Intermediate and Mean Value Theorems and Taylor Series

Steven Miller*

April 11, 2005

Abstract

Using just the Mean Value Theorem, we prove the $n^{\text {th }}$ Taylor Series Approximation. Namely, if f is differentiable at least $n+1$ times on $[a, b]$, then $\forall x \in[a, b], f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$ plus an error that is at most $\max _{a \leq c \leq x}\left|f^{(n+1)}(c)\right| \cdot|x-a|^{n+1}$.

1 Mean Value Theorem

Let $h(x)$ be differentiable on $[a, b]$, with continuous derivative. Then

$$
\begin{equation*}
h(b)-h(a)=h^{\prime}(c) \cdot(b-a), \quad c \in[a, b] \tag{1}
\end{equation*}
$$

The MVT follows immediately from the Intermediate Value Theorem: Let f be a continuous function on $[a, b] . \forall C$ between $f(a)$ and $f(b), \exists c \in[a, b]$ such that $f(c)=C$. In other words, all intermediate values of a continuous function are obtained. We will sketch a proof later.

2 Notation

$[a, b]=\{x: a \leq x \leq b\}$. IE, $[a, b]$ is all x between a and b, including a and b. $(a, b)=\{x: a<x<b\}$. IE, (a, b) is all x between a and b, not including the endpoints a and b.

[^0]
3 Taylor Series

Assuming f is differentiable $n+1$ times on $[a, b]$, we apply the MVT multiple times to bound the error between $f(x)$ and its Taylor Approximations.

Let

$$
\begin{align*}
f_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
h(x) & =f(x)-f_{n}(x) . \tag{2}
\end{align*}
$$

$f_{n}(x)$ is the $n^{\text {th }}$ Taylor Series Approximation to $f(x)$. Note $f_{n}(x)$ is a polynomial of degree n.

We want to bound $|h(x)|$ for $x \in[a, b]$. Without loss of generality (basically, for notational convenience), we may assume $a=0$ and $f(a)=0$.

Thus, $h(0)=0$. Applying the MVT to h yields

$$
\begin{align*}
h(x) & =h(x)-h(0) \\
& =h^{\prime}\left(c_{1}\right) \cdot(x-0) \\
& =\left(f^{\prime}\left(c_{1}\right)-f_{n}^{\prime}\left(c_{1}\right)\right) x \\
& =\left(f^{\prime}\left(c_{1}\right)-\sum_{k=1}^{n} \frac{f^{(k)}(0)}{k!} \cdot k\left(c_{1}-0\right)^{k-1}\right) x \\
& =\left(f^{\prime}\left(c_{1}\right)-\sum_{k=1}^{n} \frac{f^{(k)}(0)}{(k-1)!} c_{1}^{k-1}\right) x \\
& =h_{1}\left(c_{1}\right) x . \tag{3}
\end{align*}
$$

We now apply the MVT to $h_{1}(u)$. Note that $h_{1}(0)=0$. Therefore

$$
\begin{align*}
h_{1}\left(c_{1}\right) & =h_{1}\left(c_{1}\right)-h_{1}(0) \\
& =h_{1}^{\prime}\left(c_{2}\right) \cdot\left(c_{1}-0\right) \\
& =\left(f^{\prime \prime}\left(c_{2}\right)-f_{n}^{\prime \prime}\left(c_{2}\right)\right) c_{1} \\
& =\left(f^{\prime \prime}\left(c_{2}\right)-\sum_{k=2}^{n} \frac{f^{(k)}(0)}{(k-1)!} \cdot(k-1)\left(c_{2}-0\right)^{k-2}\right) c_{1} \\
& =\left(f^{\prime \prime}\left(c_{2}\right)-\sum_{k=2}^{n} \frac{f^{(k)}(0)}{(k-2)!} c_{2}^{k-2}\right) c_{1} \\
& =h_{2}\left(c_{1}\right) c_{1} \tag{4}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
h(x)=f(x)-f_{n}(x)=h_{2}\left(c_{2}\right) c_{1} x, \quad c_{2} \in\left[0, c_{1}\right], c_{1} \in[0, x] . \tag{5}
\end{equation*}
$$

Proceeding in this way a total of n times yields

$$
\begin{equation*}
h(x)=\left(f^{(n)}\left(c_{n}\right)-f^{(n)}(0)\right) c_{n-1} c_{n-2} \cdots c_{2} c_{1} x . \tag{6}
\end{equation*}
$$

Applying the MVT to $f^{(n)}\left(c_{n}\right)-f^{(n)}(0)$ gives $f^{(n+1)}\left(c_{n+1}\right) \cdot\left(c_{n}-0\right)$. Thus,

$$
\begin{equation*}
h(x)=f(x)-f_{n}(x)=f^{(n+1)}\left(c_{n+1}\right) c_{n} \cdots c_{1} x, \quad c_{i} \in[0, x] . \tag{7}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
|h(x)|=\left|f(x)-f_{n}(x)\right|=M_{n+1}|x|^{n+1}, \quad M_{n+1}=\max _{c \in[0, x]}\left|f^{(n+1)}(c)\right| . \tag{8}
\end{equation*}
$$

Thus, if f is differentiable $n+1$ times, the $n^{\text {th }}$ Taylor Series Approximation to $f(x)$ is correct within a multiple of $|x|^{n+1}$; further, the multiple is bounded by the maximum value of $f^{(n+1)}$ on $[0, x]$.

4 Sketch of Proof of the MVT

The MVT follows from Rolle's Theorem: Let f be differentiable on $[a, b]$, and assume $f(a)=f(b)=0$. Then there exists a $c \in[a, b]$ such that $f^{\prime}(c)=0$.

Why? Assume Rolle's Theorem. Consider the function

$$
\begin{equation*}
h(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)-f(a) . \tag{9}
\end{equation*}
$$

Note $h(a)=f(a)-f(a)=0$ and $h(b)=f(b)-(f(b)-f(a))-f(a)=0$. Thus, the conditions of Rolle's Theorem are satisfied for $h(x)$, and there is some $c \in[a, b]$ such that $h^{\prime}(c)=0$. But

$$
\begin{equation*}
h^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a} \tag{10}
\end{equation*}
$$

Rewriting yields $f(b)-f(a)=f^{\prime}(c) \cdot(b-a)$.
Thus, it is sufficient to prove Rolle's Theorem to prove the MVT.
Without loss of generality, assume $f^{\prime}(a)$ and $f^{\prime}(b)$ are non-zero. If either were zero, we would be done.

Multiplying $f(x)$ by -1 if needed, we may assume $f^{\prime}(a)>0$.
Case 1: $f^{\prime}(b)<0$: As $f^{\prime}(a)>0$ and $f^{\prime}(b)<0$, the Intermediate Value Theorem, applied to $f^{\prime}(x)$, asserts that all intermediate values are attained. As $f^{\prime}(b)<0<f^{\prime}(a)$, this implies the existence of a $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Case 2: $f^{\prime}(b)>0: f(a)=f(b)=0$, and the function f is increasing at a and b. If x is real close to a, then $f(x)>0$ because $f^{\prime}(a)>0$.

This follows from the fact that

$$
\begin{equation*}
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x} \tag{11}
\end{equation*}
$$

As $f^{\prime}(0)>0$, the limit is positive. As the denominator is positive for $x>0$, the numerator must be positive. Thus, $f(x)$ must be greater than $f(0)$ for small x.

Similarly, $f^{\prime}(b)>0$ implies $f(x)<f(b)=0$ for x near b.
Therefore, the function $f(x)$ is positive for x slightly greater than a and negative for x slightly less than b. If the first derivative were always positive, then $f(x)$ could never be negative as it starts at 0 at a. This can be seen by again using the limit definition of the first derivative to show that if $f^{\prime}(x)>0$, then the function is increasing near x. See the next section for more details.

Thus, the first derivative cannot always be positive. Either there must be some point $y \in(a, b)$ such that $f^{\prime}(y)=0$ (and we are then done!) or $f^{\prime}(y)<0$. By the IVT, as 0 is between $f^{\prime}(a)$ (which is positive) and $f^{\prime}(y)$ (which is negative), there is some $c \in(a, y) \subset[a, b]$ such that $f^{\prime}(c)=0$.

5 Sign of the Derivative

As it is such an important concept, let us show that $f^{\prime}(x)>0$ implies $f(x)$ is increasing at x. The definition of the derivative gives

$$
\begin{equation*}
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \tag{12}
\end{equation*}
$$

If $\Delta x>0$, the denominator is positive. As the limit is positive, for Δx sufficiently small, the numerator must be positive. Thus, Δx positive and small implies $f(x+\Delta x)>f(x)$.

If $\Delta x<0$, the denominator is negative. As the limit is positive, for Δx sufficiently small, the numerator must be negative. Thus, Δx negative and small implies $f(x+\Delta x)<f(x)$.

Therefore, if $f^{\prime}(x)$ is positive, then f is increasing at x. Similarly we can show if $f^{\prime}(x)$ is negative then f is decreasing at x.

6 Intermediate Value Theorem

We have reduced all our proofs to the intuitively plausible IVT: if C is between $f(a)$ and $f(b)$ for some continuous function f, then $\exists c \in(a, b)$ such that $f(c)=C$.

Here is a sketch of a proof using the method Divide and Conquer. Without loss of generality, assume $f(a)<C<f(b)$. Let x_{1} be the midpoint of $[a, b]$. If $f\left(x_{1}\right)=C$ we are done. If $f\left(x_{1}\right)<C$, we look at the interval $\left[x_{1}, b\right]$. If $f\left(x_{1}\right)>C$ we look at the interval $\left[a, x_{1}\right]$.

In either case, we have a new interval, call it $\left[a_{1}, b_{1}\right]$, such that $f\left(a_{1}\right)<$ $C<f\left(b_{1}\right)$, and the interval has size half that of $[a, b]$. Continuing in this manner, constantly taking the midpoint and looking at the appropriate halfinterval, we see one of two things may happen.

First, we may be lucky and one of the midpoints may satisfy $f\left(x_{n}\right)=C$. In this case, we have found the desired point c.

Second, no midpoint works. Thus, we divide infinitely often, getting a sequence of points x_{n}. This is where rigorous mathematical analysis is required.

We claim the sequence of points x_{n} converge to some number $X \in(a, b)$. Clearly it can't be an endpoint. We keep getting smaller and smaller intervals (of half the size of the previous and contained in the previous) where $f(x)<C$ at the left endpoint, and $f(x)>C$ at the right endpoint. By continuity at the point X, eventually $f(x)$ must be close to $f(X)$ for x close to X.

If $f(X)<C$, then eventually the right endpoint cannot be greater than C; if $f(X)>C$, eventually the left endpoint cannot be less than C. Thus, $f(X)=C$.

[^0]: *E-mail: sjmiller@math.princeton.edu

