G.H. Hardy and J.E. Littlewood’s Curious

Encounters with the Mathematics of Golf

Roland Minton

.H. Hardy (1877-1947) and J.E.
= Littlewood (1885-1977) are high on
any serious list of the most

important mathematicians of all time. Indi-
vidually, they made deep and numerous
contributions tc analysis and number theo-
ry, publishing hundreds of papers each.
Together, they formed what many consider
to be the greatest mathematical collabora-
tion ever. The Hardy-Littlewood conjectures
in number theory contain important
insights into the distribution of prime
numbers. They revitalized the study of
analysis in England, and the rigor that they
brought to their work elevated all of British
mathematics. A saying, attributed to Harald
Bohr as a friend’s “joke™ but expressing a
common belief in the mathematics
community, was that in the early 1900's
there were only three great English mathe-
maticians: Hardy, Littlewood, and Hardy-Littlewood.

Hardy was outspoken about the beauty and purity of mathe-
matics. In his famous essay, A Mathematician’s Apology, he
wrote, “I have never done anything ‘useful’. No discovery of
mine has made, or is likely to make, directly or indirectly, for
good or ill, the least difference to the amenity of the world.”

This statement is often quoted, and just as often misunder-

stood. | believe that Hardy’s primary intent was to affirm the

purity of his motives—that he worked on problems for the
beauty of the mathematics and not for personal profit or an
illusion of saving the world.

Given this background, Hardy and Littlewood seem unlikely
candidates for contributors to the mathematics of sports,
which is why | was astonished to discover that each had
made a brief mathematical excursion into the world of golf.

Photo montage by Bruce Torrence

Hardy's 1945 paper, “A Mathematical Theorem about Golf”
tackled the question of whether a bold “go for it” strategy is
preferable to taking a more cautious approach, while Little-
wood unearthed an oddity of Newtonian mechanics that,
among other things, helps explain why Tiger Woods failed to
set the course record at the 2007 PGA Championship.
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One chapter of Littlewood’s book, A Mathematician’s
Miscellany, discusses problems from the Mathematical Tripos

examination used to rank mathematics graduates of
Cambridge University. Littlewood was himself a Senior
Wrangler in 1905, this being the term for the candidate with
the highest score on the Tripos. Hardy had been fourth
wrangler in 1898.

The Tripos problem in question involves a spinning sphere on
top of a horizontal cylinder. If displaced slightly, the ball will
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start to roll down the cylinder but will not stick to the outside
of the cylinder for long (see Figure 1). The Tripos challenge is
to show that the ball follows the path of the helix until it loses
contact with the cylinder. Littlewood then asked what would
happen if the cylinder were turned upright and the ball rolls
along the inside of the cylinder. This could represent a ball
rolling around the edge of a golf cup. What is its path? The
most reasonable guess is that the ball will spiral down to

the bottom of the hole (see Figure 2). You might wonder if
the path is a perfect helix or whether gravity stretches out
the spiral. However, very few people guess the actual

path of the ball.

The mathematical assumptions are that the ball stays in
contact with the cylinder and is acted on by gravity. In the
two dimensions seen from above the hole, the path is easily
described in polar coordinates. The motion is periodic with a
constant frequency. The third dimension can be left as a
spatial variable representing the height z of the ball above
the bottom of
the cup (see
Figure 3).

The result is
counterintuitive:
the height z is
also described
by a periodic
function! In a
helix or '
stretched helix,
the height ¢
would be a
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strictly decreasing function. Because z is
periodic, the ball does not roll to the bot-
tom of the hole. It spirals down some
distance, and then spirals back up! (And
then back down and then back up and so
on.) A full solution is given in “Golfer’s
dilemma” by Gualtieri, Tokieda, Advis-
Gaete, Carry, Reffet and Guthmann in the
June 2006 American Journal of Physics.
They show that the ratio of the period of
the vertical motion to the period of the
circular motion is m .

Mathematically, then, a ball entering the
hole could roll down into the hole and
then roll up and back out, as shown in

Beal gath, Figure 4! The assumption that the ball

stays in contact with the inside of the

cylinder is not often met on a golf course. However, any
experienced golfer can tell you stories about putts that did
go into the hole and then come back out. The greatest golfer
of our time, Tiger Woods, had a putt in the 2007 PGA Cham-
pionship to shoot a 62, which would have been the lowest
score ever shot in a major championship. The putt went most
of the way in, did a quick 180° turn and came back out.

The mathematics and physics of a rolling ball show that this
can happen. In his Miscellany, Littlewood comments that,
“Golfers are not so unlucky as they think.” Somehow, | doubt
this makes Tiger Woods feel any better.
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The problem proposed by G.H. Hardy is motivated by a
hypothetical match between two golfers of “equal” ability. If
one golfer is much more consistent than the other, which
golfer has the advantage? Another way to state the problem
is in terms of “course management.” Golfers are often faced
with a choice of attempting a risky shot or playing safely.
For instance, they may choose to try to hit over a lake
directly at the hole, or play safely around the lake but farther
from the hole. Is it better to use a cautious strategy or a
risky strategy?

Hardy approached this question by imagining a golfer whose
shots are either excellent (E), normal (N), or poor (P). The
golfer plays a hole with a par of four. A player hitting four
normal shots (NNNN) finishes the hole with a score of 4. A
poor shot adds one to the required number of shots.
Therefore, a player who hits three normal shots and then a
poor shot (NNNP) has not finished the hole. Another normal
shot (making the shot sequence NNNPN) finishes the hole
with a score of 5. By contrast, an excellent shot reduces the
required number of shots by one. Thus, a shot sequence of
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NNE finishes the hole with a score of 3. Poor shots and
excellent shots are essentially inverses of each other. The
sequence NPEN finishes the hole with a score of 4. Other
examples would be: '

Shot Sequence Score
NPNNN 5
PNNE 4
NEPPPN 6

Notice that a sequence can never end in F; a poor shot
always adds one to the sequence. However, a sequence can
end in E. A careful understanding of how an ending E affects
the score will be the key to our analysis. As shown above, the
sequence ENN finishes the hole with a score of 3. However,
what score is represented by the sequence ENE? The answer
is 3: the score equals the length of the sequence. Ina
sense, the golfer is “cheated” out of a possible benefit of

an excellent shot because ENN and ENE receive the same
score. The golfing analogy is that the first two shots (EN)
leave the ball close to the hole. A decent (normal) putt from
this distance will go in. An excellent putt that goes into the
exact center of the hole is enjoyable to watch, but the golfer
gets no extra credit for perfection.

The most important assumptions involve the distribution of
shots. All shots are independent. One poor shot does not
affect the probability that the next shot is excellent. (All
golfers wish this were realistic.) The probability of a poor shot
is some number p where 0 < p < 1/2. The probability of an
excellent shot is the same number p. This leaves a probability
of 1 - 2p for a normal shot. The only difference between one
such golfer—let’s use the phrase “Hardy golfer” for a golfer
playing with these constraints—and another is the value for
p. At first glance, all Hardy golfers appear to have equal
ability because excellent shots and poor shots have equal
probability.

Suppose that golfer C is a Hardy golfer with p-value p, and
golfer R is a Hardy golfer with p-value p, > p,. Golfer C has a
higher probability of hitting a normal shot than golfer R, so
golfer C is the more consistent golfer (equivalently, the more
cautious golfer). Golfer R has a higher probability of hitting
either an excellent shot or a poor shot than does golfer C, so
golfer R is the more erratic (or risky) golfer. The problem is to
determine which golfer, C or R, is more likely to win a match.

Hardy’s Analysis

Hardy's “A Mathematical Theorem about Golf” presents the
case where py = 0, so that golfer C always makes a par 4.
Golfer R has a probability p of hitting an E shot (which Hardy
calls a supershot) and probability p of hitting a P shot (which
Hardy cleverly calls a subshot). Hardy computes the
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probability of golfer

R winning a hole as

w(p) = 3p — 9p? + 10p°. This
follows from golfer R making
a 2 (EE) with probability p?

and making a 3 (ENN, NEN,
NNE, ENE, NEE, EPE or PEE)
with probability

3p(1 - 2p)? + 2p? (1 - 2p) +2p°.

He then computes the
probability that golfer R

loses the hole as

lp) = 4p - 18p? + 40p® - 35p*.
This is most easily obtained
by computing 1 - ¢, where ¢
is the probability that golfer R
makes 2, 3, or 4. A score of 4
can result from four N's with probability (1-2p)*; the sequence
NNNE with probability (1-2p)® p; two P’s and two E's (in three
possible orders) with probability 3p*; a starting sequence of
PEN (in six possible orders) followed by either an E oran N
with probability 6p?(1-2p)(1-p); or one P and two N's (in three
possible ordérs) followed by an E with probability 3p2(1-2p)2.
Summing these gives ¢ = 1 - 4p + 18p® — 40p® + 35p* and
Hardy’s result follows.

Figure 4. A mathematical

lip-out.

Graphs of the functions w(p) and {(p) (see Figure 5) show the
probabilities of winning and losing. For all values of p below
approximately 0.37, player R is more likely to lose than win.
However, p = 0.37 is an unrealistic value, since only 26% of
the golfer’s shots would be normal. The maximum difference
between the two curves occurs at approximately p = 0.09.

For more realistic values of p, then, the consistent player is
more likely to win the hole than the erratic player. Hardy
comments that this is at odds with the standard golfing
wisdom that an erratic player is better off at match play
(counting each hole as a separate contest) than at stroke
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Figure 5. The functions w(p) and /(p).
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play (where all strokes are counted for all 18 holes). As we
will see, the standard wisdom is actually correct because the
consistent player has an even larger advantage in stroke play.

A Mean Calcul

tion

To start to analyze a stroke play match between two Hardy
golfers, we can calculate the mean score on a single hole. A
reasonable guess is that the mean should be four, since E
and P shots are equally likely. This would be correct if it were
not the case that some E shots are “wasted.” Given that both
sequences ENN and ENE produce scores of 3, the second E
in the sequence ENE does not improve the golfer’s score. For
this reason, the mean score for a Hardy golfer with p > 0 will
be larger than 4.

The key to computing the mean is to follow up on the
comment that some E shots are wasted. If w equals the
probability that a Hardy golfer’s shot sequence has reached a
point where an E shot could be wasted, then the probability '
that one is wasted is wp. Each wasted E shot raises the
golfer’'s score by 1, so the average score is raised by wp.
That is, the mean is 4 + wp.

We next characterize the set W of (incomplete) sequences for
which an appended E would be wasted. For example, the -
sequences NNN and EPN can be completed with either N or
E, so they are in W.

There are two sequences of length 2 in W: EN and NE. The
probability of getting such a sequence is 2p(1 - 2p). There are
two types of sequences of length 3 in W. The maximum
number of N’s is 3, illustrated by the sequence NNN. This has
probability (1 — 2p)®. Two of the N’s can be swapped out for a
PE combination. All six of the permutations of EPN are in W.
The probability of getting one of them is 6p2(1 - 2p).

Generalizing, there are two types of sequences of length & in
W for k = 3. The maximum number of N’s is 3, with the
remaining k - 3 shots being P’s. There are

k) k(k-1)k-2)
3 6

distinct orders for the N's and P’s. The probability of getting
a sequence of this type is

kk-1k-2 -
(k=1) )pks

o 3
c (1-2p).

Two of the N's could be swapped out for a PE combination.
The sequence has one N and one E, with k(k — 1) distinct

orders possible. The probability is k(k - 1)p*~1(1 - 2p).

Summing, the probability of getting a sequence in W is
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w=2p(l- Qp)z Mpk'ﬁ +(1-2p)° Z k(k__”(iﬁp*'3
i 2 k=3 6

All that remains is to evaluate the two series, and they can

both be evaluated using basic power series rules from first

year calculus! Recall the geometric series result

Forus,0=p=<1/2 so our p-values are within the interval of
convergence of the series. We can then take derivatives and
get

k(k=1p** = 5
k=2 (I=p)
and
3 k(= -2)p*-3 = —2 T
k=2 (1-p)

Substituting these values for the series into the previous
expression for w, we get

4
1 3 1 P
+(1-2p) =1-[—J
(1-p)’ (1-p)

w=2p(l-2p)
The mean score for a Hardy golfer is thus

4
mean =4+ p 1—(—LJ
I=p

which for reasonable values of p is very close to 4 + p. For
example, if p = 0.1 the mean is about 4.09998, and if p = 0.2
the mean is about 4.1992.

Assuming that all holes are played independently, the mean
score for a hole can be extrapolated to the mean score for an
entire round. If p = 0 and all 18 holes are par 4, the mean
score is 72. If p = 0.1, the mean increases to about 73.8. If

p =0.2, the mean increases to about 75.6. The more erratic
the golfer, the higher the mean score.

Different Strokes

s

Of course, having a lower mean score does not necessarily
imply that you will win a majority of your matches. The type
of match being played has a strong influence on who wins.
In stroke play (also called medal play), each player counts all
strokes over 18 holes and the lower total wins. The
probabilities of players making different scores on a given
hole can be combined to compute the probabilities of a
player having a particular score for the entire round. Com par-
ing these probabilities, a Hardy golfer with p = 0 will beat a
Hardy golfer with p = 0.1 in stroke play 63% of the time. The
two will tie 10% of the time, and the more erratic (p=0.1)
golfer wins 27% of the time.




The percentages are similar but not quite as one-sided in a nurnament Jeonarehy
match between a Hardy golfer with p = 0.1 and a Hardy
golfer with p = 0.2. The more consistent (p = 0.1) golfer wins
57% of the time, 6% are tied, and the more erratic golfer
wins 37%. This can be illustrated by simulating the scores for
two hypothetical Hardy golfers over 20 rounds:

An interesting statistical “paradox” arises when a large group
of Hardy golfers compete simultaneously in a single
tournament: players with the highest average scores are
most likely to win. If we look back at the simulated list of
scores from the previous discussion and imagine that they
p=0.1:72,72,6%,78,73,76,75,73,76,74,71,75,72,72,75, represent twenty different consistent golfers (p = 0.1) and
78,73,75,70.74 twenty different erratic golfers (p = 0.2), four of the top five
p=02: ?9‘.;, 1.67.81,83,74,78,77,80,71,75,90,72,71,79, scores—including the winning score of 67 —belong to erratic
players. The consistent golfers have a lower mean score, but

73,82,74.74.76 : : :
the much larger variance of the erratic golfers gives them a

Notice that the more erratic golfer (p = 0.2) is actually quite higher potential for both low and high rounds. You might
erratic, r=cording the best score (67) and the worst score expect that the consistent players will fare better in a

(90). The more consistent golfer has the lower score 12 times  four-round tournament, and this is indeed the case. The
(60%), the higher score 7 times (35%), and there is one tie. longer the tournament is, the less likely it is that the erratic

golfer will continue to have a run of good luck.

ey 2 T ey A
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in match play, each hole is a separate contest, and the player |5 A Mathematician’s Apology, Hardy puts forth a compelling
who wins the most holes wins the match. This is the compe-  argument that “mathematical reality” is in fact more “real”

tition that Hardy analyzed. Continuing with a comparison than the material world of the physicists—which did not
between a consistent deter Hardy from being
go|fel’ with p= 0.1 and an e . - s esa e e mmsememenny Q1 AVid sports fan (moSt

erratic golfer with p = 0.2,
the consistent golfer wins
36.3% of the holes, the

erratic golfer wins 35.8%

notably cricket). Whatever
his motivations, Hardy
was certainly aware that
his “Hardy golfers” were,

of the holes, and 27.9% | e at best, very rough

of the holes are halved. T approximationss of the

Over an 18-hole match, the consistent golfer wins 46% of real thing. Nevertheless, his model arguably provides a

the matches, the erratic golfer wins 43% and 11% are tied. simple basis for the comparison of different strategies in
various competitive formats—and yields some surprisingly

As Hardy commented, the edge goes to the consistent play- elegant results.

er. However, the edge is relatively small, and the erratic golfer
is definitely better off playing match play than playing stroke  This is a trade-off that would have satisfied Hardy.
play. Thus, the common golf folklore that these players are )
better off competing in match play is correct. -urther Reading
A Mathematician’s Apology and Littlewood'’s Miscellany are
The erratic players have their revenge in competitions involv- readily available. Hardy’s original paper appeared in the

ing more players. In “best ball” matches, two teams of two December 1945 issue of Mathematical Gazette. The more
players each compete. The score for a given team on a hole recent paper “On a Theorem of G.H. Hardy concerning golf”
is the minimum of the two scores posted by the players on by G.L. Cohen appears in the March 2002 Mathematical
that team. This competition encourages risk-taking because Gazette. A companion piece related to this article is available
even if a gamble does not pay off for one player, the other online at http: //www.mathaware.org/mam/2010/essays/.
player on the team could still have the best score on a hole. - -

About the author: Roland Minton is a professor of
A team of two erratic Hardy golfers, each with p = 0.2, has mathematics at Roanoke College and is co-author of a

the advantage over two consistent p = 0.1 Hardy golfers. The series of calculus books with Bob Smith. He is currently

pair of erratic players wins 38% of the holes while losing only | working on his golf game and on a book about the

26%. This team of two erratic players also has the advantage | mathematics of golf, although he confesses to making

over a team consisting of one erratic p = 0.2 Hardy golfer and | more progress on the latter.

one consistent p = 0.1 Hardy golfer. The "mixed” team loses T L, .

35% of the holes and wins 29%. In the best ball format, the : —— O
more erratic players a team has, the better. DOI: 10.4169/194762110X495416
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March Madness to Movies

Tim Chartier, Amy Langville, and Peter Simov

he College of Charleston seniors’ class project had a
succinct goal: apply math to a real-world problem. Neil
Goodson and Colin Stephenson tackled an area of

national interest—basketball. They focused on ranking the
teams in the NCAA Division | men’s baskétball tournament. In
the end, their model integrated data from more than 5,000
regular season and conference title games and produced a
bracket for the 2008 tournament known as March Madness.
National interest in this tournament is enormous as reflected
by the millions of people who fill in their brackets using their
own algorithms, whether it be carefully scrutinizing team line-
ups or ranking teams according to a fondness for a school’s
colors. Word of Goodson and Stebhenson’s mathematically
produced bracket spread and the two were interviewed on
National Public Radio. In the course of the discussion, Good-
son warned the NPR listeners that their model predicted a
first round upset of 6th-seed Southern California by 11th-
seed Kansas State. Within hours, reality agreed with the
model. The media coverage soon expanded with the seniors
discussing their work on a segment of The Early Show on
CBS.

The accuracy of their work in the 2008 tournament continued
when all four teams in the Final Four matched the model’s
predictions. Even further, the model predicted that Kansas
would beat Memphis in the final game, although no one
could have possibly
predicted the buzzer-
beating shot that
sent the nail-biting
game into overtimel!

Motivated by this

work, let’s explore ranking at a deeper level. Note the two
ingredients of Goodson and Stephenson’s work—a lot of
data and an algorithm to produce the rankings. Rather than
rank sports teams, since Goodson and Stephenson were so
successful in the context of the 2008 NCAA tournament, let’s
rank movies.

Going to the Movies

The data is a downloadable dataset from Netflix consisting of
more than 100 million ratings from over 480,000 randomly-
chosen, anonymous users on nearly 18,000 movie titles. The
ratings are on a scale from one to five (integral) stars (with
five stars being the best rating, and one star the worst) and
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Within hours reality agreed with the model’s
prediction, and soon after the seniors were
discussing their work on The Early Show at CBS.

'y

Image courtesy of the C; ollege of Charleston.
As undergraduates, Neil Goodson and Colin Stephenson
received national media coverage for their mathematical
model of the 2008 NCAA men’s baskethall tournament.

were collected between October, 1998 and December, 2005.
While we could apply the following methods to all movies in
the dataset, let’s limit ourselves and rank the movies that

received the Academy Award for Best Picture between 1994

and 2003 as listed in Table 1. While each film grabbed the
coveted Oscar among the many films considered that year,
our goal will be to
explore how these
films stack up
against each other.

To answer this
question, we will
use the ratings of the over 480,000 users in the Netflix
dataset who rated at least one of these ten movies. (Forrest
Gump, Gladiator, and A Beautiful Mind can be rented with or
without extended material. The results that follow correspond
to ratings associated with DVDs without extended material.)
How do we glean useful information from all these data? This
question sits squarely in the field of data mining which is “the
science of extracting useful information from large datasets
or databases.” (See the article by Hand, Mannila, and Smyth
in the “Further Reading” section.) This field of computer sci-
ence is growing in the sciences given the enormous

datasets, like the one we are using, produced by modern
computational and experimental methods.

: ;



fear | MovieTitle | |Year | MovieTitle P
1 1994 | Schindler’s List | 1999 | Shakespeare in Love
.T995 _| Forrest Gump 2000 | Arnencan_B_ea_u_t_y _
| 1996 | Braveheart _ 2001 | Gladiator
| 1997 | The English Patient [ 2002 'ﬂ_B_e_autj_f_L_{_l_@d_ ]
| 1998 | Titanic | 2003 | Chicago

fable 1. Movies awarded the Academy Award for Best Picture
between 1994 and 2003.

With data in hand, we now need a ranking algorithm. Let’s
begin with a method that is very easy to implement and rank
the movies according to the number of times they were
rated; the movie rated the most is ranked the highest. This
produces Table 2 and has an obvious flaw. A movie that is
rated with one star by 5,000 users would be ranked higher
than a movie that was rated with five stars by 4,000 users.
This clarifies our goal. We are interested in the quality of the
ratings and not simply the tendency of a movie to be rated.

Rank | No.Ratings | Title

1 181,508 Forrest Gump

2 154,832 American Beauty
3 150,592 Gladiator

4 143,668 Titanic

5 135,601 Braveheart

6 113,717 Chicago

7 108,771 A Beautiful Mind

8 101,141 Schindler’s List

9 64,957 Shakespeare in Love
10 36,263 The English Patient

Table 2. Top 10 movies selected from films winning the
Oscar for Best Picture between 1994 and 2003. Higher
ranking implies a higher number of user ratings.

Table 3 shows what happens when we rank the movies
according to their average number of stars. Schindler’s List
now tops our list since 101,141 users rated it higher on aver-
age than the 181,508 users who rated Forrest Gump.

Rank | Avg. Rating Title
1 4.458 Schindler’s List
2 4,300 Forrest Gump
= 4294 Braveheart
4 4.203 Gladiator
5 3.975 A Bea utiful Mind
6 3.963 i American Beauty
| 3.867 Shakespeare in Love
8 3.710 Titanic
|9 |3.594 | Chicago
10 3.474 The English Patient

Table 3. Top 10 movies ranked according to their
average rating.

This approach also has a potential flaw although possibly not
as noticeable in popular films like those that win Academy
Awards. Applying this idea to the entire dataset produces
Table 4. Suppose another five users watched Trailer Park
Boys: Season 4 and each rated it with one star. This film
would plummet out of the top ten whereas the ratings of
another ten or even 100 users would hardly |mpact the top
three films in this table. -

| Ra'r‘nii;_A\rg. Rating | Na. Title
| Ratings
1 4.723 73,335 | Lord of the Rings: The Return of the King: Extended Ed.
2 4,716 73,422 The Lord ofthe Rings: The Fellowship of the Ring:
Extended Ed. >
3 |4702 74,912 Lord of the ngs The Two Towers: E:tended Ed
|4 | 4670 7,243 | Lost: Season 1 e
5 |a638  [1747 | Battlestar Galactica: Season
6 | 4.805 1633 Fullmetal Alchemist
il 4.6 | 25 Trailer Park Boys: Seasond T
8 4.6 75 Trailer Park Boys: Season3
9 | 4585 83 Tenchi MuyolRyo Ohki
10 4.593 139,660 The Shawshank Red M"p ion: Specual Edltlon g

Table 4. Top 10 movies, among all movies in the Netflix
dataset, ranked according to their average rating.

The two algorithms we applied in this section demonstrate
how simple algorithms can help uncover the types of results
we desire, but also reveal their weaknesses. For a better
ranking method, let’s turn to some of the ideas in Goodson
and Stephenson's work.

A Big Bowl of Rankings

Among other methods, Goodson and Stephenson incorpo-
rated ranking methods used by the Bowl Championship
Series (BCS) system that is used to select NCAA football
bowl matchups. One of the computer rating algorithms of the
BCS is the Colley method, introduced by Wesley Colley,
which modifies one of the simplest and oldest rating sys-
tems. Winning percentage rates team i with p; = w; /t;, where
w;is the number of wins and ¢; is the total number of games
played by team i. Although simple and easy to use, this rat-
ing method does not factor in the strength of opponents.
Defeating the weakest or the strongest opponent results in
the same increase in a team’s rating, which is arguably unfair.
Colley proposed applying Laplace’s rule of succession,
which transforms the standard winning percentage into

l+w!.
r = 3
J 2+t,,

(0

So, at the beginning of the season every rating is 1/2, and as
the season progresses the ratings deviate above or below
this starting point. In fact, the average of all the ratings will
remain 1/2 throughout the season. This insight and the mod-
est modification to the traditional winning percentage formula
in (1) will lead us to the Colley method.
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Letting I, be the number of losses for team i, we can decom-
pose the number of games won as

w—=1 w4+l w-—-I[ t
W, = — [ (AT fop L
! 2 2 2 2"
and notice that

total number of games
t. I %o o 1 1 1
I
Lo (I+l4et]l) =[ =ttt
2 2 22 2

Since the ratings hover around 1/2,

—:l):(total games) =(sum of opponents’ ranks for all games played),

or

where O, is the set of oppo-

a movie. So,

Movie 1 Movie 2 Movie 3 Movie 4
User 1 5 4 3 0
User 2 5 5 3 1
U= User 3 0 0 0 5
User 4 0 0 2 0
User 5 4 0 0 3
User 6 1 0 0 4

In this example, user 1 ranked movies 1 and 2 with a 5 and 4,
respectively.

How can we glean win and loss information from these data
as required by the Colley method? Two movies compete for
the highest rating from a user. So, a “game” occurs between
two movies only when a user ranks both movies with distinct
ratings. We can now form a movie matrix M where m;; is the
number of users who ranked

nents for team i. This substi-
tution is approximate as the
average over all opponents’
ratings may not be 1/2 since,
for one thing, every team
may not play every other

Two movies compete for the highest rating
from a user, so a “game” occurs between
two movies when a user ranks both movies
with distinct ratings.

movie i higher than movie j.
As with the Colley method,
we overlook ties although
incorporating such informa-
tion is possible and requires
changes in the derivation
that led to (2).

team. Substituting this back
into our equation for w; we get

w, = [
g s vk i
W + Z Fis
Jjeo;

and because r; = (1 + w)/(2 + 1),

L+(w,=1)12+3, 7
o= A @)
! 2+

giving the Colley method and the interdepéndence of ratings.

With a little more algebra and matrix notation, (2) can be
written compactly as a linear system Cr = b, where
b=1+1/2(w;-l)and Cis

2+r‘.
Cf.'r' = —n.
iy

where n;; is the number of times team i plays team J. ltcan
be proven that the matrix C is invertible so, for any season,
the Colley method will produce a unique ranking.

ifi=
ifi#]

When Movies Compete

Returning to movies, let’s rank a small sample of four films
rated by six users. We first create a matrix U where u;; is user
i’s rating of movie j with 0 indicating that a user did not rate
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It's time for movies 1 and 2 to compete! Only users 1 and 2
rated both movies with user 2 rating them the same. So,
m,, =1 and m,, = 0 since user 1 rated movie 1 higher than
movie 2. Continuing this process,

1 2 3 4
gl F % 2
210 0 2 1
M‘duool
4\1 0 0 0

From M, we can form the linear system for the Colley
méthod. Let v; be the column sums of M, and let /; be the
row sums. Then,

C‘}.

" 2+h+v, ifi=]
_(my—f-mﬂ.) ifi#j

and b; =1 + 1/2(h; = v).

- Using our data, we get

g -1 2 3 3.0 674
& = -1 6 -2 -1 il 2.0 e 621 .

-2 2 7 -l 0.5 .349

-3 -1 -1 7 =0.5 356




0 17954 12265 32523 13801 40275 24347
11597 0 4241 14938 10704 18805 10643
25359 19159 0 30556 14843 34743 23176
13088 11125 5153 0 9352 20434 11553
5142 4936 1660 6968 0 8544 4598
15341 12342 6958 23345 11036 0 12665
33710 22031 15510 39386 16095 50733 0
25533 18452 11037 29853 14067 39911 24322
15290 13813 6779 25719 12052 28219 13660
25826 18428 13258 32121 13848 39495 24105

Table 5. The rows (and columns) 1 through 10 correspond to the movies Gladiator,
Shakespeare in Love, Schindler’s List, Chicagoe, The Engiish Patient, Titanic, Forrest

Gump, American Beauty, A Beautiful Mind, and Braveheart.

The Colley method ranks the films (from highest to lowest) as

movie 1, 2, 4, and 3.

If we apply this method to our Oscar winning films data set,
the matrix U contains 10 columns and over 480,000 rows.
After a flurry of movie to movie competitions we get the
matrix M displayed in Table 5.

To check your understanding, you can verify that
C,=2+h+ ¢, =2+222662 +170886 = 393550

and

Cp, = —(mﬂ. +mﬁ.) =-29551=C,,

since C is symmetric. Finally, by =1+172(h, - ¢,) =25889.
Solving the resulting Cr = b yields the rankings in Table 6.

' Rank Rating _| Title
|1 733 _| Schindler'sList
|2 643 | Forrest Gump
3 624 Braveheart
4 [569 | Gladiator
5 497 American Beauty ]
6 455 - A Beautiful Mind
7 447 Shakespeare in Love
8 |34 [Titanic
9 |37 | chicago
39 312 | The English Patient |

Table 6. Top 10 movies, among movies awarded the
Oscar for Best Picture between 1994 and 2003, ranked
using the Colley method.

While this ranking is similar to Table 3, the underlying method
is quite different given the interdependence of ratings in Table

6. A lower ranked film benefits when a user rates it higher

than a higher ranked film. This difference in derivation would

34482 28664 18351 be more pronounced when we

13494 11855 9453 increase the number of movies. ]
29735 28766 21030
17342 13815 10609
5827 5135 4378

Closing Credits

While we have ranked movies with a
y sports ranking algorithm, a variety of
2002 10T 12801 other questions could be tackled with
42196 35331 26824 such a large dataset. Suppose | rate

0 26267 19885 Braveheart with five stars; what other
22419 0 13367 | fim might you recommend based on
34005 29868 0 my other movie ratings and all other
Netflix user ratings? Netflix recently
offered a million dollar prize for accu-
rately producing such a recommenda-
tion. The winning team created a
recommendation system that predict-
ed ratings just over 10% better than Netflix's recommenda-
tion system. Interested? While Netflix recently decided not to
run a second competition, according to the official Netflix
blog, they "will continue to explore ways to collaborate with
the research community...So stay tuned.” (See the entry for
March 12, 2010 at http://blog.netflix. com.) Whatever
lies on the research horizon in the science of recommenda-
tions and ranking for Netflix and other companies, it will likely
involve mathematics, modeling and computer science.

Further Reading

For an introduction to the tools for studying large data
sets check out Principles of Data Mining by D.J. Hand, H.
Mannila and P. Smyth (The MIT Press, 2001). Colley’s
description of his ranking algorithm appears in “Colley’s
Bias Free College Football Ranking Method: The

Colley Matrix Explained,” available online at
http://www.colleyrankings.com/method. html.
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