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Abstract

We review some concepts from analysis, such as proofs by induction, binomial coefficients, calculus (mean value
theorem, intermediate value theorem), continuity, the Pigeon Hole Principle and lengths of sets. The notes below
are fromAn Invitation to Modern Number Theory, to be published by Princeton University Press in 2006. For more
on the book, see

http://www.math.princeton.edu/mathlab/book/index.html

The notes below are Appendix I of the book; as such, there are often references to other parts of the book.

Notation

1. W : the set of whole numbers:{1, 2, 3, 4, . . . }.
2. N : the set of natural numbers:{0, 1, 2, 3, . . . }.
3. Z : the set of integers:{. . . ,−2,−1, 0, 1, 2, . . . }.
4. Q : the set of rational numbers:{x : x = p

q , p, q ∈ Z, q 6= 0}.
5. R : the set of real numbers.

6. C : the set of complex numbers:{z : z = x + iy, x, y ∈ R}.
7. <z, =z : the real and imaginary parts ofz ∈ C; if z = x + iy, <z = x and=z = y.

8. Z/nZ : the additive group of integers modn: {0, 1, . . . , n− 1}.
9. (Z/nZ)∗ : the multiplicative group of invertible elements modn.

10. Fp : the finite field withp elements:{0, 1, . . . , p− 1}.
11. a|b : a dividesb.

12. (a, b) : greatest common divisor (gcd) ofa andb, also writtengcd(a, b).

13. primes, composite : A positive integera is prime ifa > 1 and the only divisors ofa are1 anda. If a > 1 is
not prime, we saya is composite.

14. coprime (relatively prime) :a andb are coprime (or relatively prime) if their greatest common divisor is1.

15. x ≡ y mod n : there exists an integera such thatx = y + an.

16. ∀ : for all.

17. ∃ : there exists.



18. Big-Oh notation :A(x) = O(B(x)), read “A(x) is of order (or big-Oh)B(x)”, means∃C > 0 and anx0

such that∀x ≥ x0, |A(x)| ≤ C B(x). This is also writtenA(x) ¿ B(x) or B(x) À A(x).

19. Little-Oh notation :A(x) = o(B(x)), read “A(x) is little-Oh ofB(x)”, meanslimx→∞A(x)/B(x) = 0.

20. |S| or #S : number of elements in the setS.

21. p : usually a prime number.

22. i, j, k, m, n : usually an integer.

23. [x] or bxc : the greatest integer less than or equal tox, read “the floor ofx”.

24. {x} : the fractional part ofx; notex = [x] + {x}.
25. supremum : given a sequence{xn}∞n=1, the supremum of the set, denotedsupn xn, is the smallest numberc

(if one exists) such thatxn ≤ c for all n, and for anyε > 0 there is somen0 such thatxn0 > c − ε. If the
sequence has finitely many terms, the supremum is the same as the maximum value.

26. infimum : notation as above, the infimum of a set, denotedinfn xn, is the largest numberc (if one exists)
such thatxn ≥ c for all n, and for anyε > 0 there is somen0 such thatxn0 < c + ε. If the sequence has
finitely many terms, the infimum is the same as the minimum value.

27. 2 : indicates the end of a proof.
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Chapter 1

Analysis Review

1.1 Proofs by Induction

Assume for each positive integern we have a statementP (n) which we desire to show is true.P (n) is true for all
positive integersn if the following two statements hold:

• Basis Step:P (1) is true;

• Inductive Step: wheneverP (n) is true,P (n + 1) is true.

This technique is calledProof by Induction , and is a very useful method for proving results; we shall see many
instances of this in this appendix and Chapter?? (indeed, throughout much of the book). The reason the method
works follows from basic logic. We assume the following two sentences are true:

P (1) is true

∀n ≥ 1, P (n) is true impliesP (n + 1) is true. (1.1)

Setn = 1 in the second statement. AsP (1) is true, andP (1) impliesP (2), P (2) must be true. Now setn = 2 in
the second statement. AsP (2) is true, andP (2) impliesP (3), P (3) must be true. And so on, completing the proof.
Verifying the first statement thebasis stepand the second theinductive step. In verifying the inductive step, note
we assumeP (n) is true; this is called theinductive assumption. Sometimes instead of starting atn = 1 we start
atn = 0, although in general we could start at anyn0 and then prove for alln ≥ n0, P (n) is true.

We give three of the more standard examples of proofs by induction, and one false example; the first example is
the most typical.

1.1.1 Sums of Integers

Let P (n) be the statement
n∑

k=1

k =
n(n + 1)

2
. (1.2)

Basis Step:P (1) is true, as both sides equal1.
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Inductive Step:AssumingP (n) is true, we must showP (n + 1) is true. By the inductive assumption,
∑n

k=1 k =
n(n+1)

2 . Thus

n+1∑

k=1

k = (n + 1) +
n∑

k=1

k

= (n + 1) +
n(n + 1)

2

=
(n + 1)(n + 1 + 1)

2
. (1.3)

Thus, givenP (n) is true, thenP (n + 1) is true.

Exercise 1.1.1.Prove
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
. (1.4)

Find a similar formula for the sum ofk3. See also Exercise??.

Exercise 1.1.2.Show the sum of the firstn odd numbers isn2, i.e.,

n∑

k=1

(2k − 1) = n2. (1.5)

Remark 1.1.3. We define the empty sum to be 0, and the empty product to be 1. For example,
∑

n∈N,n<0 1 = 0.

See [Mil4] for an alternate derivation of sums of powers that does not use induction.

1.1.2 Divisibility

Let P (n) be the statement133 divides11n+1 + 122n−1.

Basis Step:A straightforward calculation showsP (1) is true:111+1 + 122−1 = 121 + 12 = 133.
Inductive Step:AssumeP (n) is true, i.e.,133 divides11n+1 + 122n−1. We must showP (n + 1) is true, or that
133 divides11(n+1)+1 + 122(n+1)−1. But

11(n+1)+1 + 122(n+1)−1 = 11n+1+1 + 122n−1+2

= 11 · 11n+1 + 122 · 122n−1

= 11 · 11n+1 + (133 + 11)122n−1

= 11
(
11n+1 + 122n−1

)
+ 133 · 122n−1. (1.6)

By the inductive assumption133 divides11n+1 + 122n−1; therefore,133 divides11(n+1)+1 + 122(n+1)−1, com-
pleting the proof.

Exercise 1.1.4.Prove4 divides1 + 32n+1.
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1.1.3 The Binomial Theorem

We prove the Binomial Theorem. First, recall that

Definition 1.1.5(Binomial Coefficients). Letn andk be integers with0 ≤ k ≤ n. We set
(

n

k

)
=

n!
k!(n− k)!

. (1.7)

Note that0! = 1 and
(
n
k

)
is the number of ways to choosek objects fromn (with order not counting).

Lemma 1.1.6. We have (
n

k

)
=

(
n

n− k

)
,

(
n

k

)
+

(
n

k − 1

)
=

(
n + 1

k

)
. (1.8)

Exercise 1.1.7.Prove Lemma 1.1.6.

Theorem 1.1.8(The Binomial Theorem). For all positive integersn we have

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (1.9)

Proof. We proceed by induction.
Basis Step:Forn = 1 we have

1∑

k=0

(
1
k

)
x1−kyk =

(
1
0

)
x +

(
1
1

)
y = (x + y)1. (1.10)

Inductive Step:Suppose

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (1.11)

Then using Lemma 1.1.6 we find that

(x + y)n+1 = (x + y)(x + y)n

= (x + y)
n∑

k=0

(
n

k

)
xn−kyk

=
n∑

k=0

(
n

k

)
xn+1−kyk +

(
n

k

)
xn−kyk+1

= xn+1 +
n∑

k=1

{(
n

k

)
+

(
n

k − 1

)}
xn+1−kyk + yn+1

=
n+1∑

k=0

(
n + 1

k

)
xn+1−kyk.

(1.12)

This establishes the induction step, and hence the theorem.
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1.1.4 False Proofs by Induction

Consider the following: letP (n) be the statement that in any group ofn people, everyone has the same name. We
give a (false!) proof by induction thatP (n) is true for alln!

Basis Step:Clearly, in any group with just1 person, every person in the group has the same name.
Inductive Step:AssumeP (n) is true, namely, in any group ofn people, everyone has the same name. We now

proveP (n + 1). Consider a group ofn + 1 people:

{1, 2, 3, . . . , n− 1, n, n + 1}. (1.13)

The firstn people form a group ofn people; by the inductive assumption, they all have the same name. So, the
name of1 is the same as the name of2 is the same as the name of3 . . . is the same as the name ofn.

Similarly, the lastn people form a group ofn people; by the inductive assumption they all have the same name.
So, the name of2 is the same as the name of3 . . . is the same as the name ofn is the same as the name ofn + 1.
Combining yields everyone has the same name! Where is the error?

If n = 4, we would have the set{1, 2, 3, 4, 5}, and the two sets of4 people would be{1, 2, 3, 4} and{2, 3, 4, 5}.
We see that persons2, 3 and4 are in both sets, providing the necessary link.

What about smallern? What ifn = 1? Then our set would be{1, 2}, and the two sets of1 person would be
{1} and{2}; there is no overlap! The error was that we assumedn was “large” in our proof ofP (n) ⇒ P (n + 1).

Exercise 1.1.9.Show the above proof thatP (n) impliesP (n + 1) is correct forn ≥ 2, but fails forn = 1.

Exercise 1.1.10.Similar to the above, give a false proof that any sum ofk integer squares is an integer square, i.e.,
x2

1 + · · ·+ x2
n = x2. In particular, this would prove all positive integers are squares asm = 12 + · · ·+ 12.

Remark 1.1.11. There is no such thing asProof By Example. While it is often useful to check a special case and
build intuition on how to tackle the general case, checking a few examples is not a proof. For example, because
16
64 = 1

4 and 19
95 = 1

5 , one might think that in dividing two digit numbers if two numbers on a diagonal are the
same one just cancels them. If that were true, then12

24 should be1
4 . Of course this isnot how one divides two digit

numbers!

1.2 Calculus Review

We briefly review some of the results from Differential and Integral Calculus. We recall some notation:[a, b] =
{x : a ≤ x ≤ b} is the set of allx betweena andb, includinga andb; (a, b) = {x : a < x < b} is the set of allx
betweena andb, not including the endpointsa andb. For a review of continuity see §1.3.

1.2.1 Intermediate Value Theorem

Theorem 1.2.1(Intermediate Value Theorem (IVT)). Let f be a continuous function on[a, b]. For all C between
f(a) andf(b) there exists ac ∈ [a, b] such thatf(c) = C. In other words, all intermediate values of a continuous
function are obtained.

Sketch of the proof.We proceed byDivide and Conquer. Without loss of generality, assumef(a) < C < f(b).
Let x1 be the midpoint of[a, b]. If f(x1) = C we are done. Iff(x1) < C, we look at the interval[x1, b]. If
f(x1) > C we look at the interval[a, x1].
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In either case, we have a new interval, call it[a1, b1], such thatf(a1) < C < f(b1) and the interval has
half the size of[a, b]. We continue in this manner, repeatedly taking the midpoint and looking at the appropriate
half-interval.

If any of the midpoints satisfyf(xn) = C, we are done. If no midpoint works, we divide infinitely often and
obtain a sequence of pointsxn in intervals[an, bn]. This is where rigorous mathematical analysis is required (see
§1.3 for a brief review, and [Rud] for complete details) to showxn converges to anx ∈ (a, b).

For eachn we havef(an) < C < f(bn), and limn→∞ |bn − an| = 0. As f is continuous, this implies
limn→∞ f(an) = limn→∞ f(bn) = f(x) = C.

1.2.2 Mean Value Theorem

Theorem 1.2.2(Mean Value Theorem (MVT)). Let f(x) be differentiable on[a, b]. Then there exists ac ∈ (a, b)
such that

f(b)− f(a) = f ′(c) · (b− a). (1.14)

We give an interpretation of the Mean Value Theorem. Letf(x) represent the distance from the starting point at
timex. The average speed froma to b is the distance travelled,f(b)− f(a), divided by the elapsed time,b− a. As
f ′(x) represents the speed at timex, the Mean Value Theorem says that there is some intermediate time at which
we are travelling at the average speed.

To prove the Mean Value Theorem, it suffices to consider the special case whenf(a) = f(b) = 0; this case is
known as Rolle’s Theorem:

Theorem 1.2.3(Rolle’s Theorem). Let f be differentiable on[a, b], and assumef(a) = f(b) = 0. Then there
exists ac ∈ (a, b) such thatf ′(c) = 0.

Exercise 1.2.4.Show the Mean Value Theorem follows from Rolle’s Theorem.Hint: Consider

h(x) = f(x)− f(b)− f(a)
b− a

(x− a)− f(a). (1.15)

Noteh(a) = f(a) − f(a) = 0 andh(b) = f(b) − (f(b) − f(a)) − f(a) = 0. The conditions of Rolle’s Theorem
are satisfied forh(x), and

h′(c) = f ′(c)− f(b)− f(a)
b− a

. (1.16)

Proof of Rolle’s Theorem.Without loss of generality, assumef ′(a) andf ′(b) are non-zero. If either were zero
we would be done. Multiplyingf(x) by −1 if needed, we may assumef ′(a) > 0. For convenience, we assume
f ′(x) is continuous.This assumption simplifies the proof, but is not necessary. In all applications in this book this
assumption will be met.

Case1: f ′(b) < 0: As f ′(a) > 0 andf ′(b) < 0, the Intermediate Value Theorem applied tof ′(x) asserts
that all intermediate values are attained. Asf ′(b) < 0 < f ′(a), this implies the existence of ac ∈ (a, b) such that
f ′(c) = 0.

Case2: f ′(b) > 0: f(a) = f(b) = 0, and the functionf is increasing ata andb. If x is real close toa then
f(x) > 0 if x > a. This follows from the fact that

f ′(a) = lim
x→a

f(x)− f(a)
x− a

. (1.17)
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As f ′(a) > 0, the limit is positive. As the denominator is positive forx > a, the numerator must be positive. Thus
f(x) must be greater thanf(a) for suchx. Similarly f ′(b) > 0 impliesf(x) < f(b) = 0 for x slightly less thanb.

Therefore the functionf(x) is positive forx slightly greater thana and negative forx slightly less thanb. If
the first derivative were always positive thenf(x) could never be negative as it starts at0 ata. This can be seen by
again using the limit definition of the first derivative to show that iff ′(x) > 0 then the function is increasing nearx.
Thus the first derivative cannot always be positive. Either there must be some pointy ∈ (a, b) such thatf ′(y) = 0
(and we are then done) orf ′(y) < 0. By the Intermediate Value Theorem, as0 is betweenf ′(a) (which is positive)
andf ′(y) (which is negative), there is somec ∈ (a, y) ⊂ [a, b] such thatf ′(c) = 0.

1.2.3 Taylor Series

Using the Mean Value Theorem we prove a version of thenth Taylor SeriesApproximation: iff is differentiable

at leastn + 1 times on[a, b], then for allx ∈ [a, b], f(x) =
∑n

k=0
f(k)(a)

k! (x − a)k plus an error that is at most
maxa≤c≤x |f (n+1)(c)| · |x− a|n+1.

Assumingf is differentiablen + 1 times on[a, b], we apply the Mean Value Theorem multiple times to bound
the error betweenf(x) and its Taylor Approximations. Let

fn(x) =
n∑

k=0

f (k)(a)
k!

(x− a)k

h(x) = f(x)− fn(x). (1.18)

fn(x) is thenth Taylor Series Approximation tof(x). Note fn(x) is a polynomial of degreen and its firstn
derivatives agree with the derivatives off(x) at x = 0. We want to bound|h(x)| for x ∈ [a, b]. Without loss of
generality (basically, for notational convenience), we may assumea = 0. Thush(0) = 0. Applying the Mean
Value Theorem toh yields

h(x) = h(x)− h(0)
= h′(c1) · (x− 0) with c1 ∈ [0, x]
= (f ′(c1)− f ′n(c1)) x

=

(
f ′(c1)−

n∑

k=1

f (k)(0)
k!

· k(c1 − 0)k−1

)
x

=

(
f ′(c1)−

n∑

k=1

f (k)(0)
(k − 1)!

ck−1
1

)
x

= h1(c1)x. (1.19)
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We now apply the Mean Value Theorem toh1(u). Note thath1(0) = 0. Therefore

h1(c1) = h1(c1)− h1(0)
= h′1(c2) · (c1 − 0) with c2 ∈ [0, c1] ⊂ [0, x]
= (f ′′(c2)− f ′′n (c2)) c1

=

(
f ′′(c2)−

n∑

k=2

f (k)(0)
(k − 1)!

· (k − 1)(c2 − 0)k−2

)
c1

=

(
f ′′(c2)−

n∑

k=2

f (k)(0)
(k − 2)!

ck−2
2

)
c1

= h2(c2)c1. (1.20)

Therefore,

h(x) = f(x)− fn(x) = h2(c2)c1x, c1, c2 ∈ [0, x]. (1.21)

Proceeding in this way a total ofn times yields

h(x) =
(
f (n)(cn)− f (n)(0)

)
cn−1cn−2 · · · c2c1x. (1.22)

Applying the Mean Value Theorem tof (n)(cn)− f (n)(0) givesf (n+1)(cn+1) · (cn − 0). Thus

h(x) = f(x)− fn(x) = f (n+1)(cn+1)cn · · · c1x, ci ∈ [0, x]. (1.23)

Therefore

|h(x)| = |f(x)− fn(x)| ≤ Mn+1|x|n+1 (1.24)

where
Mn+1 = max

c∈[0,x]
|f (n+1)(c)|. (1.25)

Thus iff is differentiablen + 1 times then thenth Taylor Series Approximation tof(x) is correct within a multiple
of |x|n+1; further, the multiple is bounded by the maximum value off (n+1) on [0, x].

Exercise 1.2.5.Prove(1.22)by induction.

Exercise 1.2.6.Calculate the first few terms of the Taylor series expansions at0 of cos(x), sin(x), ex, and2x3 −
x + 3. Calculate the Taylor series expansions of the above functions atx = a Hint: There is a fast way to do this.

Exercise 1.2.7(Advanced). Showall the Taylor coefficients for

f(x) =

{
e−1/x2

if x 6= 0
0 if x = 0

(1.26)

expanded about the origin vanish. What does this imply about the uniqueness of a Taylor series expansion?Warn-
ing: be careful differentiating at zero. More is strangely true. Borel showed that if{an} is any sequence of real
numbers then there exists an infinitely differentiablef such that∀n ≥ 0, f (n)(0) = an (for a constructive proof see
[GG]). Ponder the Taylor series froman = (n!)2.
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1.2.4 Advanced Calculus Theorems

For the convenience of the reader we record exact statements of several standard results from advanced calculus
that are used at various points of the text.

Theorem 1.2.8(Fubini). Assumef is continuous and

∫ b

a

∫ d

c

|f(x, y)|dxdy < ∞. (1.27)

Then ∫ b

a

[∫ d

c

f(x, y)dy

]
dx =

∫ d

c

[∫ b

a

f(x, y)dx

]
dy. (1.28)

Similar statements hold if we instead have

N1∑

n=N0

∫ d

c

f(xn, y)dy,

N1∑

n=N0

M1∑

m=M0

f(xn, ym). (1.29)

For a proof in special cases, see [BL, VG]; an advanced, complete proof is given in [Fol]. See Exercise?? for
an example where the orders of integration cannot be changed.

Theorem 1.2.9(Green’s Theorem). LetC be a simply closed, piecewise-smooth curve in the plane, oriented clock-
wise, bounding a regionD. If P (x, y) andQ(x, y) have continuous partial derivatives on some open set containing
D, then ∫

C

P (x, y)dx + Q(x, y)dy =
∫ ∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy. (1.30)

For a proof, see [Rud], Theorem 9.50 as well as [BL, La5, VG].

Exercise 1.2.10.Prove Green’s Theorem. Show it is enough to prove the theorem forD a rectangle, which is
readily checked.

Theorem 1.2.11(Change of Variables). Let V andW be bounded open sets inRn. Leth : V → W be a 1-1 and
onto map, given by

h(u1, . . . , un) = (h1(u1, . . . , un), . . . , hn(u1, . . . , un)) . (1.31)

Letf : W → R be a continuous, bounded function. Then
∫
· · ·

∫

W

f(x1, . . . , xn)dx1 · · · dxn

=
∫
· · ·

∫

V

f (h(u1, . . . , un)) J(u1, . . . , uv)du1 · · · dun. (1.32)

whereJ is theJacobian

J =

∣∣∣∣∣∣∣

∂h1
∂u1

· · · ∂h1
∂un

...
. . .

...
∂hn

∂u1
· · · ∂hn

∂un

∣∣∣∣∣∣∣
(1.33)

For a proof, see [La5, Rud].
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1.3 Convergence and Continuity

We recall some needed definitions and results from real analysis. See [Rud] for more details.

Definition 1.3.1(Convergence). A sequence{xn}∞n=1 converges tox if given anyε > 0 there exists anN (possibly
depending onε) such that for alln > N , |xn − x| < ε. We often writexn → x.

Exercise 1.3.2.If xn = 3n2

n2+1 , provexn → 3.

Exercise 1.3.3.If {xn} converges, show it converges to a unique number.

Exercise 1.3.4.Let α > 0 and setxn+1 = 1
2

(
xn + α

xn

)
. If x0 = α, provexn converges to

√
α. Can you

generalize this to findpth roots? This formula can be derived by Newton’s Method (see §??).

Definition 1.3.5 (Continuity). A functionf is continuous at a pointx0 if given anε > 0 there exists aδ > 0
(possibly depending onε) such that if|x− x0| < δ then|f(x)− f(x0)| < ε.

Definition 1.3.6(Uniform Continuity). A continuous function is uniformly continuous if given anε > 0 there exists
a δ > 0 such that|x− y| < δ implies|f(x)− f(y)| < ε. Note that the sameδ works for allx.

Usually we will work with functions that are uniformly continuous on some fixed, finite interval.

Theorem 1.3.7.Any continuous function on a closed, finite interval is uniformly continuous.

Exercise 1.3.8.Showx2 is uniformly continuous on[a, b] for −∞ < a < b < ∞. Show 1
x is not uniformly

continuous on(0, 1), even though it is continuous. Showx2 is not uniformly continuous on[0,∞).

Exercise 1.3.9.Show the sum or product of two uniformly continuous functions is uniformly continuous. In partic-
ular, show any finite polynomial is uniformly continuous on[a, b].

We sketch a proof of Theorem 1.3.7. We first prove

Theorem 1.3.10(Bolzano-Weierstrass). Let {xn}∞n=1 be a sequence in a finite closed interval. Then there is a
subsequence{xnk

}∞k=1 such thatxnk
converges.

Sketch the proof.Without loss of generality, assume the finite closed interval is[0, 1]. We proceed by divide and
conquer. Consider the two intervalsI1 = [0, 1

2 ] andI2 = [ 12 , 1]. At least one of these (possibly both) must have
infinitely many points of the original sequence as otherwise there would only be finitely manyxn’s in the original
sequence. Choose a subinterval (sayIa) with infinitely manyxn’s, and choose any element of the sequence in that
interval to bexn1 .

Consider allxn with n > n1. Divide Ia into two subintervalsIa1 andIa2 as before (each will be half the length
of Ia). Again, at least one subinterval must contain infinitely many terms of the original sequence. Choose such a
subinterval, sayIab, and choose any element of the sequence in that interval to bexn2 (noten2 > n1). We continue
in this manner, obtaining a sequence{xnk

}. For k ≥ K, xnk
is in an interval of size 1

2K . We we leave it as an
exercise to the reader to show how this implies there is anx such thatxnk

→ x.

Proof of Theorem 1.3.7.If f(x) is not uniformly continuous, givenε > 0 for eachδ = 1
2n there exist pointsxn and

yn with |xn − yn| < 1
2n and|f(xn) − f(yn)| > ε. By the Bolzano-Weierstrass Theorem, we construct sequences

xnk
→ x andynkj

→ y. One can showx = y, and|f(xnkj
)− f(ynkj

)| > ε violates the continuity off atx.

Exercise 1.3.11.Fill in the details of the above proof.
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Definition 1.3.12(Bounded). We sayf(x) is bounded (byB) if for all x in the domain off , |f(x)| ≤ B.

Theorem 1.3.13.Letf(x) be uniformly continuous on[a, b]. Thenf(x) is bounded.

Exercise 1.3.14.Prove the above theorem. Hint: Givenε > 0, divide[a, b] into intervals of lengthδ.

1.4 Dirichlet’s Pigeon-Hole Principle

Theorem 1.4.1(Dirichlet’s Pigeon-Hole Principle). Let A1, A2, . . . , An be a collection of sets with the property
thatA1 ∪ · · · ∪An has at leastn + 1 elements. Then at least one of the setsAi has at least two elements.

This is called the Pigeon-Hole Principle for the following reason: ifn + 1 pigeons go ton holes, at least one of
the holes must be occupied by at least two pigeons. Equivalently, if we distributek objects inn boxes andk > n,
one of the boxes contains at least two objects. The Pigeon-Hole Principle is also known as the Box Principle. One
application of the Pigeon-Hole Principle is to find good rational approximations to irrational numbers (see Theorem
??). We give some examples to illustrate the method.

Example 1.4.2. If we choose a subsetS from the set{1, 2, . . . , 2n} with |S| = n + 1, thenS contains at least two
elementsa, b with a|b.

Write each elements ∈ S ass = 2σs0 with s0 odd. There aren odd numbers in the set{1, 2, . . . , 2n}, and
as the setS hasn + 1 elements, the Pigeon-Hole Principle implies that there are at least two elementsa, b with the
same odd part; the result is now immediate.

Exercise 1.4.3.If we choose55 numbers from{1, 2, 3, . . . , 100} then among the chosen numbers there are two
whose difference is ten (from [Ma]).

Exercise 1.4.4.Let a1, . . . , an+1 be distinct integers in{1, . . . , 2n}. Prove two of them add to a number divisible
by2n.

Exercise 1.4.5.Leta1, . . . , an be integers. Prove there is a subset whose sum is divisible byn.

Example 1.4.6.Let{a1, a2, a3, a4, a5} be distinct real numbers. There are indicesi, j with 0 < ai−aj < 1+aiaj .

As the functiontan : (−π
2 , π

2 ) → R is surjective, there are anglesθi ∈ (−π
2 , π

2 ) with ai = tan θi, 1 ≤ i ≤ 5.
Divide the interval(−π

2 , π
2 ) into four equal pieces, each of lengthπ

4 . As we have five angles, at least two of them
must lie in the same small interval, implying that there arei, j with 0 < θi − θj < π

4 . Applying tan to the last
inequality and using the identity

tan(x− y) =
tan x− tan y

1 + tan x tan y
(1.34)

gives the result.

Exercise 1.4.7.Letφ1, φ2, . . . , φK be angles. Then for anyε > 0 there are infinitely manyn ∈ N such that
∣∣∣∣∣∣
K −

K∑

j=1

cos(nφk)

∣∣∣∣∣∣
< ε. (1.35)
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1.5 Measures and Length

We discuss sizes of subsets of[0, 1]. It is natural to define the length of an intervalI = [a, b] (or [a, b) and so on) as
b − a. We denote this by|I|, and refer to this as thelength or measureof I. Our definition implies a pointa has
zero length. What about more exotic sets, such as the rationals and the irrationals? What are the measures of these
sets? A proper explanation is given by measure theory (see [La5, Rud]); we introduce enough for our purposes. We
assume the reader is familiar with countable sets (see Chapter??).

Let I be a countable union of disjoint intervalsIn ⊂ [0, 1); thusIn ∩ Im is empty ifn 6= m. It is natural (but
see §??as a warning for hownaturalstatements are often wrong) to say

|I| =
∑

n

|In|. (1.36)

It is important to take a countable union. Consider an uncountable union withIx = {x} for x ∈ [0, 1]. As each
singleton{x} has length zero, we expect their union to also have length zero; however, their union is[0, 1], which
has length 1. IfA ⊂ B, it is natural to say|A| (the length ofA) is at most|B| (the length ofB). Note our definition
implies [a, b) and[a, b] have the same length.

1.5.1 Measure of the Rationals

Our assumptions imply that the rationals in[0, 1] have zero length (hence the irrationals in[0, 1] have length 1).

Theorem 1.5.1.The rationalsQ have zero measure.

Sketch of the proof.We claim it suffices to showQ = Q ∩ [0, 1] has measure zero. To prove|Q| = 0 we show that
given anyε > 0 we can find a countable set of intervalsIn such that

1. |Q| ⊂ ∪nIn;

2.
∑

n |In| < ε.

As the rationals are countable, we can enumerateQ, sayQ = {xn}∞n=0. For eachn let

In =
[
xn − ε

4 · 2n
, xn +

ε

4 · 2n

]
, |In| =

ε

2 · 2n
. (1.37)

ClearlyQ ⊂ ∪nIn. The intervalsIn are not necessarily disjoint, but

|∪nIn| ≤
∑

n

|In| = ε, (1.38)

which completes the proof.

Exercise 1.5.2.Show that ifQ = Q ∩ [0, 1] has measure zero, thenQ has measure zero.

Exercise 1.5.3.Show any countable set has measure zero; in particular, the algebraic numbers have length zero.

Definition 1.5.4 (Almost all). Let Ac be the compliment ofA ⊂ R: Ac = {x : x 6∈ A}. If Ac is of measure zero,
we say almost allx are inA.

Thus the above theorem shows that not only are almost all real numbers are irrational but almost all real numbers
are transcendental.
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1.5.2 Measure of the Cantor Set

The Cantor set is a fascinating subset of[0, 1]. We construct it in stages. LetC0 = [0, 1]. We remove the middle
third of C0 and obtainC1 = [0, 1

3 ] ∪ [ 23 , 1]. NoteC1 is a union of two closed intervals (we keep all endpoints). To
constructC2 we remove the middle third of all remaining intervals and obtain

C2 =
[
0,

1
9

] ⋃ [
2
9
,

3
9

] ⋃ [
6
9
,

7
9

] ⋃ [
8
9
, 1

]
. (1.39)

We continue this process. NoteCn is the union of2n closed intervals, each of size3−n, and

C0 ⊃ C1 ⊃ C2 ⊃ · · · (1.40)

Definition 1.5.5(Cantor Set). The Cantor setC is defined by

C =
∞⋂

n=1

Cn = {x ∈ R : ∀n, x ∈ Cn}. (1.41)

Exercise 1.5.6.Show the length of the Cantor set is zero.

If x is an endpoint ofCn for somen, thenx ∈ C. At first, one might expect that these are the only points,
especially as the Cantor set has length zero.

Exercise 1.5.7.Show 1
4 and 3

4 are in C, but neither is an endpoint.Hint: Proceed by induction. To construct
Cn+1 fromCn, we removed the middle third of intervals. For each sub-interval, what is left looks like the union of
two pieces, each one-third the length of the previous. Thus, we have shrinking maps fixing the left and right parts
L, R : R→ R given byL(x) = x

3 andR(x) = x+2
3 , andCn+1 = R(Cn) + L(Cn).

Exercise 1.5.8.Show the Cantor set is also the set of all numbersx ∈ [0, 1] which have no1’s in their base three
expansion. For rationals such as13 , we may write these by using repeating 2s:1

3 = .02222 . . . in base three. By
considering base two expansions, show there is a one-to-one and onto map from[0, 1] to the Cantor set.

Exercise 1.5.9(From the American Mathematical Monthly). Use the previous exercise to show that everyx ∈ [0, 2]
can be written as a sumy + z with y, z ∈ C.

Remark 1.5.10. The above exercises show the Cantor set is uncountable and is in a simple correspondence to all
of [0, 1], but it has length zero! Thus, the notion of “length” is different than the notion of “cardinality”: two sets
can have the same cardinality but very different lengths.

Exercise 1.5.11(Fat Cantor Sets). Instead of removing the middle third in each step, remove the middle1
m . Is

there a choice ofm which yields a set of positive length? What if at stagen we remove the middle1an
. For what

sequencesan are we left with a set of positive length? If thean are digits of a simple continued fraction, what do
you expect to be true for “most” such numbers?

For more on the Cantor set, including dynamical interpretations, see [Dav, Edg, Fal, SS3].

1.6 Inequalities

The first inequality we mention here is the Arithmetic Mean and Geometrically Mean Inequality (AM-GM) ; see
[Mil3] for some proofs. For positive numbersa1, . . . , an, the arithmetic mean isa1+···+an

n and the geometric mean
is n
√

a1 · · · an.
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Theorem 1.6.1(AM-GM) . Leta1, . . . , an be positive real numbers. Then

n
√

a1 · · · an ≤ a1 + · · ·+ an

n
, (1.42)

with equality if and only ifa1 = · · · = an.

Exercise 1.6.2.Prove the AM-GM whenn = 2. Hint: For x ∈ R, x2 ≥ 0; this is one of the most useful inequalities
in mathematics. We will see it again when we prove the Cauchy-Schwartz inequality.

Exercise 1.6.3.Prove the AM-GM using mathematical induction.

There is an interesting generalization of the AM-GM; AM-GM is the casep1 = · · · = pn = 1
n of the following

theorem.

Theorem 1.6.4. Let a1, . . . , an be as above, and letp1, . . . , pn be positive real numbers. SetP = p1 + · · · + pn.
Then

ap1
1 . . . apn

n ≤
(

p1a1 + · · ·+ pnan

P

)P

, (1.43)

and equality holds if and only ifa1 = · · · = an.

This inequality is in turn a special case of the following important theorem:

Theorem 1.6.5(Jensen’s Inequality). Letf be a real continuous function on[a, b] with continuous second derivative
on (a, b). Suppose thatf ′′(x) ≤ 0 for all x ∈ (a, b). Then fora1, . . . , an ∈ [a, b] and p1, . . . , pn positive real
numbers, we have

f

(
p1a1 + · · ·+ pnan

p1 + · · ·+ pn

)
≤ p1f(a1) + · · ·+ pnf(an)

p1 + · · ·+ pn
. (1.44)

Exercise 1.6.6.Prove Jensen’s inequality.Hint: Draw a picture; carefully examine the casen = 2, p1 = p2 = 1
2 .

What doesf ′′(x) ≤ 0 mean in geometric terms?

Exercise 1.6.7.Investigate the cases where Jensen’s inequality is an equality.

Exercise 1.6.8.Show that Jensen’s inequality implies the AM-GM and its generalization Theorem 1.6.4.Hint:
Examine the functionf(x) = − log x, x > 0.

Our final inequality is theCauchy-Schwarz inequality. There are a number of inequalities that are referred to
as the Cauchy-Schwarz inequality. A useful version is the following:

Lemma 1.6.9(Cauchy-Schwarz). For complex valued functionsf andg,

∫ 1

0

|f(x)g(x)|dx ≤
(∫ 1

0

|f(x)|2dx

) 1
2

·
(∫ 1

0

|g(x)|2dx

) 1
2

. (1.45)

Proof. For notational simplicity, assumef andg are non-negative functions. Working with|f | and|g| we see there
is no harm in the above assumption. As the proof is immediate if either of the integrals on the right hand side of
(1.45) is zero or infinity, we assume both integrals are non-zero and finite. Let

h(x) = f(x)− λg(x), λ =

∫ 1

0
f(x)g(x)dx∫ 1

0
g(x)2dx

. (1.46)
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As
∫ 1

0
h(x)2dx ≥ 0 we have

0 ≤
∫ 1

0

(f(x)− λg(x))2 dx

=
∫ 1

0

f(x)2dx − 2λ

∫ 1

0

f(x)g(x)dx + λ2

∫ 1

0

g(x)2dx

=
∫ 1

0

f(x)2dx − 2

(∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

+

(∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

=
∫ 1

0

f(x)2dx −

(∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

. (1.47)

This implies

(∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

≤
∫ 1

0

f(x)2dx, (1.48)

or equivalently

(∫ 1

0

f(x)g(x)dx

)2

≤
∫ 1

0

f(x)2dx ·
∫ 1

0

g(x)2dx. (1.49)

Taking square-roots completes the proof.

Again, note that both the AG-GM and the Cauchy-Schwartz inequalities are clever applications ofx2 ≥ 0 for
x ∈ R.

Exercise 1.6.10.For whatf andg is the Cauchy-Schwarz Inequality an equality?

Exercise 1.6.11.One can also prove the Cauchy-Schwartz inequality as follows: considerh(x) = af(x) + bg(x)

wherea =
√∫ 1

0
|f(x)|2dx andb =

√∫ 1

0
|g(x)|2dx and integrateh(x)2.

Remark 1.6.12. The Cauchy-Schwarz Inequality is often useful wheng(x) = 1. In this special case, it is important
that we integrate over a finite interval.

Exercise 1.6.13.Supposea1, . . . , an and b1, . . . , bn are two sequences of real numbers. Prove the following
Cauchy-Schwarz inequality:

|a1b1 + a2b2 + · · ·+ anbn| ≤ (a2
1 + . . . a2

n)
1
2 (b2

1 + · · ·+ b2
n)

1
2 . (1.50)

Exercise 1.6.14.Let f, g : R → C be such that
∫
R |f(x)|2dx,

∫
R |g(x)|2dx < ∞. Prove the following Cauchy-

Schwarz inequality: ∣∣∣∣
∫ ∞

−∞
f(x)g(x)dx

∣∣∣∣
2

≤
∫ ∞

−∞
|f(x)|2dx ·

∫ ∞

−∞
|g(x)|2dx. (1.51)
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