Math 105: Solutions to Practice Problems

Steven Miller

May 13, 2010

Abstract

Below are detailed solutions to some problems similar toesassigned

homework problems.
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1 The Geometry of Euclidean Space

2 Differentiation

2.1 Thegeometry of real-valued functions
2.2 Limitsand continuity

2.3 Differentiation

2.4 Introduction to paths and curves

2.5 Propertiesof thederivative

2.6 Gradientsand directional derivatives

The assignment is: Section 2.6: #2ab, #4a, #6a, #16 (thiutious Captain
Ralph problem), #18.



Question: #2c: Compute the directional derivative ¢fz,y) = e” cos(my),

(z0,30) = (0,1 and ¥ = (- %. Z).
Solution: We have

) = (G 5) = (e costm, ~nersinim).

and thus if we evaluate &b, —1) we find

(V)0,-1) = (=1,0).

The directional derivative in general is

(V) (o, 90) - ¥,

so for this problem the answer is

Note that is a unit length vector.

Question: #2d: Compute the directional derivative ¢giz,y) = xy* + 23y,
(z0, y0) = (4,—2) and U =
Solution: We have

()

(V) (x,y) = (y*+ 322y, 22y + 2°)
and thus if we evaluate &t, —2) we find
(Vf)4,-2) = (-92,48).
The directional derivative in general is
(VF)(wo,p0) - ¥,

so for this problem the answer is

1 3 52
(92,48) (ﬁﬁ) = Vi
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Note that is a unit length vector.

Question: #3a: Compute f for f(z,y) = (22y,e™™).

Solution: Note thatf : R? — R?, and thusDf will be a2 x 2 matrix.
Writing f(x,y) as(fi(z,v), f(z,y)), we have the first row oD f is V f;, while
the second row i¥/ f,. Explicitly,

ofi Oh 2
L 2xy x
_ ozr o _
(Df)(x,y) = ( 0f2 %_f} ) B ( —ye~ ™ —xe )

ox

Question: #4c: Find the plane tangent toyz = 1 at the point(1, 1, 1).
Solution: We use equation (1) on the bottom of page 167, which saysfthat i
f(z,y, z) = k (for some constankt) then the tangent plane @t, vo, o) iS given

by
(V)(xo, 40, 20) - (x — 20,y — Yo, 2 — 20) = 0.

For our problemf(x,y, z) = zyz andk = 1. We have
(VH(@,y,2) = (yz, 2z, 3y),

which yields
(VH(L,1,1) = (1,1,1).
Thus the tangent plane is &lt, y, z) satisfying

(L1,1)- (z—1ly—1,2—1) = 0,

or equivalently it is
r+y+z—3 = 0.

Question: #6b: Compute the gradient ¢f(z, y, 2) = zy + yz + x=.
Solution: The gradient is defined as the vector of partial derivatives:

of of o0
grad(f) = Vf = (%a—ga—ﬁ)

A straightforward computation shows
V= y+tzz+zz+y).
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Question: #6c: Compute the gradient ¢f(z, v, z) = 1/(2? + y? + 2?).
Solution: By symmetry, it suffices to computé, as5Z and 9. are obtained

through analogous computations. To comp%ﬁewe use the one-variable chain
(or power) rule:

%(x2+y2+z2)_1 - —(x2+y2+z2)_2% (2® + y* + 2%)
2z
B (2 2+ 22)?
= 2f(z,y,2)* .

Collecting yields
vf = —2f(£(3, Y, Z)(.CL’, Y, Z)'

Question: #8b: Compute the equation of the tangent planes fix,y, z) =
-2+ 22 =0at(1,1,1).

Solution: First, we note that the poirft, 1, 1) is on the surface. The tangent
plane is given by equation (1) on page 167. Explicitly, itlis(a, v, ) satisfying

(VHA,L,1) - (x—1,y—1,2—1).

As
vf = (3$2,—6y2,322),

we have
(Vf)(l,l,l) - (37_673)7

which implies the tangent plane is
(3,-6,3)- (zr—1L,y—1,2—1) = 0,

or
3r —6y+3z = 0.



Question: #19: A functionf : R" — R is said to beeven if f(7') = f(— ') for
all 7. If fis differentiable and even, fincde)(ﬁ)).

Solution: Whenever we have to prove something in several variablesnat
a bad idea to look at some examples from one-variable cadolbuild up our
intuition. We first recall some even, differentiable fuocts: 22, 24, 22", cos z.
All of these have first derivative equal to O at the origin, &mdks it is natural to
guess tha(Df)(ﬁ) - 7.

One way to prove this is by using the Chain Rule. L) = — 7 (so
g : R" — R"). Then

Alw) = f(T) = flg(@)),

SO

(DA)(T) = (DFI(T) = (D) (g())(Dg)(T).
As g(7') = — 7, unwinding this we find

g1, .. ) = (21,0, —Ty),

which implies

(Dg)(@) = (Vo)(T) = —I,

where! is then x n identity matrix which is 1 along the main diagonal and 0
elsewhere. The reason this is the answer is ghladsn inputsand »n outputs.
Thus(Dyg) is a matrix withn rows andn columns. The first row i£g; or Vg,
whereg, (z1, ..., x,) = —z, while the last row iDg, or Vg,.
At the origin,g(ﬁ) _ and(Dg)(ﬁ)) = —/, and thus
(DA)(T) = (DF)(=0)(Dg)(T)

becomes _ _ -
(DAO) = (DfICO)(=I) = =(Df)(0).

: Lo —
We thus have an equation of the forth= — u; the only solution is« = 0, or
in other words sincéD f)( 0 ) equals its own negative, it must be the zero vector.

2.7 Review Exercises- Page 173

Question: #22: Find the direction in which the functionv(z,y) = 2? + xy
increases most rapidly at the poiifit-1, 1). What is the magnitude oV w at this
point.



Solution: We haveVw = (2z + y, x), SO
directional derivative in the direction’ at(—
maximized whenv’ = (Vw)(—1,1) = (-1

(Vw)(—1,1) = ( 1,—1). As the
1,1)is (Vw)(—1,1) - 7/, which is
) 1)
Question: #24: Let:(z,y) = f(z — y)/y (where f is differentiable andy +# 0),
show that the identity: + ya + yay =0.

Solution: We have

Oz _ flle—y)(=1)-y— flx—y) % _ M

oy y? " Ox Y

Thus

0 0 — — Ny — _ _
Z+y£+ya_;:f(xy y)+f/(x_y)+ [z y)?z flz —y)

= 0.

In the arguments above, we frequently used the one-vardaim rule. For ex-
ample,

a%f(x—y) - a%f(g(y)),

whereg(y) = x — y. We can now use the one-variable chain rule.zAs fixed,
the answer is just’'(g(y)) - ¢'(y), which is f'(z — y) - (—1).

Question: #44: Verify the chain rule for the functionf(z,y) = ?/(2 + cosy)
and the pathe(t) = (z(t),y(t)) = (e, e7").

Solution: Setting A(t) = f(c(t)), we have(DA)(t) = (Df)(c(t))d(t). We
haved (t) = (e', —e™") (which should really be written as a column vector). For
D f,we have

Df - ar of _ 2z B r?siny _
ox’ dy 2+cosy  (2+cosy)?)’

however, we wantD f)(c(t)), which is

DIE) = (5o ).

2+4cose t’  (2+ cosel)?

Taking the dot product, we obtain

2¢! . e*sine™t

(DA)E) = 2+ coset * (2 4 coset)?
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We can also compute this derivative directly, as

62t

At) = f(e(t)) = 2+ coset)

Taking the derivative yields

2% (24 cose™) + e* sine™!

Alt) = (2 + coset)?

)

which does agree with the Chain Rule.

3 Higher-order derivatives, maximaand minima

3.1 Iterated partial derivatives

Question: #3: .Compute%,aa;gy,ff;—a’;.and giy’; for f(x,y) = cos(zy?), and
verify the equality of the mixed derivatives.

Solution: We have

af

o = —? sin(xy?)
62
a_xé = —y*cos(zy?)
a2f B . 2 3 2
sl —2ysin(xy®) — 2zy° cos(xy”).
Similarly, we find
g_g = —2xysin(zy?)
2
% = —2zsin(zy?) — 42°y? cos(ry?)
Y
(92f . 2 3 2
oy —2ysin(xy”) — 2zy° cos(xy”).

Note that we do hav§;a—fy = 88;_81;_



Question: #8b: Find all the second partial derivatives ofz, y) = z?y%e*™.
Solution: We have

0
8_2 = 2xy’e*™ + 207y e
x
0%z 2 2y 3 2y 3 22y 2.4 2ay
55 = 2ye”™ + dxy’e™ + dxy e + daty’e
0%z
Oydr dwye®™ + da®ye™ + 627y ™ + dadyPe*
0
8_2 = 22%ye®™ 4 2232 e*
Y
0%z 9 2y 3 ay 3. 2ay 4.2 2y
vl 207e™ + dx”ye™ + datye™™ + daye .

Question: Supplemental problem related to #11: Use the fthett the derivative
of a sum is the sum of the derivatives to prove that the derivatof a sum of
three terms is the sum of the three derivatives.

Solution: The idea to solve this problem is quite useful in mathemdtosl
may be useful to attacking #11). We know that for any two fioms f(x) and
g(x) that L (f(z) + g(z)) = L + 9. We now use this result to show a similar

claim holds for the sum of three functions. We have

Alz) = [f(z)+g(z)+ h(z)
%
dx

dx * dz

B df dg dh

—<@+@)w;

df dg dh

dr " dr " do’

where we constantly used the fact that the derivative of asumvo functions is
the sum of the two derivatives.



Question: #11: Use Theorem 1 to show that ff(z, y, 2) is of classC? then
Pf _ o

O0xOydz ~  OyOz0x"

Hint: Slowly switch orders of differentiation. For example, weolin%! = 9/

0z
and so we may differentiate both sides with respeat, tobtaining, > =

o2f
ozxdz’

and then we may rewrite the right hand sidegi.\;af%. We now differentiate both

sides with respect tg, and keep switching orders.

3.2 Taylor’stheorem

Question: #1: Find the second order Taylor series expansifom f(x,y) =
(z + y)? about(xg, y) = (0,0).
Solution: We give two solutions. The first is the standard solution. \Aeh

e = (GLG) = el )

e 2 2

ox Oz

wnen = (2 5 ) = (53).
Oydxr  Oy?

Thus the second order expansion is

and

F0.0)+ (V00,0 (00) + 50,0 ().
which is
1 2 2 T 1 2 + 2
(1)) - I(z22)
= % [z(2z + 2y) + y(2z + 2y)]

= a(@+y) +yle+y) = (@+y)

We now present another solution. The Taylor series expandig(u) = u?
is simply0 + Ou + u?, and thus taking: + y for u gives the second order Taylor
series is justx + y)2.

It isn’t surprising that this is the answer/is a polynomial of degree 2, and
thus its second order Taylor series should equal itself!
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Question: #4: Find the second order Taylor series expansifam f(x,y) =
e~ +v%) cos(xy) about(zg, yo) = (0,0).
Solution: The long way to do this is to compute

e = (515

and
25 0*f
2
(Hf)(z.y) = ( 7 )
Oyox Oy?

and then use our result that the second order expansion is

FO.0) +(V0.0)- (o) + 500,01 ).

This is not pleasant; for instance,

af o x2+y2)

2L _ope( _ ye—@+v?)
e xe cos(zy) — ye

sin(zy).
There is a faster way. Rolling up our sleeves and doing thé& wee find
£(0,0) = 1,
(V£)(0,0) = (0,0)
and after even more work we find

oo - (7 L)

we can make our life a little easier by noting tifais of classC?, and thusZL =

0xdy
2 . . .
aay—al;. Thus we have one fewer painful derivative to take.

By Taylor’s theorem, the second order approximation is just

FO.0) +(V0.0)- (o) + 500,01 ).

Substituting gives

1+(0’0).(x,y)+%($ay)(—02 _02)<§)
- 1+%(~”€,y)<:§§>

= 1—:L'2—y2.
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We can determine the Taylor series very easily using ouk.tkide have

w2
e =14+u+—+--,
2
SO

e~ @) (> +y?) + - ;
we stopped at this term as this term is already of order:2andy, and thus there

is no need to keep further terms (as we only want up to secatet)orSimilarly

we find
2

cos(w) = 1—%+~-~,

SO
cos(ry) = 1—--+;

here we only kept one term as the next term would3¢2 = x?y?/2, which
is a fourth order (and not a second order) term. We thus findiéyéor series
expansion of order 2 at the origin is simply

1— (2% +97),

and this was obtained with significantly less work!
You of course need to know how to compute a Taylor series ireigdnbut
this trick will work in most of the problems you need.

3.3 Extrema of real-valued functions

Question: #4: Find the critical points off (x, y) = 2% + y* + 3xy.
Solution: We must solvév f = 0. We have

(Vf) = (g—i,%) = (22 + 3y, 2y + 3x).

Thus an extremum occurs when
204+3y =0, 3z+2y = 0.

There are several ways to proceed. Note, however, thatsgboimt it is no longer
a calculus problem, but rather an algebra one. A common appris to solve

12



for one variable in terms of the other (i.e., the substituticethod). Another is to
multiply the equations by various constants and combine.

Let’s solve fory in terms ofz. We havey = —2z/3 from the first equation
andy = —3x/2 from the second. Thus the only solutionis= y = 0.

Another way of arranging the algebra is to fipe= —2x/3 from the first equa-
tion, and then substitute this into the second, which bes@me-2(—2x/3) = 0,
which clearly impliesz = 0.

Alternatively, notebz + 5y = 0 sox = —y and then—2y + 3y = 0 yields
y=0.

Question: #6: Find the critical points off (z, y) = 2% — 3zy + 5z — 2y + 6y + 8.
Solution: The critical points are wher€ f = 0. For our function we have

e = (5

so in order for this to equal the zero vector we must have

) = (2z =3y +5,-3x — 2+ 12y),

20 —3y+5 =0, and —3z+12y—2 = 0.
These are two equations in two unknowns. We have
2 —3y = =5, —3r+12y = 2.

There are lots of ways to solve this. We could multiply thet feguation by 4
and add it to the second. This will cancel all thegerms, and leave us with
8z — 3z = =20+ 2, orbz = —18 orz = —18/5. Asy = 2., this implies
11
Yy=—15-
Another way to solve this system of equations is to isojeds a function of:
using the first equation, and substitute this into the secerefind2z — 3y = —5,

soy = 222 Substituting this into the second equation yields

2
3r— 2412 x;5 — 0,

which implies
—3r—2+8x+20 = 0,

or
18

r = 5,

exactly as before.
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3.4 Constrained extrema and Lagrange multipliers

Question: #1: Find the extrema of (z,y, z) = x — y + z subject tog(x, y, z) =
22 +y? 4+ 22 =2

Solution: By the method of Lagrange multipliers, we ne@df)(x,y, z) =
A(Vg)(z,y, z) for (z,y, z) to be an extremum. We have

Vi =(1,-11)
and
Vg = (2x,2y,22).

Thus we are searching foraand a poin{z, y, z) where
(1,-1,1) = A (2z,2y,22).

We find
20 =1, 2y = —1, 2\z = 1.

As \ # 0 (if A = 0then there is no way to have the two gradients equal), we have
x = z = —y. We still have another equation to use, namgly, y, z) = 2. There
are several ways to proceed. We can solve andfirdz = 1/2), y = —1/2),

and thus

RIS S S

402 4Nz 4N 7
which implies3/4\? = 2 or A\* = 3/8, which yields\ = +,/3/8. There are thus
two points wheref may have an extremum, namely

(1/2\/%7 _1/2\/%7 1/2\/%)7 (_1/2\/%7 1/2\/%7 _1/2\/%)'

Evaluatingf at the first point gived /2,/3/8, while evaluatingf at the second

point gives—1/2/3/8.

Question: #4: Find the extrema of (x,y) = z subjecttog(z, y) = 22+2y> = 3.
Solution: We haveV f = (1,0) andVyg = (2x,4y). Thus at an extremum the
point (z, y) must satisfy, for some, the equation

(1,0) = A(2z,4y).

This implies1 = 2\z and0 = 4\y. We must therefore have = 0, but at this
point we cannot determine and \, only their product (which is 1/2). All is not
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lost, however, as we know” + 2y? = 3. Asy = 0, we then findz? = 3 so

r = £+/3. We could now easily determine(it is just £1/21/3); however, there
is no need to. The only reason we care aboig that it is supposed to help us in
finding wheref has an extremum. As we already know thandy coordinates,
we have all the information we need. Thus the extrema occurat-y/3.

We could have predicted this answer in the beginning. We bavéunction
depending only on: and constrained to lie on an ellipse. We thus naturally want
the z-extension as large as possible, which means takiag0 and being at the
extremes of the major-axis.

Question: Find the maximum value of (z,y, z) = xyz given thatg(z,y, z) =
r+y+z=3andzx,y,z > 0.

Solution: We may interpret this problem as saying we have a bar threg inni
length, and we can fold it twice at right angles to give a skel®f part of a box;
how should we divide it so that the volume is maximized? Whikeems clear
that the answer should be= y = z = 1, we must prove this. The main constraint
isg(x,y, z) = 3; we need the other constraint so as to eliminate possiblgisos
such ag—100)(—100)(203).

Using Lagrange multipliers, we waRtf = AVg. As

and
vg = (1717 1)7

this means
(yz,xz,zy) = MN1,1,1).

If A = 0 then at least one af, y andz equals zero, and the volumg: is zero;
thus this clearly cannot be the maximum. We may thus assug@®. We have

Yz = xz = 1Y = A,

and we may assume noneafy or z vanish. Asyz = xz, sincez # 0 we have

y = x. Looking at the other equality yields = z, and hencer = y = 2. As
g(x,y,z) = x+y+ 2z = 3, since the three variables are equal we must have each
of them equal to 1.

More generally, if we have. nhon-negative numbers with a fixed sum, then
their product is maximized when they are all equal. The nexdre advanced
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guestion we could ask is what maximizes the product for a given sum. This
guestion is related to what base we should use in buildingocoens. Interest-
ingly, this implies that if we are primarily concerned withtd storage, we should
work in base 3 and not base 2. The answer is related &md the fact that 3 is
closer toe than 2. This was an extra credit problem earlier in the sesnefstr a
non-multivariable calculus solution, see

http://www w | lianms.edu/ go/math/sjmller/public_htm/
105/ extracredit/ExtraCredit SumrandsN. pdf

Question: Maximize the functionf(zx,y, z) = zy + yz + xz on the unit sphere
g(z,y,z) = 2® +y*> + 22 = 1. Note this is a hard problem, but looking through
the arguments below will give you a great grounding in how tardle the alge-
bra that can arise.

Solution: We needV f = A\Vg. Differentiating yields

Vi = W+z,x+z,x+y) = \N21,2y,22) = A\Vg.

We thus have four equations in four unknowns:

y+z = 2\

r+z = 2\y

r+y = 2\
4yt = L

There are many ways to solve these equations. We descrile &ifst, note
that if we take ratios of any two of the first three equatiorad the \ disappears.
(Note X\ cannot equal 0. If it did, we would have+ z = 0 andx + y = 0.
This would forcey to equalz, which when substituted intp+ = = 0 would give
y = z = 0. We would then have = 0, and hence the constraigtz, y, z) = 1
could not be satisfied.) Dividing the first equation by theosetgive giz = I
Cross multiplying gives/?> + yz = 2> + xz. Looking at the ratio of the second
and the third equations giv%ﬁ—; =Y, orz* 4+ 2z = y* + xy. We thus have

o+ a2 = y2+yz, 24y = y2+xy.
Subtracting these two equations from each other gives

22— 2% = yz —ay,
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or
(x—2)(x+2) = y(z —x).

There are thus two solutions: either z = 0 ory = —(x + z). We leave the rest
of this approach to the reader.

Another way to attack this problem is to add the first threeagigas to each
other, which gives

(y+2)+(x+2)+(r+y) = 2Xz+ 2y + 2)z,

or equivalently
2@ +y+2) = 2\ z+y+ 2).

Thus eitherr+y+2z = 0or A = 1. If A = 1 then squaring the first three equations
gives
(Yy+2)7+(@+2)>+ (x+y)? = 42° +4y° + 42° = 4,

where the last follows from the fact that + 3> + 22 = 1. If we expand the
squares we find

v 42z + 22+t 4 2er + 22t 20y + )t = 4
Note the left hand side h&$z? + y* + 2?), which is 2. Thus we have
24 2yz+2xz+2zxy = 4,

or
yz+xz+yz = 1.

Note, however, thajz + xz + yz is just our functionf (x, y, z)! We leave the rest
of the details of this problem to the reader.

4 Vector-valued functions

5 Doubleand TriplelIntegrals

5.1 Introduction
Question: #1b: FindfO”/2 fol(y cosx + 2)dydzx.
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Solution: We first do they-integral, and then the-integral. We have

m/2  rl /2 1
/ / (ycosx + 2)dydx = / / (ycosx + 2)dy] dx
o Jo o Lo

1 1

/2 2

dx

Il
S~

cos T + 2y
0

0

_ /W/2 (CO” n 2) dz
; 2

. w/2
ST
= 2
e
1
2

+

0

A

Question: #1d: Find [*, [*(—zIny)dydz.

Solution: Again, we do they-integral first, followed by thec-integral. We
need to find a function whose derivativelisy. It is natural (forgive the pun) to
try y Iny. Why is this a reasonable guess? When we take the derivatesese
the product rule and the first piece is justlny. Thus this is close to what we
want, though not quite the correct answer. The problem isulhderivative is

1
l-my4+y-— = Iny+1;
Y

again, this is almost correct, but we are off by 1. We may prigrthis as saying
our guess is off by a function whose derivative is 1; one eXamisuch a function
isy. If we subtract this from our original guess, we should enavith the correct
anti-derivative. Specifically,

1
(yny —y)" = L-yty - — 1=y,

we have thus found the sought-after anti-derivative. Thihé Method ofSuess
and Check, and it is a powerful way to find anti-derivatives.
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Armed with the anti-derivative fdm 3, we can solve the problem. We have

/_01/12(—:)31ny)dydx - /_(1 {/j(—xlny)dy} dx
_ —l/fzx{]{2h1ydy}dx

0 2
= —/’xwmy—m dx
-1

1

_ —/Ox[(21n2—2)—(11n1—1)]dx

-1

0
= —/ z(2In2 — 1)dz

-1

0
= —(21112—1)/ xdx

1

= —(2In2-1) i ]

2
_—1
1
— _(2Im2—1)|-=
(2In >_2]
~ 2m2-1
SRS

5.2 TheDoubleIntegral over a Rectangle

Question: #1c: Evaluatef [,,(zy)* cos(z*)dA, whereR = [0, 1] x [0, 1].

Solution: We need to choose whether or not we want to integrate first with
respect tar or with respect tg,. For this problem, it does not matter as we can
write the integral ag (z)g(y) for some functiong andg (heref(x) = x? cos(z?)
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andg(y) = y?). Let’s do the integration with respect ¢dfirst. We have

//R(:cy)z(zoS(:cg)dA — /01 {/lezyz COS(:L’g)dy} I
= [ eostaa? | [ ] a

1 ! 3 2

— | cos(z”)3z dx;

9 Jo

where we multiplied by 1 in the form 3/3 to facilitate the apption ofu-substitution
below (though of course this is not needed). Let 2. Thendu = 32%dx, and
asz : 0 — 1 we haveu : 0 — 1. (Note it is very important that our function
u = 2 is monotonic or strictly increasing in this domain). Thuseawve

1
//(xy)Qcos(x?’)dA = 1/ cos udu
R 9 Jo

. 1
S u

9

0
sin 1

Question: Compute], [y cos(zy)dA.

Solution: We have a choice as to whether or not we want to integrate with
respect tar first or with respect ta;. Note the integrand ig cos(zy). If we
integrate with respect to first, then everything will work out nicely through+
substitution; if we do the integral first we have to use the methodGiess and
Check to figure out an anti-derivative (with respectypof y cos(xy). Thus let's
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integrate with respect to first. We have

/0 1 /O | cos(ay)dA = /0 1 l /O lycos(xy)dx} dy
_ /0 1 [ /0 lcos(xy)ydx} dy.

Letu = zy, sodu = ydxr andx : 0 — 1 meansu : 0 — y. We find

1 r1 1 Y
/ / ycos(zy)dA = / [ / cos udu] dy
o Jo o LJo

1 Yy
= / sinu| | dy
0 0
1
= /Siny
0
1
= [ cosy]
0
= (—cosl)—(-1)
= 1—cosl.

5.3 The Double and Triple Integral Over More General Re-
gions

Question: #1a: Evaluate the iterated integral

1 x?
/ / dydzx,
0o Jo

state whether or not the region is-simple,y-simple or simple. Draw the region.

Solution: Solution: The region is drawn in Figure 1.

The region isy-simple, as for) < y < 1 we have¢;(y) < =z < ¢9(y)
with ¢,(y) = 0 and¢,(y) = 2. Similarly we see the region is-simple. For
0 <y < 1wehave,/y < < 1; we takey,(y) = /y andi,(y) = 1. As the
region is bothe-simple andy-simple, it is simple.
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L L L L =
0.0 0.2 0.4 0.6 0.8 1C

Figure 1: Region corresponding@< » < 1 and0 < y < 22,

We now evaluate the integral. We have

1 2 1 i 2
// dydr = / / ldy | dx
0o Jo 0 0
1
1
= /xzdaz
0

0
T
3

w

1
0

Question: #1a: Evaluate the iterated integral

2 y>
/ / (2% + y)dxdy,
—3Jo

state whether or not the region is-simple,y-simple or simple. Draw the region.
Solution: The region is drawn in Figure 2.
The region is clearlys-simple, as for-3 < y < 2 we havey,(y) < z <

Us(y), wherey, (y) = 0 andy»(y) = y* (and of course)(y) < i»(y). The
region is noty-simple (and hence it is not simple). The reason it isyastmple
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L L L L L
0 2 4 6 8

Figure 2: Region corresponding t3 < y < 2 and0 < x < y2.

is that forz € [0, 1] the values ofy vary discontinuously. For example,if = 2
then—3 <y < —v2andv2 <y < 2.
We now evaluate the integral. We have

2 py? 2 y
/ / (z® +y)drdy = / / (z° + y)da
—-3Jo -3 0
2 | 3
- L5

2 2
_ oy Ly

21 4

-3 -3
B 128+729+4 81
21 7 4
7895
o84

5.4 Changingtheorder of integration

Question: #1a: Sketch the region and evaluafg | zydydx both ways.
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Figure 3: Region correspondingto< y < 1 and0 < z < 1.

Solution: See Figure 3 for a sketch of the region.

We have
1,1 1 1
/ / rydydr = / x [/ ydy} dx
0 T 0 T

x2 xt

IV B
0 0
111
4 8 8

We now do the integration in the opposite order. Weyfimow, andy varies

24



from O to 1. It is nowr that varies, and ranges from O tg. We thus find

1 p1 1 py
/ / rydydr = / / xydxdy
0 Ja 0o Jo
1 Yy
Y / xdx} dy
0

Note that the two orders of integration lead to the same an&wéhis problem.

5.5 Mathematical Modeling: Baseball / Sabermetrics L ecture

The following are some problems related to the ones from dselall lecture.
The slides are online at

http://www willians.edu/go/math/sjmller/public_htm

/ 105/ t al ks/ Pyt hagW.Tal k_Gener al Cal cVer si on. pdf

Question: #1: Letf(x) = 6z(1 — x) for 0 < = < 1 and 0 otherwise, and
let g(y) = 12y%(1 — y) for 0 < y < 1 and zero otherwise. Prové¢ and g
are probability distributions. LetX be a random variable whose probability
density of taking on the value is f(x), and letY be a random variable whose
probability density of taking on the valug is g(y). Compute the probability that
X > Y (assuming, of course, thak’ and Y are independent).

Solution: To prove thatf and g are probability distributions, we must show
that each is non-negative and integrates to 1. Both arelglean-negative; we
are left with showing each integrates to one. The fastesttwalp this is to note
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that it suffices to study the integral from 0 to 1:df(1 — z). We have

/lem Loy = /01 o — ] do

1 1

$k+l $k+2
T ok+1|  E+2
0 0
B 1 1
k41 k+2

1
(k+1)(k+2)

Thus

hx) (k+1)(k+2)28(1—2) fo<x<1
l’ =
0 otherwise

is a probability distribution for any positive integér In particular, if we take
k = 1 we see that we should hage(1 — x), while if £ = 2 we should have
122%(1 — x), which we do. This thus verifielsoth distributions are probability
distributions simultaneously.

We now compute the probability tha&& > Y. We are integrating over the
triangle0 <y <z < 1, and have

Prob(X >Y) = / ;f<x>g<y>dydx

= /;Of(fc) [/y;g(y)dy} dx
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The simplest way to evaluate this is to expand, and we find

Vgt 728 2t
P X>Y) = 2 — — — 4+ —1d
rob(X >Y) 7/0[4 12+3}x
1 1
B x’ 728 x°
28 72 15
0 0 0
B 13
2520

6 Change of variable formula and applications of
integration

6.1
6.2 The Change of Variable Theorem

Question: #1: Consider the change of variables= 2z + 3y andv = 4y. Show
that this map takes the unit squar@, 1] x [0, 1] (i.e., the set of point$z, y) with
0 < z,y < 1) to a parallelogram. Use the change of variables formula todi
the area of the parallelogram.

Solution: The unit square is mapped to the parallelogram shown in Eigur
To see this, look and see where each vertex of the unit sqsi@ent. We have
(0,0) goes to(0,0), we have(1,0) goes to(2,0), (0, 1) goes to(3,4) and finally
(1,1) goes to(5,4). More generally, if we take a point of the for(n,0) it is
mapped to the poin2z, 0), so we see the intervé), 1] on thez-axis is mapped
to the intervall0, 2] in theu-axis. A similar analysis shows all the other lines of
the unit square are mapped to lines in theplane. For example, consider the
line (z, 1) with 0 < = < 1. This is mapped to the lin@x + 3, 4) in theuv-plane,
or equivalently the line fron{3,4) (corresponding ta: = 0) to the point(5,4)
(corresponding ta = 1).

We need the inverse transformati@in!, which gives us the: andy corre-
sponding to a choice af andv. We have to invert the relations

u = 2zr+3y, v = 4y.

The second is the easiest; we clearly need to have v/4. Knowing this, we

then find
2r + S
u = —
4 )
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(3,4) (5,4)

(0,0) (2,0)

Figure 4: Region the unit square is mapped to urider, y) = (2x + 3y, 4y).

or

Tr =

B
o

|

In other words, we have

1) = (o) pwo) = (5-2.2).

We now find the determinant of the derivative. First we comaput
Oz 1 _3
DG

o 0 3

1 1 .
2 4
and thus the absolute value of the determinant is

1
87

oz
(DT ") (u,0) = ( %
ou
The determinant is

det (DT (u, v)) = Z 0 =

1
87

|det((DT")(u,v))| =
which means

1
dedy — |det((DT")(u,v))| dudv = gdudv.
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By the Change of Variables formula,Sfis the original unit square iny-space
andP = T(9) is the parallelogram imv-space, we have

//Sldxdy = //T(S)l }det((DT‘l)(u,v))\dudv = //T(s)lédualv'

As 1/8 is constant, we can pull it out of the integral and find

//1dxdy = 1// lduduv;
S 8 T(S)

the left double integral is the area of the unit square, wheeright double integral
is the area of our parallelogrma. We thus find

Area(S) = %Area(T(S)) _ %Area(P),

or equivalently that the area of the parallelogram is 8:
Area(P) = 8Area(S) = 8-1 = 8.

We could consider more general maps from squares to pagiéhs, but this
illustrates the principle and proves a nice, known reshi& drea of a parallelo-
gram is base times height. For our parallelogram, the haselngsh 2 and the
height is 4, which do multiply to give an area of 8.

Notice that we are able to deduce the formula for the pacglaim’s area
by knowing the area of the squabecause the absolute value of the determinant
of the derivative matrix is constant (i.e., independent.andv). This allows
us to pull out that common factor of 1/8 and leaves us with titegral of 1
over the parallelogram, which is thus its area. Whenever awe la change of
variables where the determinant is constant, these cétmutacan often allow
us to deduce the area of one region from knowing another. i§Hhisie in the
homework problem, where you are asked to find the area of goselknowing
the area of another region. For that problem, consider tipsel

G)+(G) <t
Consider the change of variables= =/a andv = y /b, so
T(x,y) = (u(z,y),v(z,y)) = (¥/a,y/b)
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or equivalently the inverse map— would be
T Hu,v) = (z(u,v),y(u,v)) = (au,bv).
Note this maps the ellipse to the unit disk
u?+0? < 1,

and we know the area of the unit disk is jusf = 7!

Question: #1: This is a slight modification of Problem #1 fro®ection 6.2: Let
D be the unit diskz? + y? < 1. Consider the integral

// cos(z® + y?)dzdy.
D

Evaluate this using polar coordinates.
Solution: We havedzdy goes tordrdf, and the unit disk becomés< r < 1
and0 < 0 < 27. We replacef(x, y) with f(r cos @, rsin §), and thus find

// cos(z® + y*)dedy = / / cos(r? cos?  + r?sin® 0)rdrdf
D 0 r=0
= / / cos(r?)rdrdf
0 r=0
27r 1 B 1
= / = / cos(r2)2rdr} do
0=0 2 L/ r=0

27 1 1
= / ~ [sin(r?)| | df
=0 2 )
27
1
_ / sin a0
9—0 2
sin 1
= 5 27 = wsinl

Question: #13: This is a problem similar to Problem #13 frone&ion 6.2.
Consider the cylindelC' given byz? + y? < 9and -1 < z < 2. Evaluate

//lf@%@mww
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where

flz,y,2) = 2/ 22 + 9%

Solution: If we wanted to write down the integral explicitly in Cartasicoor-
dinates, we would have

2 3 Vo—y?
/ / / 2/ 22 + y?dxdydz.
z=—1Jy=-3 :Bz—\/m

To see this, note that on the boundafy+ 3? = 9, so if we have chosen a value
of y thenz ranges from— \/9 —y?to \/9 — 1y?; these are not integrals we desire
to evaluate! For cylindrical coordinates, we have

dxdydz — rdrdfdz,

and
= rcosf, y = rsinf, z = z.

T
Our functionf(z,y, z) becomeg (r cos #, r sin 6, z), or in our case

a2 +y? — V120820 + r2sin?f = 2.

The bounds of integration areranges from-1 to 2,6 ranges from 0 t@x, andr
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ranges from O to 3. We thus have

2 27 3
/// f(z,y, 2)dxdydz = / / / f(rcos@,rsing, z)rdrdddz
C z=—1J0=0 Jr=0
2

/ Z\/T2 cos2 6 + r2sin? Ordrdfdz
r=0

2 .
= / / / zr - rdrdfdz
z=—1J6=0 Jr=0

I
o

; 27 3

= / z/ 7“2d7} dfdz
z=—1 6=0 LJ/r=0
2 or [ 33

- / p / "1 | agaz
z=—1 6=0 3 0

2 27
= 9/ z [/ d@} dz
z=—1 6=0
2
= 9/ 22mwdz
z=—1
2
= 187r/ zdz
z=—1

2
2
VA
— 187>
3
-1
4 1
— 187 |- —-=
"53]
3
— 1872
Ty
= 27.

Question: #21: This is a problem similar to Problem #21 frome&ion 6.2.
Consider the unit sphereS given byz? + y2 + 2z? < 1. Evaluate

/ / /sf (2., 2)dudydz
3

2



for
1

flz,y,2) = CENEr=I

If we were to write the integral out explicitly in Cartesianardinates, we would

find it equals
1—y —z2
/ / / f (@, 2)dadydz,
-1 —V1=22 Jz= 1 y —z2

and these bounds of integration should look horrible! We nomvert to spherical
coordinates. We have

= psingcosf, y = psingsin€, z = pcoso,

with
0<p<l1 00 <2m 0L ¢ < 7

Our functionf(z, y, z) becomes

1
f(psingcost, psin ¢sind, pcosp) = —
p
after some simple algebra. Finally,
drdydz —  p?sin pdpdfdep.

Note: other textbooks change the role of § and ¢, especially physics books. We
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thus have

/] o i
/H/@ f(psin g cosf, psin gsin, pcos 6)o" sin Gdpdfdo
/;0/9 /p - 2p sin ¢pdpdfd¢
/¢0 /9 /p Osm¢dpd9d¢
/¢ 0/9 sin ¢ U d/)} d0d¢
— [ e [

= 27T/ sin ¢d
¢=0

= 27 [—cos¢ ]
0

= 2m[(—cosm) — (—cos0)]
= 27 (1+1)
= 4.

7 Sequencesand Series
7.1 Pagel0.3

Question: #2: Give an example of a sequence that does not reakmit.

Solution: Let a,, = (—1)". Clearly this sequence does not have a limit, as
half the time the sequence is 1 and half the time the sequende For another
example, consider,, = n!, which clearly grows without bound.
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Question: #4: Compute the limit of the sequenag = 3/n? or explain why it
does not converge.

Solution: Notelim,, .. 3 = 3 andlim,,_,.. n?> = oo. Technically we cannot
use the limit of a quotient is the quotient of the limit as tlemdminator tends to
infinity and thus doesn’t converge; however, as the numeratasounded (it is in
fact always 3) and the denominator becomes arbitrarilyelange can see that the
sequence does converge to 0. For example, ¥ 55 then3/n? < 1/1000, if
n > 174 then3/n? < 1/10000, and ifn > 548 then3/n? < 1/100000.

Question: Similar Problem to #5: Find the limit of;,, = % or prove it
does not exist.
Solution: There are several ways to do this. We cannot use the limit of a
guotient is the quotient of the limits, as both the numeratat denominator tend
to infinity asn — oo. One approach is to pull out the largest powenah the
numerator and denominator:
n*+2m2—n—-2 nP(l+2-L -2 1+2-4 -2

B I | R 3+ % —4) T T3+ L1

After pulling out then?, we see the numerator tends to 1ras—+ oo and the
denominator tends to 3 as— oo. We can now use the limit of a quotient is the
guotient of the limit, and find

. 1425 lmee (42 - - %) ]
lim a, = lim = L2 A

Alternatively, we can use L’'Hopital’s rule to evaluate tirait; we keep taking
derivatives until we no longer have infinity over infinity:

. nd4+2n%—n—2 I 3n?+4n — 1

im = m —

n—oo  3n34+n —11 n—oo  9n2 +1
6n + 4

Question: Similar Problem to #7: Find the limit ofi,, = % or prove the
limit does not exist.
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Solution: The limitis zero. One way to see this is to pull out the higlpester
of n from the numerator and the denominator; inisfor the numerator and®
for the denominator. We have

Cdn?—1In4+1 nP(A-H4+ L) 4-H4 L
B 2 R

Note the numerator tends to 4as— oo while the denominator tends to infinity;
thus the ratio tends to O.

Alternatively, we could use L'Hopital’s rule, taking deaitives until we no
longer have infinity over infinity:

’ An? —1ln+1 . 8n—11

m — = m ———-

n—oo  Hnb 4+ 12 n—oo  30nd
8

im
n—oo 150n4

7.2 Pagel0.6

Question: Similar Problem to #8: Find the limit of the series - g—z or prove
it does not exist.
Solution: Note that this sum is the same as
()
n=0 3
this is the same as a geometric series with ratie 2/3, which is less than 1 in

absolute value. We know the geometric sefes_, " converges ifr| < 1; thus
this series converges.

Question: #10: Findn such thatl + 3 + 2 +--- + 1 > 106,
Solution: Then™ harmonic numbetf,,, is defined by

1 1 1

H, =14+—-4-+--+—.

to gt
We haveH100 ~ 5.2, H1000 ~ 7.5, H1010 ~ 23.6, H10100 ~ 230.8, H101000 ~
2303.2, and so on. Note how slowly this grows! In faéf,, ~ Inn for n large.

The sought after value of is about10*32% | which is quite large!
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There are ways to find that will work without knowingH,, ~ Inn. One way
istonotethat /3+1/4>1/2,1/5+1/6+1/74+1/8 >1/2,1/9+---4+1/16 >
1/2 and so on. Thus we can keep getting at least 1/2....

7.3 Pagel0.7

Question: Similar Problem to #13: Find alb such that the sequence, =
converges.

Solution: For any fixedp, oncen is large the sequence is strictly decreasing
and we can use the integral test. Thus the series convergigeoges depending

on whether or not -
1
— dx
e=big T 10" 2

converges or diverges; we write ‘big’ to indicate that thevéo bound does not
really matter — what matters is the behavior at infinity. Weegnate by parts. Let
u = Inx sodu = dz/x, and thus our integral becomes

/ u Pdu.
u=In(big)

The integral ofu™? is ”v‘%p if p# 1 andlnw if p = 1. Thus the integral converges
if p > 1 and divergep < 1.

_1
nlnPn

7.4 Pagel0.8

Question: Similar Problem to #14: Determine if the serigs, -
verges or diverges.
Solution: We use the comparison test. Note that while” ﬁ diverges,

3> | o converges. AR" + \/n > 2", we have

n=1 2n

1

Fitym CON-

1 1

N — < —.
=i n = o2n

Thus the series converges by the comparison test.
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Question: Similar Problem to #15: Determine if the seriés ™~ | % converges
or diverges.
Solution: We have,/n < 2". Thus

Vo2t 2\

on T Hn )
Our series is thus bounded term by term by the geometricssevité ratio2/5,
and thus converges by the comparison.

o] 2.l
n=1 y/n+11

Question: Similar Problem to #16: Determine if the seriés,
verges or diverges.

Solution: This series diverges. Note the numerator is growing mucterfas
than the denominator. The easiest way to see this is thatehendgnator is at
mostn for largen, andn!/n = (n—1)!. In other words, the terms in the sequence
tend to infinity, and thus the sum cannot converge.

con-

7.5 Pagel0.10

Question: #20: Determine i_;_, 2=~ converges or diverges.
Solution: We can re-write the terms in a more illuminating manner. Wesha

n 32k+1 n 32k

2w = 3 im

k=0 =0

Note the above sum is just three times the geometric sertbsratio 3, and thus
converges.
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Instead of using the comparison test we can also use the Rsdto We look
atay.1/a, which for us is

Wep1 32kz+3/10k’+1 9

a,  3FL/IQk 10
Thus the limit ofa;1/ax is9/10 < 1, and the series therefore converges by the
Ratio Test.

Question: #22: Determine i~ _, % converges or diverges.

Solution: If we didn't have the factok* + k + 1, it would be straightfor-
ward, as the series would just be the geometric series withds. As k* grows
polynomially but3* and5* grow exponentially, we expect the series to still con-
verge. Thus we look for an upper bound for the numerator shat) €ven when
multiplied by 3¥, it grows slower than the denominator by a significant margin

For example, let’s try and show the numerator is bounded' by* for some

constant”. We want to show fok: large that
FE +E+1) < C-4F,
or
t+k+1 < C-(4/3)
We havek® + k + 1 < 3k%, and thus if we tak&' = 3 we need only show, for
k large, thatc* < (4/3)*. While this is not true for smabl, it is true for largek
and thus the series is bounded by the geometric series withdrés, and hence
converges.
We now provide an alternative proof using the ratio test. Wéklata,. 1 /ay,
which for us is
ape BB N (k+1) +k+2) 3 (A+D'+k+2
ar (3/5)k(k* + k+1) 5 kA4 k41
If we take the limit ast — oo, we see that the limiti8/5. As this is less than 1,
by the Ratio Test the series converges.

8 From path integralsto Stokes Theorem
The final homework assignment of the semesteBgstion 4.2: #1 (see formula

at the bottom of the page for help). Section 4.4: #1, #14. Section 7.1: #3b. Section
7.2: #1c. Section 8.1: #3a. The problems below are similarly chosen problems.
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Question: Section 4.2: #2: Find the arc length of the curvét) = (1, 3t%¢3)

for0 <t <1.
Solution: The answer is .
[ e a
0
d(t) = (0,6t,3t%)

where

SO
|1 (®)]] = V3682 + 9t* = 3tv4 + t%;

this will lead to a straightforward integral because of thetér oft outside the

square-root. We have

1 1
/ @) dt = / 3tv/4 + £2dt
0 0

3 1
= 5/ (4 + t)/%2tat
0

1
= 4+

0
532 _y3/2

Question: Section 4.4: #2: Find the divergence and the cufl B(x,y,2) =
(yZ, Tz, il'y) - (‘/1(127, Y, Z)v ‘/2(3:7 Y, Z)a ‘/3(1'7 Y, Z))
Solution: The divergence is
o 9V Vs 9V
div(V) = V-V = 0:L'+8y+8z = 0;
the fact that the divergence is zero has physical interfioete For the curl, we
have

- = =
ik

curl(V) = VxV = | 2 a% 2
i Vo Wy
Expanding gives

Vg  IVy OVi 9V OV, OV
oy 0z 0z Ox’ Or Oy
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thus this vector field has both zero curl and zero divergence!

Question: Section 7.1: #3a: Find the pathintegrdl f(x, v, z)ds wheref(z, y, z) =
exp(y/z) andc(t) = (1,2,%) for 0 <t < 1.
Solution: The path integral is

/f NI @] dt.

d(t) = (0,0,2t), || (B)] = 2¢]
(which is2t ast > 0). Further,

fle(®) = f(1,2,) = exp(V?) = exp(t).

We have

Thus the path integral is

1
/f D@ dt = /Oexp(t)Qtdt.

The integral (or anti-derivative) akp(t)t is justexp(t)(t — 1), and thus we have

1
= 2.
0

/f DI dt = 2exp(t)(t —1)

Question: Section 7.2: #1b: Lek'(z,y, z) = (x,y, z). Evaluate the integral of
F along the pathc(t) = (sint, 0, cost) for 0 < ¢ < 27.
Solution: We have
d(t) = (cost,0,—sint)

F(c(t)) = F(sint,0,cost) = (sint,0,cost).
Thus the line integral is

2T 1
/ F(e(t))-d(t)dt = / (sint,0,cost)(cost,0, —sint)dt
0 0

2w
_ / 0dt —
0
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Question: Section 8.1: #3b: Verify Green’s theorem for thésk with center
(0,0) and radius R and the functionsP(z,y) = z +y, Q(z,y) = y.
Solution: We have
oQ oP

% T _ 1= 1
or Oy 7

LR - s

of course, the area of the disk7d?? so this double integral is 7 R?.
For the other part of Green’s theorem, we note the boundaweds

thu

c(t) = (Rcost, Rsint), 0<t<2r
(remember we must travel so that the regiois on our left). Thus
d(t) = (—Rsint, Rcost).
Further,
?(c(t)) = ?(Rcost,Rsint} = (Rcost+ Rsint, Rsint),

and hence
2m
/ F.dd = F(e(t)) - ¢ (t)dt
c 0
2m
= / (Rcost+ Rsint, Rsint) - (—Rsint, Rcost)dt
027r
= / — R? sin® tdt.
0

We evaluated the sine-integral many ways, and found it squadne could also
use trig identities and findin?¢ = 1‘%5(2” Thus the integral equals times
—R?%, which does match.
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