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Lagrange Multipliers and the
Fundamental Theorem of Algebra

Theo de Jong

Consider a polynomial
FQ)=7"+az"'+. .- +a,

with complex coefficients ¢; € C of degree n > 0. The Fundamental Theorem of Al-
gebra states that there exists a z € C with F(z) = 0. This paper presents a proof of
this fundamental theorem, a proof which the author has not been able to find in the
extensive literature on this subject.

1. THE PROOF. Write 7 = x + iy and |
Flx+iy)=Px,y)+iQ(x,y)

where P(x, y) and Q(x, y) are real polynomials. We will study for ¢ € R the level
curves

J . [(x, PIEPE, )= c] and M, := {(.x, ¥): Qx,y)= c].

Notice that P(x,0) = x" + -+, so P(x,0) is certainly not a constant function. By
elementary calculus, one has that P(x, 0) takes infinitely many values: in particular
the level curves L, are nonempty for infinitely many c.

We wish to apply the theory of Lagrange multipliers to the curve L.. We thus need
that L. is nonsingular, that is, for all points (a, b) on L, we have

VP(a,b) = (P.(a,b), Py(a, b)) # (0, 0).

Here, as usual, P, and P, denote the partial derivatives. Notice that there are only
finitely many level curves L. that are singular. Indeed, the derivative F'(z) has only
finitely many roots. If one considers the map F’ as a map from R? to R2, one has that
the deriviative of F' = (P, Q) at (a, b) is given by the matrix

Pi(a,b) Py(a.b) P.(a,b) P,(a,b)
Q.(a,b) Q,(a,b) —Py(a,b) P.(a,b) )"

The equality of the matrices follows from the Cauchy-Riemann equations!

P = Q_v sz_Q,r-

doi:10.4169/000298909X 474882
'The Cauchy-Riemann equations hold for general holomorphic functions defined on an open set of C; for
polynomials these equations can be proved in a simple algebraic way,
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It follows that there are only finitely many level curves L. that contain a singular point.
Notice, moreover, that if L. is nonsingular at (a, b), then with d = Q(a, b), the level
curve My is also nonsingular at (a, b).

The main idea of the proof is in the following lemma.

Lemma. Suppose the level curve L. is nonempty and contains no singular points.
Then there exists an (a, b) € L. with O(a, b) = (.

Proof. We look at the function
QZ: L,_- —_ RZ“'

It has a global minimum. Indeed, it is easy to see, and used in many proofs of the
Fundamental Theorem of Algebra, that >

IF@)* = P*(x; y) + Q*(x, y)

goes to infinity when z goes to infinity. If we take a fixed point (p, g) € L., we thus
can find an R 3> 0 such that

P2(x,y) + Q*(x,y) = 2+ Q*(x.y) > 2 + 0%(p, @)

forall (x, y) € L, with x> + y* > R2. By elementary calculus, on the nonempty com-
pact set

[(x,y):x2+y25R]ﬂLc

the function Q2 has a minimum attained, say, at (a, b). This minimum is certainly
smaller than or equal to Q*(p, ). Thus Q? has a global minimum at (a, b) € L,.

We can now apply the theorem on Lagrange multipliers to the function Q2 and the
nonsingular nonempty curve L.: it says that there exists a A € R with VQ3%(a, b) =
AV P(a, b). Written out, this means

20(a, b)(Qx(a, b), Qy(a, b)) = A(P.(a, b), P,(a, b)).
Using the Cauchy-Riemann equations we get
20(a, b)(—Py(a, b), Pi(a, b)) = A(Pc(a, b), Py(a, b)).

Thus either Q(a, b) = 0 or the vector (—P,(a, b), P.(a, b)) is perpendicular to itself.
But as is easy to see, a vector can only be perpendicular to itself if it is the zero
vector. Since (Py(a, b), Py(a, b)) # (0,0), as we assumed the level curve L, to be
nonsingular, we conclude that Q(a, b) = 0. ]

Everything that has been said about L, and Q also holds with the roles of L and M,
and Q and P, reversed. We apply this freely in the sequel.

Proof of the Fundamental Theorem of Algebra. As noted before there are infinitely
many values of ¢ such that L, is nonempty and nonsingular. Applying the lemma
shows that for some (a, b) € L., Q(a, b) = 0, so the level curve M, is not empty. If
M, is also nonsingular, we can apply the lemma with the roles of M and L and Q and
P exchanged to show that there exists a point (p, g) € My with P(p, ¢) = 0. Thus
(p.q) € Ly N My and therefore F(p + iq) = 0.
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If M, is singular, we notice that O takes infinitely many values, as M, is nonsingular
at (a, b). Thus we can take a sequence (c,) converging to 0 such that M, is nonsingular
and nonempty. Applying the lemma, we find (a,, b,) € M., with P(a,, b,) = 0. Ag
P? + Q7 goes to infinity when (x, y) goes to infinity, we see that (a,, b,) is bounded.
By passing to a subsequence, we may assume that (a,, b,) converges to a limit which
we denote by (a, b). Then

P(a,b) = lim P(a,,b,) = 0;
Q@@ b) = lim Q(a,, b,) = lim ¢, = 0.
=00 n=—>00

Thus we have achieved our goal of finding an intersection point of Ly and M,, and the
Fundamental Theorem of Algebra is proved. O

2. SOME REMARKS. The idea of finding an intersection point of L, and M, first
appeared in the first proof of GauB. In this proof he used some “obvious” properties of
real algebraic curves, whose proofs he promised to give on demand, but which he never
did prove. Those properties of real algebraic curves can be proved by an application
of the implicit function theorem for the case of two variables, This theorem can be
proved by elementary calculus, essentially using only the intermediate and mean value
theorems. For complete details of the proof we refer to the paper of Ostrowski [3].
Other presentations of the first proof of GauB can be found in [4] and [1]. In the third
proof of GauB the existence of the intersection point is proved as an application of
Fubini’s theorem for a rectangular region. The theorem of Lagrange multipliers, which
is used in our proof, can be proved as an application of the implicit function theorem
and some further elementary calculus.

Our proof can also be seen as a variant of the elementary proof which goes back
to Legendre and Argand: here one proves that the function |F(z)|: C — R.( has an
absolute minumum. If this minimum | F(z0)] is not zero, one arrives at a contradiction
by showing that there exists a z; € C with [F(z1)] < |F(zg)l.

ACKNOWLEDGMENTS, The author thanks the referees for suggestions to improve the presentation of the
proof.
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