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1. STATEMENT

Theorem 1.1 (Change of Variables Formula in the Plane). Let S be an
elementary region in the xy-plane (such as a disk or parallelogram for ex-
ample). Let T : ℝ2 → ℝ

2 be an invertible and differentiable mapping, and
let T (S) be the image of S under T . Then
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or more generally
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Some notes on the above:

(1) We assumeT has an inverse function, denotedT−1. ThusT (x, y) =
(u, v) andT−1(u, v) = (x, y).

(2) We assume for each(x, y) ∈ S there is one and only one(u, v) that
it is mapped to, and conversely each(u, v) is mapped to one and
only one(x, y).

(3) The derivative ofT−1(u, v) = (x(u, v), y(u, v)) is

(DT−1)(u, v) =

(

∂x
∂u

∂x
∂v

∂y

∂u

∂y

∂v

)

,

and the absolute value of the determinant of the derivative is
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which implies the area element transforms as
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(4) Note thatf takes as inputx andy, but when we change variables
our new inputs areu andv. The mapT−1 takesu andv and givesx
andy, and thus we need to evaluatef atT−1(u, v). Remember that
we are now integrating overu andv, and thus the integrand must be
a function ofu andv.

(5) Note that the formula requires an absolute value of the determinant.
The reason is that the determinant can be negative, and we want to
see how a small area element transforms. Area is supposed to be
positively counted. Note in one-variable calculus that

∫ b

a
f(x)dx =

−
∫ a

b
f(x)dx; we need the absolute value to take care of issues such

as this.
(6) While we statedT is a differentiable mapping, our assumptions im-

ply T−1 is differentiable as well.

2. SKETCH OF PROOF

The Change of Variable Theorem (or Formula) is one of the mostimpor-
tant results of multivariable calculus. The reason is that numerous problems
have a natural coordinate system where, if we look at it from the right per-
spective, the analysis greatly simplifies. It is thus very important to be able
to convert from one coordinate system to another and be able to exploit the
advantages of each.

Our first example was mapping the unit square to a rectangle (see Figure
1). Note the original square,S, has area 1 and the region it maps to,T (S),
has area 6. Thusdxdy corresponds to1

6
dudv. If we compute the derivative

matrix associated toT−1, since

x(u, v) = u/2 and y(u, v) = v/3,

we find
(
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∂u
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2
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3
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,

which has a determinant of1/6. This verifies the formula’s prediction,
namely that the exchange rate fromxy-space touv-space is1/6. In other
words,

∫ ∫

S

1 ⋅ dxdy =

∫ ∫

T (S)

1

6
⋅ dudv;

clearly we don’t expect
∫ ∫

S
1 ⋅ dxdy to equal

∫ ∫

T (S)
⋅dudv; the absolute

value of the determinant of the derivative matrix gives the exchange rate.
We now sketch the proof. It will involve several of the major concepts

we’ve discussed throughout the semester, from the cross product to deter-
minants and areas to the definition of the derivative being that the tangent
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FIGURE 1. Mapping the unit square via u = 2x and v = 3y

FIGURE 2. Mapping of the general case:x(u, v) and
y(u, v). Note: to save time I’ve writtenu0+du for u0+Δu,
and similarly for thev’s, above.

plane is a great approximation. Recall we have

T−1(u, v) = (x(u, v), y(u, v)).

We want to see what a small rectangle inuv-space corresponds to inxy-
space; see Figure 2. We want to see where the four corners of the rectangle
in theuv-plane are mapped. Recall that if we have a functionf(u, v), then

f(u, v) = f(u0, v0) + (∇f)(u0, v0) ⋅ (u− u0, v − v0) + small
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if (u, v) is close to(u0, v0). There are many ways to look at this. It is a
Taylor expansion, it is a definition of the derivative, it is taking a directional
derivative.

As T−1 is differentiable, we can write

x(u, v) = x(u0, v0) + (∇x)(u0, v0) ⋅ (u− u0, v − v0) + small

y(u, v) = y(u0, v0) + (∇y)(u0, v0) ⋅ (u− u0, v − v0) + small, ,

so long as(u, v) is close to(u0, v0). This is simply the definition of the de-
rivative in several variables, namely the statement that wecan approximate
a complicated function locally by a plane. What makes it a little confusing
is thatx is now our function name, not a coordinate (this is why we con-
sidered the example with a functionf above). Thus, while the square with
lengthsΔu andΔv in uv-space doesn’t map to exactly a square, rectangle
or parallelogram inxy-space, it maps to almost a parallelogram. Let’s see
where the four corners of the rectangle map to; expanding thegradient we
find

x(u, v) = x0 +
∂x

∂u
(u− u0) +

∂x

∂v
(v − v0) + small

y(u, v) = y0 +
∂y

∂u
(u− u0) +

∂y

∂v
(v − v0) + small.

Note thatx(u0, v0) is what we’re callingx0 and y(u0, v0) is what we’re
calling y0, the base point of the square. For definiteness we are assuming
the four corner’s orientation is preserved under the mapping (we had to
choose how to draw / discuss things). We have

(x(u0 +Δu, v0), y(u0 +Δu, v0)) =

(

x0 +
∂x

∂u
Δu, y0 +

∂y

∂u
Δu

)

(x(u0, v0 +Δv), y(u0, v0 +Δv)) =

(

x0 +
∂x

∂v
Δv, y0 +

∂y

∂v
Δv

)

.

The original rectangle inuv-space had sides given by the vectors(u0 +
Δu, v0)− (u0, v0) and(u0, v0 +Δv)− (u0, v0). Thus the area is equivalent
to that of a rectangle given by the vectors(Δu, 0) and(0,Δv), for an area
of ΔuΔv.

What about the region it is mapped to? It is essentially a parallelogram;
this is the content of the functionT−1 being differentiable. The side(u0 +
Δu, v0)− (u0, v0) which was equivalent to the vector(Δu, 0) corresponds
to

(x(u0 +Δu, v0)− (x0, y0)),

which is just
(

∂x

∂u
Δu,

∂y

∂u
Δu

)

;
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similarly the other side corresponds to
(

∂x

∂v
Δv,

∂y

∂v
Δv

)

.

To find the area of a parallelogram with sides−→w 1 and−→w 2 we need only
take the cross product. We must be careful, though. The crossproduct takes
as input two vectors with three components and outputs a vector with three
components. We can consider our vectors as living in three-dimensional
space by appending a zero as the third component, and then thearea of the
parallelogram is the length of the cross product. We must compute
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and the length is clearly just
∣

∣

∣

∣

∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u

∣

∣

∣

∣

ΔuΔv,

or equivalently

dxdy ∼
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The outline above highlights the key ideas in the proof. One needs to
perform a careful analysis of the error terms, but the main points are above.
The idea is that locally any differentiable map is linear (and takes rectan-
gles to parallelograms), and then we piece the contributions over the entire
region together. The absolute value of the determinant of the derivative map
gives us the exchange rate between the two different areas.

3. SPECIAL CASES

Theorem 3.1 (Change of Variables Theorem: Polar Coordinates). Let

x = r cos �, y = r sin �

with r ≥ 0 and � ∈ [0, 2�); note the inverse functions are

r =
√

x2 + y2, � = arctan(y/x).
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Let D be an elementary region in the xy-plane, and let D∗ be the corre-
sponding region in the r�-plane. Then

∫ ∫

D

f(x, y)dxdy =

∫ ∫

D∗

f(r cos �, r sin �)rdrd�.

For example, ifD is the regionx2 + y2 ≤ 1 in thexy-plane thenD∗ is
the rectangle[0, 1]× [0, 2�] in ther�-plane.

Theorem 3.2 (Change of Variables Theorem: Cylindrical Coordinates). Let

x = r cos �, y = r sin �, z = z

with r ≥ 0, � ∈ [0, 2�) and z arbitrary; note the inverse functions are

r =
√

x2 + y2, � = arctan(y/x), z = z.

Let D be an elementary region in the xyz-plane, and let D∗ be the corre-
sponding region in the r�z-plane. Then
∫ ∫ ∫

D

f(x, y, z)dxdydz =

∫ ∫ ∫

D∗

f(r cos �, r sin �, z)rdrd�dz.

Theorem 3.3 (Change of Variables Theorem: Spherical Coordinates). Let

x = � sin� cos �, y = � sin � sin �, z = � cos�

with � ≥ 0, � ∈ [0, 2�] and � ∈ [0, �). Note that the angle � is the angle
made with the z-axis; many books (such as physics texts) interchange the
role of � and �. Let D be an elementary region in the xyz-plane, and let D∗

be the corresponding region in the ���-plane. Then
∫ ∫ ∫

D

f(x, y, z)dxdydz =

∫ ∫ ∫

D∗

f(� sin� cos �, � sin� sin �, � cos�)�2 sin(�)d�d�d�.

Note that the most common mistake is to have incorrect boundsof inte-
gration.


