Ruzsa
theorem, we see that it should be impossible for both A+A and A ·A to be simultaneously small,
since this should only happen in the event that A simultaneously looks like an arithmetic progres-
sion and a geometric progression. Thus, we expect at least one of A+A or A ·A to be large. This
gives theoretical evidence that some statement along the lines of the Erdős-Szemerédi conjecture
should hold.

4The notation mA means the sum of m copies of A.
5A readable and thorough exposition of the Ruzsa’s proof can be found in Soundararajan’s lecture notes on additive

combinatorics, available on his homepage.



There has been a lot of work towards Conjecture 1.1, involving increasingly ingenious and com-
plicated arguments. In 2008, Solymosi [So] discovered a short, beautiful, and completely elemen-
tary argument which gives the strongest result known towards Erdős-Szemerédi. Moreover, his
result holds for all subsets of C, not just of Z. We state and analyze his theorem in the next section.

3. SOLYMOSI’S THEOREM: STATEMENT AND DISCUSSION

Without further ado, we state Solymosi’s theorem. I should point out that although the theorem is
stated only for subsets of the positive real numbers, it can be extended to arbitrary subsets of C
(see for example [KR]).

Theorem 3.1 (Solymosi, 2009). Given two finite sets of positive real numbers A and B, we have

|AB||A+ A||B +B| � |A|
2|B|2

log |A|
The implicit constant is absolute and effective.

This immediately gives
max{|A · A|, |A+ A|} � |A|4/3−o(1),

which is the largest exponent known toward the Erdős-Szemerédi conjecture. Moreover, in the ex-
treme case |A+ A| � |A|1+ε, Solymosi’s theorem yields the lower bound |AA| � |A|2−δ (where
δ → 0 as ε→ 0); this essentially confirms Erdős-Szemerédi. On the other hand, if |AA| � |A|1+ε,
Solymosi’s theorem only yields the bound |A+A| � |A|3/2−δ. Even so, this recovers the strongest
result previously known, due to Elekes and Ruzsa [ER].6

We make several observations about Solymosi’s lower bound. First, the log |A| is standing in
for max{log |A|, log |B|}, since without loss of generality A is the larger set of the two. More
importantly, it is well-known7 that

|An · An| �
|An|2

(log |An|)δ
(3)

for some constant δ > 0, which shows that the logarithm cannot be entirely removed from Soly-
mosi’s lower bound.

The rest of this section is devoted to proving the upper bound (3). Since this plays no role in the
proof of Solymosi’s theorem, the reader may freely choose to skip ahead to Section 4, where the
proof of Theorem 3.1 is presented.

The bound (3) is well-known to the experts; indeed, much more precise statements are known.
However, (3) suffices for many applications, and can be proved with relative ease. My main moti-
vation in writing down a proof here is that I couldn’t find it in the literature; authors tend to either
prove a strong version of the bound (in which case the proof is quite technical), or else a qualitative
version of the bound in the form |An ·An| = o(|An|), which has an easy proof but is hard to employ
in applications. It’s worth pointing out that even the Erdős-Kac theorem is not strong enough to

6In the special case that A ⊂ N, Chang [Ch] has shown that if |AA| < α|A| then |A+ A| > 36−α|A|2. This once
again approaches Erdős-Szemerédi, but only when α is quite small.

7This is the famous Multiplication Table problem posed by Erdős: how many distinct integers appear in the N ×N
multiplication table? The definitive results on this are due to Ford [Fo]; see also the Ph.D. thesis of D. Koukoulopoulos.



yield the bound (3); it gives only a log log |An| savings.

We begin by reformulating the upper bound (3):

Theorem 3.2. Let A(N) := {ab : a, b ≤ N}. There exists an absolute constant δ > 0 such that

|A(N)| � N2

(logN)δ
. (4)

Proof. 8 Rather than dealing directly with A(N), it will be easier to work with the quantity

A∗(N) := {ab : a, b ≤ N and (a, b) = 1} .
Note that for each n ∈ A(N), there exists some d ≤ N such that n

d2
∈ A∗

(
N
d

)
; it follows that

|A(N)| ≤
∑
d≤N

∣∣∣∣A∗(Nd )
∣∣∣∣ .

We deduce that (4) is implied by the weaker bound

|A∗(N)| � N2

(logN)δ
. (5)

Observe that

|A∗(N)| �
∣∣∣∣{n ∈ A∗(N) : ω(n) ≤ 3

2
log logN

}∣∣∣∣+

∣∣∣∣{n ≤ N2 : ω(n) >
3

2
log logN

}∣∣∣∣ (6)

where ω(n) denotes the number of distinct prime factors of n (counted without multiplicity). We
can make the two terms on the right hand side look more similar by noting that if n ∈ A∗(N), then
ω(n) = ω(a) + ω(b) for some a, b ≤ N . It follows that∣∣∣∣{n ∈ A∗(N) : ω(n) ≤ 3

2
log logN

}∣∣∣∣ ≤ ∣∣∣∣{(a, b) : a, b ≤ N and ω(a) + ω(b) ≤ 3

2
log logN

}∣∣∣∣
≤ 2N ×

∣∣∣∣{m ≤ N : |ω(m)− log logN | ≥ 1

4
log logN

}∣∣∣∣ .
Plugging this into (6) yields

|A∗(N)| � N ×
∣∣∣∣{m ≤ N : |ω(m)− log logN | ≥ 1

4
log logN

}∣∣∣∣+
+

∣∣∣∣{n ≤ N2 : |ω(n)− log logN | ≥ 1

2
log logN

}∣∣∣∣ . (7)

Recall Hardy and Ramanujan’s celebrated result that the normal order of ω(n) is log log n. We
therefore expect both terms on the right hand side of (7) to be small. More precisely, we claim that
for all α ∈ [0, 1/2],

1

N

∣∣∣ {n ≤ N : |ω(n)− log logN | ≥ α log logN}
∣∣∣� (logN)−α

2/4. (8)

Applying this bound in (7) yields (5), and hence the theorem.

8I’m grateful to M. Radziwill for introducing me to this approach. I’ve also borrowed heavily from the thesis of D.
Koukoulopoulos and from Montgomery and Vaughan’s book [MV].



It therefore suffices to prove (8). To do so, we first transform the problem into one of multiplica-
tive number theory. Let

S = Sα(N) = {n ≤ N : |ω(n)− log logN | ≥ α log logN}
and let χ denote the characteristic function of S (i.e. χ(n) = 1 if n ∈ S and χ(n) = 0 otherwise).
Observe that for all n ≤ N ,

χ(n) ≤ κ
ω(n)−(1+α) log logN
1 + κ

(1−α) log logN−ω(n)
2

for any constants κi ≥ 1. It follows that
1

N
|Sα(N)| = 1

N

∑
n≤N

χ(n)

≤ (logN)−(1+α) log(1+α)
1

N

∑
n≤N

(1 + α)ω(n)

+ (logN)−(1−α) log(1−α)
1

N

∑
n≤N

(1− α)ω(n)

(9)

where we have made the choices κ1 = 1 + α and κ2 = (1 − α)−1. Thus, we have reduced the
problem to estimating the mean value of multiplicative functions of the form λω(n). From our work
below (namely, from Corollary 3.4 applied to the function f(n) = λω(n)) we shall deduce:

1

N

∑
n≤N

λω(n) � (logN)λ−1 (10)

for all λ ∈ [1/2, 3/2]. Taking this on faith for the moment, we can use it to bound the right hand
side of (9):

1

N
|Sα(N)| � (logN)−λ1 log λ1+λ1−1 + (logN)−λ2 log λ2+λ2−1. (11)

where λ1 = 1 + α and λ2 = 1− α. It is a straightforward calculus exercise to show that

−λ log λ+ λ− 1 ≤ −(λ− 1)2

4

whenever 1
2
≤ λ ≤ 3

2
. Employing this in (11) yields

1

N
|Sα(N)| � (logN)−α

2/4,

thus concluding the proof of (8) and, hence, of the theorem. �

To complete the above proof, it remains only to prove the bound (10). We will deduce this from
a more general result:

Lemma 3.3. Suppose f is a real-valued, non-negative multiplicative function satisfying∑
p≤x

f(p) log p� x and
∑
pk

k≥2

f(pk)

pk
log p� 1.

Then
1

x

∑
n≤x

f(n)� 1

log x

∑
n≤x

f(n)

n



Before proving Lemma 3.3, we observe that the hypotheses on f are fairly restrictive. Indeed, we
have ∑

p≤x

log p� x and
∑
pk

k≥2

log p

pk
� 1

which indicates that any f satisfying the hypotheses must be small most of the time. For example,
f(t) = log t does not satisfy the hypotheses.

Proof of Lemma 3.3 (see Theorem 2.14 in [MV]). First, I claim that for any multiplicative func-
tion, ∑

n≤x

f(n) log n�
∑
pk≤x

(log p)f(pk)
∑

m≤x/pk
f(m). (12)

This comes from using the identity log n =
∑
d|n

Λ(n) (the von Mangoldt function) and applying

standard algebraic manipulations. Separating the RHS of (12) into two pieces (one with k = 1, the
other with k ≥ 2) and applying the hypotheses on the size of f , we deduce that∑

n≤x

f(n) log n� x
∑
n≤x

f(n)

n
.

Next, observe that ∑
n≤x

f(n) log
x

n
≤
∑
n≤x

f(n)
x

n
.

Summing these two inequalities yields the lemma. �

Corollary 3.4. If f satisfies the hypotheses of Lemma 3.3, then
1

x

∑
n≤x

f(n)� 1

log x
exp

(∑
p≤x

f(p)

p

)
.

Proof. By Lemma 3.3, it suffices to prove∑
n≤x

f(n)

n
� exp

(∑
p≤x

f(p)

p

)
.

First, observe that

exp

(∑
pk≤x

f(pk)

pk

)
= 1 +

∑
pk≤x

f(pk)

pk
+

1

2

(∑
pk≤x

f(pk)

pk

)2

+ · · ·

≥ 1 +
∑
pk≤x

f(pk)

pk
+
∑

pk,q`≤x

f(pkq`)

pkq`
+ · · ·

≥
∑
n≤x

f(n)

n
.

On the other hand, we have ∑
pk≤x

f(pk)

pk
=
∑
p≤x

f(p)

p
+O(1)

by one of the hypotheses on f . Substituting this into the bound above yields the claim. �



4. SOLYMOSI’S THEOREM: PROOF

It will be convenient to measure redundancies in the sets we’re dealing with. Given two subsets
A and B and a binary operation ⊗ on R, let

ρA⊗B(x) := |{(a, b) ∈ A×B : a⊗ b = x}| .
This notation will allow us to outline Solymosi’s proof with relative ease (a detailed proof follows
our outline). At the heart of the proof is the identity∑

x∈AB

ρAB(x)2 =
∑

m∈B/A

ρB/A(m)2, (13)

which is unexpected but trivial to verify. The strategy is to bound this quantity from above and be-
low in terms of sumsets and productsets ofA andB; the resulting inequality is Solymosi’s theorem.

The lower bound comes from an application of Cauchy-Schwarz to the identity

|A×B| =
∑
x∈AB

ρAB(x). (14)

(The same holds with multiplication replaced by any binary operation, but we won’t require this
level of generality.) This bounds the left hand side of (13) from below by |A|2|B|2/|AB|.

The upper bound comes from the observation that ρB/A(m) admits a natural geometric interpre-
tation: it counts the number of lattice points (i.e. points of A × B) lying on the line Lm through
the origin with slope m. Using some elementary geometric arguments, for example the relation

ρLm+Ln
(x, y) = 1, (15)

it will be seen that the right hand side of (13) counts lattice points lying in sets of the form
Lm + Ln. All such lattice points are trivially contained in (A × B) + (A × B), which has size
|A + A| · |B + B|. Combining this upper bound with the lower bound from above, we find that
|AB| · |A+ A| · |B +B| ' |A|2|B|2, which is the conclusion of Solymosi’s theorem.

Proof of Solymosi’s theorem. Applying the Cauchy-Schwarz inequality to (14), we find

|A×B|2 =

(∑
x∈AB

ρAB(x)

)2

≤ |AB|
∑
x∈AB

ρAB(x)2.

The identity (13) therefore gives the lower bound∑
m∈B/A

ρB/A(m)2 ≥ |A|
2|B|2

|AB|

(the proof of (13) is left as an exercise to the reader).

We now translate the problem into a geometric setting. To simplify the exposition, we introduce
a couple of pieces of notation. First, given two sets S and I , define SI := S ∩ I . Next, let Lm
denote the line of slope m which passes through the origin. Observe that

ρB/A(m) = |LA×Bm |,



the number of lattice points (i.e. points in A× B) on the line Lm. In this new language, our lower
bound from above reads ∑

m∈B/A

∣∣LA×Bm

∣∣2 ≥ |A|2|B|2
|AB|

. (16)

The strategy is to find an upper bound on this sum in terms of sumsets, by coming up with an
appropriate geometric interpretation of the sum. Unfortunately, I have no idea what a natural in-
terpretation of this sum is. So, instead, we make a slight detour: we estimate the sum by another
sum which does admit a clear geometric interpretation.

First, we restrict to a special set of lines which give the bulk of the contribution. Pick anyM ∈ N
which maximizes the quantity ∑

m∈B/A
2M≤|LA×B

m |<2M+1

∣∣LA×Bm

∣∣2 ,
and set

M = {m ∈ B/A : 2M ≤
∣∣LA×Bm

∣∣ < 2M+1}.
It seems likely that the set of lines Lm parametrized byM has some natural geometric interpreta-
tion, but again it’s not obvious to me what this should be. In any event, we can approximate the
entire sum in (16) by just this one maximal piece:∑

m∈B/A

∣∣LA×Bm

∣∣2 =
∑
j∈N

∑
m∈B/A

2j≤|LA×B
m |<2j+1

∣∣LA×Bm

∣∣2
� (log |A|)

∑
m∈M

∣∣LA×Bm

∣∣2 . (17)

Recall that our immediate goal is to rewrite the above sum in a way which admits a geometric
interpretation. Our key tool will be the following result.

Lemma 4.1. Let Lm denote the line through the origin of slope m, and define

P =
{

(x, y) ∈ R2 : x > 0 and y > 0
}
.

Suppose 0 < m < n and S ⊆ P . Then the addition map

Lm × Ln −→ R2

(α, β) 7−→ α + β

restricts to an injection LSm × LSn ↪→
⋃

m<t<n

LPt .

Proof. The lemma can be viewed as having two separate claims:
(1) the restricted addition map LSm × LSn −→ LSm + LSn is an injection; and
(2) LSm + LSn ⊆

⋃
m<t<n

LPt .

It is a straightforward exercise to prove that the unrestricted addition map Lm×Ln −→ Lm+Ln is
an injection. The first claim immediately follows, since the restricted map LSm×LSn −→ LSm +LSn
automatically inherits injectivity from the unrestricted map.



To prove the second claim, observe that LPm +LPn =
⋃

m<t<n

LPt . Since LSm +LSn is trivially a subset

of LPm + LPn , we conclude. �

Recall that we had identified a special setM parametrizing the lines which contribute most to
the sum in (16). Denote this (finite) setM = {m1,m2, . . .} where the mi are increasing. By the
lemma, the set LA×Bmi

+ LA×Bmi+1
consists of points lying in the sector bounded by the lines Lmi

and
Lmi+1

in the first quadrant. It follows that⋃
i

(
LA×Bmi

+ LA×Bmi+1

)
(18)

is a disjoint union. Moreover, by the injectivity part of the lemma, we can measure the size of each
of these disjoint pieces: ∣∣∣LA×Bmi

+ LA×Bmi+1

∣∣∣ =
∣∣∣LA×Bmi

× LA×Bmi+1

∣∣∣
=
∣∣∣LA×Bmi

∣∣∣ · ∣∣∣LA×Bmi+1

∣∣∣ .
It follows that ∣∣∣∣∣⋃

i

(
LA×Bmi

+ LA×Bmi+1

)∣∣∣∣∣ =
∑
i

∣∣∣LA×Bmi

∣∣∣ · ∣∣∣LA×Bmi+1

∣∣∣ . (19)

We have therefore found a sum – namely, the right hand side of (19) – which has a clear geometric
interpretation, and simultaneously looks like our original sum from (17). I now claim the sums
don’t just resemble each other, but are actually almost equal (up to a factor of 2 and a small error).
Note that from the definition ofM, all lines Lm with m ∈ M contain the same number of lattice
points (up to a factor of 2). Thus, we have∑

m∈M

∣∣∣LA×Bm

∣∣∣2 �∑
i

∣∣∣LA×Bmi

∣∣∣ · ∣∣∣LA×Bmi+1

∣∣∣+O(|A|),

where the error term comes from the largest (unpaired) value of i. Actually, we can say more:∑
m∈M

∣∣∣LA×Bm

∣∣∣2 �∑
i

∣∣∣LA×Bmi

∣∣∣ · ∣∣∣LA×Bmi+1

∣∣∣ .
This is because we already have a lower bound on the sum which is larger than the error term of
O(|A|).

We have thus obtained an interpretation of the sum from (17): it counts (roughly) the number of
points in the union (18). Since this union is clearly a subset of (A×B) + (A×B), we deduce that∑

m∈M

∣∣∣LA×Bm

∣∣∣2 �∑
i

∣∣∣LA×Bmi

∣∣∣ · ∣∣∣LA×Bmi+1

∣∣∣
=
∣∣∣⋃

i

(
LA×Bmi

+ LA×Bmi+1

) ∣∣∣
≤ |(A×B) + (A×B)|
= |(A+ A)× (B +B)|
= |A+ A| · |B +B|.



Combining this with (16) and (17) yields the bound claimed in Solymosi’s theorem. �

5. RELATED PROBLEMS

Despite a lot of progress, the Erdős-Szemerédi conjecture remains wide open. There are also
many related open problems. One recent example stems from a theorem originally due to Green,
which asserts that every sufficiently large subset of Z/pZ is of the formA+A for someA ⊆ Z/pZ.
The precise meaning of ‘sufficiently large’ remains an interesting open question (see [Al] for the
strongest results).

Also, two key steps in Solymosi’s proof are statements about moments:∑
x∈AB

ρAB(x) =
∑

m∈B/A

ρB/A(m)

and ∑
x∈AB

ρAB(x)2 =
∑

m∈B/A

ρB/A(m)2

Can one generalize such relations, either to other operations or to higher moments? And what
would such information give?
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