
VOL. 77, NO. 4, OCTOBER 2004 251

Where the Camera Was
KATHERINE McL. BYERS

JAMES M. HENLE
Smith College

Northampton, MA 01063
jhenle@math.smith.edu

How many times have you seen something like this?

Then Now

Sources: Courtesy of The Bostonian
Society/Old State House

Simon Clay/Chrysalis Images

On the left is a picture of the Massachusetts Statehouse in Boston, taken about 1860.
On the right is a picture taken in 1999. They appear in Boston Then and Now [3] and
are meant to show us how the building and its setting have changed, but the effect is
diminished because the camera was not in the same place for both photographs. How
hard is it to determine the exact location of the photographer from information in a
photograph?

The problem of understanding the relative positions of image and object is actively
studied by computer scientists. In Kanatani [2], it is part of “computational projective
geometry.” The specific task of locating the camera from the photograph is called
“camera calibration.” In Kanatani’s book the process is quite involved and technical.
In a mathematical paper published later, Eggar [1] tackles the same problem. He proves
that the task can be done, but the technique is similarly complex and the paper does
not derive a practical method or formula.

In this paper, we present a method and a formula for locating the position of the
photographer. Our basic result is the following:

PROPOSITION. If a picture of a rectangular solid taken by a vertically-held pin-
hole camera has measurements (on the photograph) of a, b, c, d, and e,
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then the camera was positioned

dc

d(b − c) + e(b − a)
BC

to the left of B in the direction from C to B and

ae

d(b − c) + e(b − a)
AB

in front of point B, where BC and AB are on-site measurements.

The proof is based on high-school plane geometry and the basic principles of pro-
jective geometry taught in a beginning drawing class.

Background

Our assumption is that the camera is a pinhole camera with the film in a vertical plane
(plane perpendicular to the ground). Under these circumstances, the image on the film
is the same as if we projected the three-dimensional world onto a plane, what we’ll
call the “image plane,” using straight lines to the viewer’s eye.

image plane

eye

= pinhole

film

The only difference is that with a pinhole camera, the image appears on the film
upside down.

We’ll need a few elementary facts about this projection:

(A) The images of lines that are parallel to the ground and to one another, but not
parallel to the image plane, meet at a single point in the image plane.

image plane

eye

This point is called the vanishing point of the collection of parallel lines.
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Imagine a collection of planes, each passing through the eye and one of the parallel
lines. Then the planes intersect in a line that meets the image plane at the vanishing
point.

eye

All such vanishing points lie on a single horizontal line called the horizon line.
(B) Lines in the real world that are parallel to each other and also parallel to the

image plane are parallel when projected onto the image plane.

For
Sale

eye

image plane

From this it follows that real horizontal lines are projected to horizontal lines.
(C) Also, ratios along lines parallel to the image plane are preserved when pro-

jected to the image plane. In the diagram below, this means that X/Y = x/y.

For
Sale

eye

image plane

x  ySOLD!
X        Y

Finally,
(D) Lines on the ground connecting an object to the photographer appear as verti-

cal lines on the image plane.
Again, imagine a plane containing the eye of the photographer and the line to the

photographer.
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image plane

photographer

That plane is vertical and intersects the image plane in a vertical line.
A converse of (D) is also true: lines in the ground plane whose images are vertical

connect to the photographer.

Our method

Given the tools above, we present a simple method for determining the location of the
photographer.

We start with a photograph of John M. Greene Hall at Smith College, taken around
1935 by Edgar Scott. Since the building is a complex solid, we pick a rectangular solid
on it whose corners are easy to locate.

Source: Historic Northampton, Northampton, Massachusetts

We’ll call this outline the schematic picture.
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The schematic corresponds to the aerial view below, where BC is the front of the
building and P is the location of the photographer.
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Our goal is to compute the distances IB and JB. We’ll compute IB—the computa-
tion of JB can be done symmetrically. Our procedure is to express

IB

BC

in terms of the five measurements a, b, c, d, and e in the image plane. Assuming we
can measure BC on site, we can then multiply this times the ratio to find IB.

To make the proof easier to view, we will show our work on a schematic with
sharper angles:
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We begin by extending EF and AB in the schematic picture to determine the loca-
tion of the left vanishing point, V.
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Next, notice that PI in the aerial view is parallel to AB, hence by Fact (A), in the
schematic picture it passes through V. Also, since it is a line to the photographer, by
Fact (D) it is vertical in the schematic picture. Thus point I is the intersection of this
vertical with the extension of BC.
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Now we add a horizontal line through B parallel to the image plane and extend PI
and DC to meet it. In the aerial view, it looks like:
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By Fact (B), this line is also horizontal in the schematic. The aerial view line CL is
parallel to AB and PI, so it too passes through V.
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From �KIB ∼ �LCB in the aerial view we have

IB

BC
= KB

BL
.

From Fact (C), this proportion is equal to the ratio of image plane distances r/s.
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To find r/s, we add two more horizontal lines, CN and the horizon line VH, then
focus on the lower half of the resulting figure.
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From �VLK ∼ �VCN we have

r + s

b′ = r + e

c′ , from which we can derive:
r

s
= c′r

b′r + b′e − c′r
.

From �VJB ∼ �VHA we have

r

b′ = r − d

a′ , from which we can derive: r = b′d
b′ − a′ .

These together give us

r

s
= c′ b′d

b′−a′

b′ b′d
b′−a′ + b′e − c′ b′d

b′−a′
= c′d

b′d + b′e − ea′ − c′d
.

We promised to express this ratio in terms of a, b, c, d, and e. We can accomplish that
by one more application of similar triangles: We have

x a
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a′

b′ = x

x + d
= a

b
, and

c′

b′ = y

y + e
= c

b
,
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and so

a

a′ = b

b′ = c

c′

giving us

IB

BC
= r

s
=

b
b′ c′d

b
b′ b′d + b

b′ b′e − e b
b′ a′ − b

b′ c′d
= dc

d(b − c) + e(b − a)
.

The corresponding formula for BJ/AB can be found symmetrically:

BJ

AB
= ae

d(b − c) + e(b − a)
.

This completes the proof of the proposition.

The last step in locating the position of the camera is finding its height. This is
accomplished in a primitive way by noting where the horizon line cuts across the
picture. The height of the camera is the height of this line as it appears against the
building in the picture.

Source: Historic Northampton, Northampton, Massachusetts

Conclusion

The close agreement of the two pictures illustrates the proposition.

Then Now

Source: Historic Northampton,
Northampton, Massachusetts
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There are problems, though, in applying the proposition. It may be difficult to find
an appropriate part of a building to analyze. It can be difficult to measure the building.
It can be difficult to measure the photograph. Finally, locating the spot computed by
the proposition, is not easy without equipment.

Considering these problems, the close agreement of the pictures of John M. Greene
Hall might be considered good luck. We used a high-resolution scan on the archive
photograph—b was measured at 470 pixels. Even so, if b were measured just one pixel
less, the computed location of the photographer changes by almost two feet (because
of the strategic location of b in the denominator of the formula).
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Proof Without Words:
Extrema of the Function a cos t + b sin t

y

x

d

ax + by = 0

(cos t, sin t)

1

d ≤ 1 ⇒ |a cos t + b sin t |/
√

a2 + b2 ≤ 1

−
√

a2 + b2 ≤ a cos t + b sin t ≤
√

a2 + b2
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