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1 Introduction.

The harmonic series is the first nontrivial divergent series we encounter.
We learn that, although the individual terms 1/j converge to zero, together
they accumulate so that their sum is infinite:

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

j
+ · · · = ∞.

In contrast, we also learn that the alternating harmonic series converges;
in fact,

1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)j+11

j
+ · · · = ln 2.

Here the positive and negative terms partly cancel, allowing the series to
converge.

To a probabilist, this alternating series suggests choosing plus and mi-
nus signs at random, by tossing a fair coin. Formally, let (εj)

∞
j=1 be inde-

pendent random variables with common distribution P (εj = 1) = P (εj =
−1) = 1/2. Then, Kolmogorov’s three series theorem [1, Theorem 22.8]
or the martingale convergence theorem [1, Theorem 35.4] shows that the
sequence

∑n
j=1 εj/j converges almost surely. In this note, we investigate

the distribution of the sum X :=
∑∞

j=1 εj/j.

2 Distribution of X.

Obviously, the distribution of X is symmetric about 0, so the mean E(X)
is zero. The second moment calculation

E(X2) =
∞∑
j=1

E(ε2j)

j2
=

∞∑
j=1

1

j2
=
π2

6
,
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in tandem with the Cauchy-Schwarz inequality E(jXj) ≤ E(X2)1/2, shows
that the average absolute value E(jXj) is no bigger than π/

√
6 = 1.28255.

Exponential moments provide even more information. Simple proper-
ties of the exponential function give, for all t ≥ 0,

E(exp(tX)) =
∞∏
j=1

E(exp(tεj/j)) =
∞∏
j=1

exp(t/j) + exp(−t/j)
2

≤
∞∏
j=1

exp(t2/2j2) = exp(t2π2/12).

For x > 0, Markov’s inequality [1, (21.11)] tells us that

P (X > x) ≤ inf
t
exp(t2π2/12− tx) = exp(−3x2/π2),

which shows that the probability of a very large sum is exceedingly small.
On the other hand, we can show that it is never zero. Since

∑∞
j=1 εj/j

converges almost surely, given any δ > 0 we can choose N1 so that

P (j∑j>N εj/jj ≤ δ/2) ≥ 1/2 (1)

whenever N ≥ N1. Also, given any x in R we can select a nonrandom
sequence (ej)

∞
j=1 of plus ones and minus ones so that

∑∞
j=1 ej/j = x. This

is done by choosing plus signs until the partial sum exceeds x for the first
time, then minus signs until the partial sum first becomes smaller than x,
then iterating this procedure. Let N2 be so big that j∑N

j=1 ej/j − xj ≤ δ/2
for all N ≥ N2. Putting N = maxfN1, N2g, we have in view of (1) and the
independence of the εj:

0 < (1/2)N(1/2) ≤ P (ε1 = e1) · · ·P (εN = eN)P (j
∑

j>N εj/jj ≤ δ/2)
= P (ε1 = e1, . . . , εN = eN , j

∑
j>N εj/jj ≤ δ/2)

≤ P (jX − xj ≤ δ).

This shows that the distribution of X has full support on the real line, so
there is no theoretical upper (or lower) bound on the random sum.

In [3, sec. 5.2], Kent E. Morrison also considers the distribution of the
random variableX. His numerical integration suggests thatX has a density
of the form in Figure 1.
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Figure 1. Density of
∑∞

j=1 εj/j.
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Looking at Figure 1, it is easy to believe that X has a smooth density with
a flat top. Morrison [3, p. 723] notes that the value of the density at 0 is
“suspiciously close to 1/4,” and he also conjectures that its value at 2 is
1/8.

Unfortunately, in trying to justify such claims, the approach to X via
the partial sums

∑n
j=1 εj/j does not offer much of a foothold. These partial

sums are discrete random variables and do not have densities. After a brief
interlude on coin tossing, in section 4 we take an alternative approach to
X and in section 5 settle Morrison’s two conjectures. This was first done
by Morrison himself in an unpublished paper [4] in 1998. In section 6, we
explain his proof as well.

3 Binary digits and coin tossing.

An infinite sequence of fair coin tosses can be modelled by selecting a ran-
dom number uniformly from the unit interval. This observation underlies
much of Mark Kac’s delightful monograph [2] but can also be found in
many probability texts in connection with Borel’s normal number theorem
[1, sec. 1]. This model is based on the nonterminating dyadic expansion

ω =
∞∑
j=1

dj(ω)/2
j
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of ω in [0, 1], that is, (dj(ω))
∞
j=1 is the sequence of binary digits of ω. To

avoid ambiguity we use the nonterminating expansion for ω > 0. For
instance, 1/2 = .0111 . . . rather than 1/2 = .1000 . . ..

If we equip [0, 1] with Lebesgue measure, the point ω is said to be chosen
uniformly from [0, 1], in the sense that

P (α ≤ ω ≤ β) = β − α (2)

for 0 ≤ α ≤ β ≤ 1. Equation (2) shows that there is no location bias
in selecting ω, informally, every ω in [0, 1] is equally likely to be chosen.
It follows [1, (1.9)] that the random variables (dj)

∞
j=1 are independent and

have common distribution

P (dj = 0) = P (dj = 1) = 1/2.

To recap, the binary digits of a uniformly chosen number from the unit
interval act like a sequence of fair coin tosses.

The transformation ω 
→ 1 − 2ω preserves uniformity but changes the
underlying interval to [−1, 1] and changes the coefficients from zeros and
ones to plus ones and minus ones. Thus the classical model of fair coin
tosses by a uniform random number implies the following proposition.

Proposition 1. If (εj)
∞
j=1 are independent random variables with common

distribution P (εj = 1) = P (εj = −1) = 1/2, then the sum
∑∞

j=1 εj/2
j has

a uniform distribution on [−1, 1].

4 Regrouping the series.

Proposition 1 of the previous section shows that a sequence of discrete
random variables can sum to a continuous random variable with a well-
known density. We exploit this result by rewriting our sum

∑∞
j=1 εj/j as

follows:

X =
ε1
1

+
ε2
2

+
ε4
4

+ · · · =: U0

+
ε3
3

+
ε6
6

+
ε12
12

+ · · · =: U1

+
ε5
5

+
ε10
10

+
ε20
20

+ · · · =: U2

+ · · ·
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For every j ≥ 0, Proposition 1 implies that

Uj =
2

2j + 1

( ∞∑
i=1

ε2(i−1)(2j+1)/2
i

)

has a uniform distribution on [−2/(2j + 1), 2/(2j + 1)]. Since the Uj are
defined using distinct ε variables, they are independent as well. That is,
we can write X = U0 + U1 + U2 + · · · as the sum of independent uniform
random variables.

This new series warrants a closer look, since regrouping a conditionally
convergent series can give a different sum. For example, the alternating
harmonic series has value

x = 1− 1/2 + 1/3− 1/4 + · · · = ln 2,

but regrouping the series we get, for every j ≥ 0,

uj = (2j + 1)−1(1− 1/2− 1/4− 1/8− · · ·) = 0.

For the alternating sequence of plus and minus signs, we have x �= ∑∞
j=0 uj.

Luckily, this turns out to be a rare exception.
It is not hard to see that you can group a finite number of Uj without

changing the sum X, for instance,

X = U0 +
ε3
3

+
ε5
5

+
ε6
6

+
ε7
7

+
ε9
9

+
ε10
10

+ · · · ,

and
X = (U0 + U1) +

ε5
5

+
ε7
7

+
ε9
9

+
ε10
10

+ · · · ,
are both legitimate equations. That this grouping leaves the sum intact
has nothing to do with randomness, it works for any sequence of plus and
minus signs. So for any n ≥ 0 we can write

X = (U0 + U1 + · · ·+ Un) +
∑
j∈Λn

εj
j
,

where Λn is the collection of indices not used in U0 + U1 + · · · + Un. The
mean square difference satisfies

E[(X −
n∑

j=0

Uj)
2] =

∑
j∈Λn

1

j2
≤

∞∑
j=2n+1

1

j2
→ 0,

5



so that
∑n

j=0 Uj → X in mean square. On the other hand, the martingale

convergence theorem shows that
∑n

j=0 Uj →
∑∞

j=0 Uj almost surely. Both
mean square convergence and almost sure convergence imply convergence
in probability, where we have almost surely unique limits. That is, X =∑∞

j=0 Uj almost surely.

5 Densities and characteristic functions.

The smoothness of any random variable Y is related to the decay at infinity
of its characteristic function φY , defined by φY (t) = E(exp(itY )). For
instance, if φY is absolutely integrable over the line, then Y has a continuous
density function given by the inversion formula [1, (26.20)]:

fY (x) =
1

2π

∫ ∞

−∞
exp(−itx)φY (t) dt. (3)

In addition, if ∫ ∞

−∞
jtnφY (t)j dt <∞,

then the density fY is n times continuously differentiable.
For each j ≥ 0, let fj and φj denote the density and the characteristic

function of Uj, respectively:

fj(x) =

{
(2j + 1)/4 if −2/(2j + 1) ≤ x ≤ 2/(2j + 1),

0 otherwise;

φj(t) =
sin(2t/(2j + 1))

2t/(2j + 1)
.

The density gn of the partial sum U0 + U1 + · · · + Un is the convolution
product gn = f0 ∗ f1 ∗ · · · ∗ fn, while the characteristic function ψn of the
partial sum is the product ψn = φ0φ1 · · ·φn.

Since U0 +U1 + · · ·+Un → X, the characteristic functions ψn converge
[1, Theorem 26.3] to the characteristic function ψ of X, namely,

ψ(t) =
∞∏
j=0

sin(2t/2j + 1)

2t/(2j + 1)
.
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The powers of t in the denominator show that ψ has very strong decay at
infinity. Bounding jψ(t)j using the first n+ 2 factors gives

jtnψ(t)j ≤ 1 · 3 · · · (2(n+ 1) + 1)

2n+1
t−2.

This shows that t 
→ jtnψ(t)j is integrable over R, so ψ has n continuous
derivatives in (−∞,∞). This is true for all n, ensuring thatX has a smooth
density function g.

The inversion formula (3) gives

jgn(x)− g(x)j =
1

2π

∣∣∣∣
∫

exp(−itx)(ψn(t)− ψ(t)) dt
∣∣∣∣

≤ 1

2π

∫
jψn(t)− ψ(t)j dt.

Since ψn(t) → ψ(t), jψn(t)j ≤ jψ1(t)j, and jψ1j is integrable, the dominated
convergence theorem shows that gn converges to g uniformly on R.

The densities gn can be calculated explicitly using the convolution
scheme

g0(x) = 1[−2,2](x)/4, gn(x) =

∫
gn−1(x− y)fn(y) dy (4)

for n ≥ 1, so we now have the tools to study the limit density g. Note that
the property of being symmetric about 0 and nonincreasing on [0,∞) is
closed under convolution. Therefore the functions gn all share this property
(see Figures 2–4), as do the functions hn used in proving Proposition 3.
This observation lies at the heart of both our proofs.
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Figure 2. Density g0 of U0.
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Figure 3. Density g1 of U0 + U1.
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Figure 4. Density g2 of U0 + U1 + U2.
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Proposition 2. The value g(0) is strictly less than 1/4.

Proof. Each of the densities gn takes its maximum value at x = 0. Using
(4) we calculate

gn(0) =

∫
gn−1(0− y)fn(y) dy ≤ gn−1(0)

∫
fn(y) dy = gn−1(0),

so that gn(0) ↓ g(0). We note also that gn(x) ≤ 1/4 for all x in R and
n ≥ 0. Therefore, for n ≥ 1, gn(0) can equal 1/4 only if gn−1(x) = 1/4
for all x in the support of the density fn. We will demonstrate that this
happens only when n ≤ 6.

We show by induction:

gn(x) < 1/4 if and only if jxj > 2−
n∑

j=1

2/(2j + 1). (5)

Direct inspection shows that this is true for n = 0, when, as usual, an
“empty sum” means 0. Suppose that (5) is true for gn−1. Convolution
gives

gn(x) =
2n+ 1

4

∫ x+2/(2n+1)

x−2/(2n+1)

gn−1(y) dy.

If jxj > 2−∑n
j=1 2/(2j + 1), then the interval

[x− 2/(2n+ 1), x+ 2/(2n+ 1)] ∩ fy : gn−1(y) < 1/4g

is nonempty and gn(x) < 1/4; otherwise the interval is empty and gn(x) =
1/4. This completes the induction proof.

Since

2−
7∑

j=1

2/(2j + 1) < 0 < 2−
6∑

j=1

2/(2j + 1),

we see that g7(0) < 1/4 = g6(0), and conclude that g(0) ≤ g7(0) < 1/4. ��

The next result is proved with similar ideas, but depends on the symmetry
(or lack thereof) of gn in a neighborhood of 2. For example, g1(2) is exactly
1/8, and since x 
→ g1(2 − x) − g1(2) is an odd function for x near 0,
the convolution of g1 with a symmetric uniform distribution over a small
interval will not change its value at 2. In this way we see that g2(2) is also
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equal to 1/8. Eventually though, the neighborhood of “oddness” is smaller
than the support of the next convolution, and from that point on, gn(2)
begins to decrease strictly.

Proposition 3. The value g(2) is strictly less than 1/8.

Proof. For n ≥ 0 define hn by hn(x) = gn(2 + x) + gn(2− x). Then

h0(x) = 1[−4,4](x)/4 + 1[0](x)/4

and hn = hn−1 ∗ fn for n ≥ 1. The functions hn are symmetric and non-
increasing on [0,∞) so, as in the proof of Proposition 2, we find that hn
takes its maximum value at x = 0 and that hn(0) = 2gn(2) ↓ 2g(2).

As in the proof of Proposition 2, induction shows that hn(x) < 1/4 if
and only if jxj > 4−∑n

j=1 2/(2j + 1). Since

4−
56∑
j=1

2/(2j + 1) < 0 < 4−
55∑
j=1

2/(2j + 1),

we see that 2g57(2) = h57(0) < 1/4 = h56(0) = 2g56(2), and conclude that
g(2) ≤ g57(2) < 1/8. ��

6 Morrison’s proof.

For comparison, let’s look at Morrison’s proof of Propositions 2 and 3.
These are found on pages 13 and 14, at the end of section 5, of [4].

In effect, Morrison decomposesX into U0 plus a remainderR :=
∑∞

j=1 Uj.
Then g = g0 ∗ r, where r is the density of R, so

g(x) =

∫
r(y)g0(x− y) dy = (1/4)P (x− 2 < R < x+ 2). (6)

The argument in section 2 shows that R has support on the whole real line,
so that P (−2 < R < 2) < 1 and hence g(0) < 1/4. Similarly

g(2) = (1/4)P (0 < R < 4) = (1/8)P (−4 < R < 4) < 1/8.
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Figure 5. Density of R.
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Although R has full support on the real line, the density in Figure 5 shows
that both P (−2 < R < 2) and P (−4 < R < 4) are nearly equal to 1. This
explains why g(0) is so close to 1/4 and g(2) so close to 1/8.

7 Numerical results.

In approximating X by the partial sum U0 + U1 + · · ·+ Un we replace the
tail

∑∞
j=n+1 Uj with zero. Of course, the tail is not exactly zero; in fact,

a glance at Figure 5 hints that, for n = 0, the tail is close to a normal
random variable. Indeed, it is easy to pursue this hint and rigorously prove
a central limit theorem: ∑∞

j=n+1 Uj

σn
⇒ Z,

where σ2
n = Var (

∑∞
j=n+1 Uj) = (4/3)

∑∞
j=n+1 (2j + 1)−2 and Z is a standard

normal random variable. That is, the tail is close to a normal random
variable with variance σ2

n. This suggests using the approximation U0 +
U1+ · · ·+Un+σnZ ≈ X, which practice shows to be superior to U0+U1+
· · ·+ Un ≈ X. For instance, even with n = 0, this gives a density function
already impressively close to the limit. To ten decimal places, this density
has value .2499150393 at x = 0, and .1250000000 at x = 2 (see Figure 6).
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Figure 6. Density of U0 + σ0Z.
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In terms of the characteristic functions, using normal tails means approx-
imating ψ(t) by ψn(t) exp(−σ2

nt
2/2) rather than ψn(t). For the symmetric

random variable X, the inversion formula (3) gives

g(x) =
1

π

∫ ∞

0

cos(xt)ψ(t) dt ≈ 1

π

∫ ∞

0

cos(xt)ψn(t) exp(−σ2
nt

2/2) dt.

With n = 150, we integrated from t = 0 to t = 15 using a Riemann
sum with dt = 0.02 and the midpoints of the subintervals for the points
of evaluation. We determined that this is accurate to ten decimal places,
giving g(0) = .2499943958 and g(2) = .1250000000.

8 Other random sums.

Replacing the tail of a series by an appropriate normal random variable is
a good way of investigating other random sums. For example, the random
sum

∑∞
j=1 εj/j

2 has the smooth density pictured in Figure 7. The lumps in
the distribution come from the first three choices of random sign, while the
remaining part of the random sum is essentially determined by a normal
tail random variable.
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Figure 7. Density of
∑∞

j=1 εj/j
2.
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We conclude with some exercises and further food for thought.

1. Find a nonrandom sequence (ej)
∞
j=1 of plus ones and minus ones with∑n

j=1 1[ej=1]/n → 1/2, but
∑∞

j=1 ej/j = ∞. Balancing the plus and
minus signs does not guarantee convergence.

2. Prove that
∑∞

j=1 εj/j
2 has a smooth density. The regrouping trick

doesn’t work here.

3. Use Morrison’s formula (6) to show that g′′(0) = (1/2)r′(2). Argue
that r is strictly decreasing on (0,∞) and therefore g′′(0) < 0. The
density g does not have a flat top.

4. Investigate the distribution of the random sum
∑∞

j=1 εj/3
j.
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