MATH 900-3B: IMPORTANT FORMULAS

INSTRUCTOR: STEVEN MILLER

1. Derivatives of Standard Functions

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x) = x^{n}, f'(x) = nx^{n-1}, n \ rational$$

$$(\sin x)' = \cos x, (\cos x)' = -\sin x$$

$$(e^{x})' = e^{x}, (b^{x})' = (\log_{e} b)b^{x}$$

$$(\log_{e} x)' = \frac{1}{x}, (\log_{b} x)' = \frac{1}{\log_{e} b} \frac{1}{x}$$

2. Useful Rules

Sum Rule:	h(x) = f(x) + g(x)	h'(x) = f'(x) + g'(x)
Constant Rule:	h(x) = af(x)	h'(x) = af'(x)
Product Rule:	. , , . ,	h'(x) = f'(x)g(x) + f(x)g'(x)
Quotient Rule:	$h(x) = \frac{f(x)}{g(x)}$	$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$
Chain Rule:	h(x) = g(f(x))	$h'(x) = g'(f(x)) \cdot f'(x)$
	$h(x) = (f(x))^n$	$h'(x) = n(f(x))^{n-1} \cdot f'(x)$
Multiple Rule:	h(x) = f(ax)	h'(x) = af'(ax)
Reciprocal Rule:	$h(x) = f(x)^{-1}$	$h'(x) = -f'(x)f(x)^{-2}$

Date: July 22, 2005.