The Mathematical Muse: Using Math to Construct Poetry

Patrick Bahls

I fit childish insights within rigid limits, writing stuff which might instill prickish misgivings in critics blind with hindsight.

— Christian Bök, Eunola

A (Very) Brief History of Mathematical Poetry

You’re likely at least somewhat familiar with some of the classical forms of poetry in which basic math plays a passing role. For example, in crafting tight heroic hexameter, iambic pentameter, and haiku, you must keep your eye on the number of syllables you produce in each line. In crafting a sonnet or a sestina, you must count lines (which must obey additional structural rules) rather than syllables. These forms of poetry date back hundreds, if not thousands, of years.

More modern authors have devised poetic constraints of a more intentional, and often more sophisticated, mathematical nature. One of the movements responsible for inventing a substantial number of such constraints is Oulipo. Oulipo is a French acronym for Ouvroir de Littérature Potentielle, a phrase that may be loosely translated as “workshop for potential literature.”

Oulipo was founded in November of 1960 by a group of French thinkers led by the writer Raymond Queneau and the mathematician François Le Lionnais. Their goal from the outset was to discover constraints that govern the forms which literature can possibly take, and to use those forms to explore literature’s full potential. For these writers and those who have followed them, the joy in crafting mathematical poetry lies as much in the creation of new structures for poems as it does in the writing of the poems themselves. Therefore much of their efforts are focused on creating poetic forms rather than actual poems: “the goal of the Oulipo is not to give birth to literary works,” said Jean Lesure in his “Brief history of the Oulipo.”

It’s worth noting that to the Oulipians constraint is something desirable; constraint does not confine the writer; rather, it frees him by providing structure within which it’s easier to work with the resources language offers him. Put another way, constraint “foregrounds” the structures and forms that underlie the language we use every day, making the artist more aware of those conventions and more able to put them to use in his art.

Constraint does not confine the writer, it frees him by providing structure within which it’s easier to work; mathematical creativity rests heavily on constraint as well.

Keep in mind that mathematics rests heavily on constraint as well. Imagine, for instance, if you were asked to say all that you could about an arbitrary real-valued function. Without knowing anything else about its structure, there’s not much to tell: an arbitrary function has no specific properties and constraint has highlighted useful structure and form, opening up a world of interesting mathematical possibilities.

In a similar fashion, literary constraint has helped Oulipians to construct a number of delightful poems, novels, and other works of art. To help us get a sense of the sorts of constraint the

Poet, novelist, and Oulipo co-founder Raymond Queneau.
There are 10^{14} potential sonnets in this single (sliced up) book.

Oulipians have developed, let's take a quick look at a few of the more explicitly mathematical structures they invented.

Cent Mille Milliards de poèmes. This work of literature, whose title is often translated as “One hundred thousand billion poems,” was written by Raymond Queneau in 1961. It consists of ten sonnets (of the required 14 lines apiece) sharing a common rhyme structure so that the reader may select a first line from any of the poems, followed by a second from any of the poems, and then a third, and so forth, and any such selection of lines will yield a grammatically and stylistically “valid” sonnet. Since any line can be selected independently of any other, we easily see that 10^{14} possible combinations are permitted, giving just this many distinct poems. Of course, no one could _actually_ write this many poems down, but the structure of the piece contains every one of these poems in its potential form.

We should take care not to mistake any single one of the sonnets we construct as a representative for the body of possible selections. From the Oulipian’s point of view, the poem is fully realized only in our minds when we consider the entire body of potential poems as a whole.

The _S + 7 Algorithm_. Oulipo co-founder Raymond Queneau credits his colleague Jean Lescure with inventing this “perimathematical” means, as he called it, of creating a new literary work from an old one. Given an existing text, we modify the text by replacing every noun with the 7th noun following it in a predetermined dictionary. The result is a sort of mad-ib in which all of the nouns in the original work have been replaced.

Of course, the choice of the number 7 is entirely arbitrary, and you can replace adjectives, verbs, or other parts of speech instead of nouns. Moreover, you need not even rely on a dictionary to govern your replacements. Here, for example, is the result of rewriting one of Emily Dickinson’s poems using Mary Shelley’s _Frankenstein_ as the “replacement” text:

- The pedigree of honey
 Does not concern the bee;
 A clover, any time, to him
 is aristocracy.

becomes

- The pole of horizon
 Does not concern the breeze;
 A commencement, any time, to him
 is agitation.

Although the poems arising from this procedure may seem random, we must remember that their construction is governed by a very specific rule, and they are therefore not random at all. Indeed, the Oulipians are careful to point out that their works are not random, and they firmly resist attempts by others to label their writing as products of chance.

Lipograms. A lipogram is a work of art from which a certain letter or set of letters are intentionally omitted from all or a part of the work. For instance, Oulipian Georges Perec’s 1969 novel _La disparition_ excludes the letter ‘E’ entirely, as does Ernest Vincent Wright’s 1939 novel _Gadsby_. Meanwhile, Christian Bök’s 2001 book _Eunoia_ comprises five chapters, each of which excludes all but a single vowel. The epigram at the start of this article shows off a line from Chapter I, a line which, fittingly, elevates literary constraint. Here’s another taste, the first few sentences from Chapter A:

Awkwrd grammar appalls a craftsman. A Dada bard as daft as Tzara damns stagnant art and scraws an alpha (a slapdash arc and a backward zag) that mars all stanzas and jams all ballads (what a scandal). A madcap vandal crafts a small black ankh—a hand-stamp that can stamp a wax pad and at last plant a mark that sparks an _ars magna_ (an abstract art that charts a phrasal anagram).

Another recent lipogrammatic work of note is Mark Dunn’s 2001 novel _Ella Minnow Pea_, a book in which letters are dropped from usage one at a time as the novel progresses.

Oulipo is alive and well, and since 1980 dozens of artists and thinkers have counted themselves among its members. If you’re interested in reading more about Oulipo, Warren Motte’s _Oulipo: a Primer of Potential Literature_, 2nd ed. (Champaign: Dalkey Archive Press, 2007) is an excellent resource, and various websites have brought their poetic works closer than ever before to their full potential.

New Means of Poetic Invention

It’s time for us to develop a brand new mathematical form of poetic constraint, one very much in the spirit of Oulipo. In fact, as we’ll soon see, our “new” form gives a nice way of describing both the _S + 7_ algorithm and lipograms precisely.
As you learn in an undergraduate abstract algebra course, a group is a set G equipped with an associative binary operation \circ such that there is an identity, e, with respect to \circ and every element g in G has an inverse, g^{-1}, satisfying $g \circ g^{-1} = g^{-1} \circ g = e$. If you haven't seen groups before, it might help you to think about the set of integers, $\mathbb{Z} = \{\ldots, -2, 1, 0, 1, 2, \ldots\}$, with the operation of addition, $+$. In the group \mathbb{Z}, $e = 0$ since $n + 0 = 0 + n = n$ for all integers n, and for a given integer n, the number $-n$ gives us an inverse, since $-n + n = n + (-n) = 0$.

Here's another way to define a group, called a free group, which we'll denote by F. The group F is comprised by all possible strings of letters from the English alphabet, whether those strings form valid words or not. The operation in this group is simply concatenation: to “multiply” two words together, simply place them end-to-end. The empty word ε, consisting of no letters at all, serves as our identity. (Though we won't need them, it's possible to define inverses as well.)

One of the nice things about the free group F is that it's very easy to define functions from F to another group G, functions which preserve the structure of the group in a very natural way. If G is any group and we define the value of some function f on each of the single letters in F, we can define f on all of F just by multiplying together the images of the single letters. For example, if we know the values of $f(A)$, $f(B)$, and so forth, then it makes sense to define $f(HELLO) = f(H) \circ f(E) \circ f(L) \circ f(L) \circ f(O)$ when \circ is the operation in G. A function like this one, one that preserves the multiplication on the group F, is called a group homomorphism.

We're now just about ready to write some poems. The only missing ingredient is some sort of constraint to guide our creation, and this can easily be supplied by the right choice of group homomorphism on F.

For instance, let's consider the very simple homomorphism f from F to \mathbb{Z} defined by:

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is a vowel;} \\ -1 & \text{if } x \text{ is a consonant.} \end{cases}$$

We then require that whatever poem we write have the property that when we apply f to the poem in its entirety, the value is 0. I've written the following simple poem to meet this criterion (whether or not you include its title):

A balance
O, Beauty, abound! O, Beauty, prevail.
O, Consonant, Vowel, be laid on the scale!

Of course, all we're really asking here is that the poem contain the same number of vowels as consonants. The poem is rather contrived, but it would be much easier to construct "balanced" poems in languages (like Spanish, Italian, or any other Romance language) in which the ratio of vowels to consonants is higher than it is in English.

A slightly more complicated example of a homomorphism constraint requires the group we'll denote Z_{26}. This group of integers modulo 26 consists of the numbers $\{0, 1, \ldots, 24, 25\}$, on which we may define a sort of "wraparound" addition, \oplus. For $m, n \in Z_{26}$, $m \oplus n$ is defined in the ordinary fashion (that is, $m \oplus n = m + n$) if $m + n < 26$, but if $m + n$ exceeds 25, we must wrap around by starting over again at 0, so that $m \oplus n = m + n - 26$. You can also compute $m \oplus n$ by finding the remainder of $m + n$ upon division by 26. This observation makes it easy to compute sums:

$$m_1 \oplus m_2 \oplus \cdots \oplus m_k \text{ in } Z_{26}$$

since all you need to do is find the remainder of $m_1 \oplus m_2 \oplus \cdots \oplus m_k$ upon division by 26.

How can we use this group to guide us in our poetic adventures? Let's define the homomorphism from F to Z_{26} by $f(A) = 1, f(B) = 2, \ldots, f(Y) = 25, f(Z) = 0$. Then we require that our poem have the property that $f(\ell_1) = f(\ell_2)$ for any two lines ℓ_1 and ℓ_2 in the poem. That is, every line has the same value under the homomorphism f.

Here's a poem I've penned with this property, in which $f(\ell) = 6$ for every line ℓ, as you should check:

Six
Are we so free that we must build tight cages out of self-wrought bars? That, every barrier of old o'parched, bold walls we must before us raise to repress our over-anxious powers? Dreary now is Spenser's sonnetry, and empty are Keats's odes: a crowd of words must measure more than the essence it encodes.

So vowing, to this priesthood, I, in metered ciphered characters, make an offer of my novice oath, though a cheap and clumsy canticle, in a passionately daunted prayer.
There's actually a bit more structure than we bargained for here: because the poem has 14 lines and every line gives the value 6, applying \(f \) to the whole poem \(P \) gives the remainder of 14: \(6 = 64 \) upon division by 26. But this is 6 again! Moreover, you can check that \(f(SIX) = 0 \), so that we can even throw the title in and it doesn't change the fact that the poem (with title) gives the value 6.

Group homomorphisms give us a tremendously flexible tool for developing new poetic constraints. In fact, one of the Oulipian methods we saw earlier can be recaptured easily by the right choice of group homomorphism. If our goal is to construct a lipogram that avoids using any of the letters in a certain set \(S \), we can define the homomorphism \(f \) from \(F \) to \(Z \) by \(f(x) = 1 \) if \(x \) is in \(S \) and \(f(x) = 0 \) if \(x \) is not in \(S \). It's not hard to see that a poem \(P \) is now a lipogram if and only if \(f(P) = 0 \).

Where do we go from here?

It's clear that we've only surveyed the tip of the iceberg here: there are countless groups \(G \) with which we could work, and for each group \(G \) there are generally many homomorphisms \(f \) from \(F \) to \(G \). There are particularly clever choices of \(G \) and \(f \) yet to be uncovered.

For instance, might we choose \(G \) and \(f \) that exploit the shape of the letters themselves, incorporating the letters' symmetry? Or perhaps we're not happy defining \(f \) only on letters and we wish to extend it to operate on punctuation, spaces, and line breaks as well.

Moreover, there are ways in which we can incorporate even richer mathematical structure into our construction. For instance, what if instead of considering groups and group homomorphisms we consider rings and ring homomorphisms? Perhaps we might insist that a space between words (or a line break, or a break between stanzas) signals that we perform one operation in the ring and that ordinary juxtaposition of characters signals that we perform the other.

The course we've taken in the past few pages has traced a continuous path from some of the "classical" poetic constraints developed decades ago to brand new ones involving some advanced mathematics. My intent has been not only to showcase some of the forms of art various authors have developed using literary constraints, but also to shine a light on the common ground shared by mathematics and literature, emphasizing the crucial role of Oulipo in exploring that ground. We ought to keep in mind that the poet and the mathematician work towards many of the same goals: both seek to communicate to others some sort of truth about the world in which we live, and both seek to discover and describe structure where there was no such structure before.

I hope our brief journey has proven both intriguing and inspiring. Indeed, I hope you now feel motivated to write a few poems of your own, either based upon the constraints described above or upon entirely new ones of your own devising. Mathematics offers an incomprehensible wealth of tools and techniques with which to work, so there's a great deal of room left to explore. Though the world-building work of a poet is often arduous, it's also tremendously fun, and I hope that you can find delight in discovery as you find freedom in constraint.

About the author: Patrick Bahls is an Assistant Professor of Mathematics at University of North Carolina, Asheville. When he is not writing mathematically inspired poetry he can often be found doing graph theory, combinatorics, or working with stained glass.

e-mail: pbaehls@unca.edu

DOI: 10.4169/194762110X489251

Mathematics Advanced Study Semesters (MASS)

Department of Mathematics of the Penn State University runs a yearly semester-long intensive program for undergraduate students seriously interested in pursuing career in mathematics. MASS is held during the fall semester of each year. For most of its participants, the program is a spring board to graduate schools in mathematics. The participants are usually juniors and seniors.

The MASS program consists of three core courses (4 credits each), Seminar (3 credits) and Colloquium (1 credit), fully transferable to the participants' home schools. The core courses offered in 2010 are:

- Differential equations from an algebraic perspective (N. Higson)
- Dynamics, mechanics and geometry (M. Levi)
- Function Field Arithmetic (M. Papikian)

Applications for fall semester of 2010 are accepted now.

Financial arrangements:
Successful applicants are awarded Penn State MASS Fellowship which reduces their tuition to the in-state level. Applicants who are US citizens or permanent residents receive NSF MASS Fellowship which covers room and board, travel to and from Penn State and provides additional stipend. Applicants with outstanding previous record are awarded additional MASS Merit Fellowship. Participants who significantly exceed expectations during the program will be awarded MASS Performance Fellowships at the end of the semester.

For complete information, see http://www.math.psu.edu/MASS
e-mail to mass@math.psu.edu
call (814)865-8462