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1 Dot Product, Cross Product, Scalar Triple Product. .

The standard inner product in  is the “ ,” defined as follows. If‘8 dot product

+ ,œ + ß + ß á ß + œ , ß , ß á ß ,a b a b" # 8 " # 8and

then

+ ,† ´ + , Þ"
3œ"

8

3 3 (1.1)

The standard norm in  is defined in terms of the dot product as‘8

l l È É+ + +´ † œ + � + � â � + Þ" #
# #

8
# (1.2)

In  and  the norm of a vector is its length.  If , then  is said to be a ‘ ‘# $ l l? ?œ " unit
vector.  Some special notation is used in  and .  A point in  is sometimes written‘ ‘ ‘# $ #

a b a bBß C Bß Cß D B C and a point in  is sometimes written .  Alternatively, the symbols , , and‘$

D "ß #ß œ + ß + ß + replace the indices  and 3.  For example, we might write  for a vector+ a bB C D

in .  The symbols , , and  denote the three standard unit coordinate vectors.   Hence‘$ 3 4 5

a b a bBß Cß D œ B � C � D œ + ß + ß + œ + � + � +3 4 5 + 3 4 5and B C D B C D .

Suppose that  is a unit vector.  For any vector ,? B

B ? B ? B† œ œl ll l l lcos cos) )

where  is the angle between  and .  This means that  is the component of  in the) ? B B ? B†
direction of , and ? B ? ? Ba b†  is the orthogonal projection of  onto the subspace of scalar
multiples of (called the subspace of vectors “spanned” by )   This is illustrated below.? ? Þ

 B

!
? B ? ?

)

a b†
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The  of two vectors  and  in  is defined ascross product + ,œ + ß + ß + œ , ß , ß ,a b a bB C D B C D ‘$

+ , 3 4 5

3 4 5

‚ ´ + , � + , � + , � + , � + , � + ,

œ + + +

, , ,

a b a b a bâ ââ ââ ââ ââ ââ â

C D D C D B B D B C C B

B C D

B C D

.
(1.3)

It may be shown that  equals the area of the parallelogram determined by  and l l+ , + ,‚
(i.e.,  where  is the angle between  and , ), and that isl ll l+ , + , + ,sin ) ) ) 1! Ÿ Ÿ ‚  
orthogonal to the plane determined by  and .  More precisely, the direction of  is+ , + ,‚
determined by the “right-hand” rule as follows: if the right hand is held with the thumb stuck
out and with the fingers curled in the direction of rotation of  into , then the thumb points+ ,
in the direction of .  In other words, if the index finger of the right hand is pointed+ ,‚
forward and shows the direction of , and if the middle finger is bent to show the direction+
of , and if the thumb is perpendicular to the plane determined by the index and middle,
finger, then the thumb points in the direction of .  Because  is orthogonal to both+ , + ,‚ ‚
+ , and , it follows that

+ + , , + ,† ‚ œ † ‚ œ !Þa b a b
Also, it's clear that for any vector .  Cross products have the following+ + ! +‚ œ
algebraic properties.

+ , , +

+ , - + , + -

+ , + , + ,

‚ œ � ‚

‚ � œ ‚ � ‚

‚ œ ‚ œ ‚

a ba b a b a ba b a b a b0 0 0

(where  is any scalar).  It may be shown that0

+ , - + - , + , -‚ ‚ œ Ð † Ñ � Ð † Ña b (1.4)

for any three vectors , , and .+ , -

The  of any three vectors , , and  is defined as the scalarscalar triple product + , -

a b+ , -‚ † Þ

It may be shown that  is the volume of the parallelepiped determined by , ,k ka b+ , - + ,‚ †
and .  This suggests (and it may be shown to be true) that a cyclic permutation of the three-
vectors does not affect the scalar triple product; that is,

a b a b a b+ , - œ , - + œ - + ,‚ † ‚ † ‚ † . (1.5)

The commutativity of the dot product then implies that the dot and cross products in a
scalar triple product may be interchanged:

a b a b+ , - œ + , -‚ † † ‚ Þ (1.6)
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Finally, it may be shown that the scalar triple product  may be written in terms of+ , -† ‚a b
a determinant as follows:

+ , -† ‚ œ Þ

+ + +

, , ,

- - -
a b

â ââ ââ ââ ââ ââ â
B C D

B C D

B C D

(1.7)

2. The Gradient.

Let  be a subset of .  : a  on  is a mapping from  into ; aH H H‘ ‘8 Definition scalar field
vector field on  is a mapping from  into .H H ‘8

Suppose that  be a subset of  and that  is a differentiable scalar field defined on .H H‘ :8

For any point  in , the -tuple< œ B ß B ß á ß B H 8a b" # 8

f ´ ´ ß ß âß
` ` `

`B `B `B
: :

: : :a b a b Œ �< <grad (2.1)
" # 8

(where each partial derivative is evaluated at ) is called the  of .  We'll write < gradient : :f
or grad  if the point where the partial derivatives are to be evaluated is clear.  The:
collection of vectors  constitutes a vector field over .f Ð Ñ H: <

Example 1.  Let .  Then:Ð Ñ ´ ´ < œ B � B � â � B< <l l È
" #
# #

8
#

` `< " B

`B `B # <
œ œ #B B � B � â � B œ

:

3 3
3 " # 8

# # # � 3a bˆ ‰ "
# . (2.2)

It follows that

f œ:a b l l< < <�" , (2.3)

a unit vector in the direction of .<

As  is differentiable, the derivative of  at  with respect to any vector  exists and is: : < ?
denoted .  It may be shown that:wÐ à Ñ< ?

: :wÐ à Ñ œ f Ð Ñ †< ? < ?Þ (2.4)

If  is a unit vector,  is said to be a ? < ?:wÐ à Ñ directional derivative; it's the rate of change of
: with respect to distance in the direction of ?.  In this case,

: : )wÐ à Ñ œ f Ð Ñ< ? <l lcos (2.5)

where  is the angle between  and .  That is,  is the component of ) : : :f Ð Ñ f Ð Ñ † f< ? < ? <a b
in the direction of  As is maximal when , it follows that  points in the?Þ œ ! fcos ) ) :
direction at which  increases fastest, and  gives the rate of change of  in that: : :l lf Ð Ñ<
direction.
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Suppose, now, that  is a differentiable vector-valued function that maps an interval of real<
numbers  into .  For any  we writec d c d+ß , H © > − +ß ,‘8

<Ð>Ñ œ B Ð>Ñß B Ð>Ñß á ß B Ð>Ñ Þa b" # 8

The parameter  is commonly interpreted as .  The vector  traces out a curve or> Ð>Ñtime <
“path” in  as  varies over .  The vector of derivatives‘8 > +ß ,c d

<wÐ>Ñ œ B Ð>Ñß B Ð>Ñß á ß B Ð>Ña bw w w
" # 8

is called the .  The norm of thevelocity vector and is tangent to the curve at each point
velocity vector  measures the  at which the curve is traversed.  The l l<wÐ>Ñ speed unit tangent
vector  is defined asX Ð>Ñ

X ´ X
<

<
Ð>Ñ ´ Þ

Ð>Ñ

Ð>Ñ

w

wl l (2.6)

The function  is given byarc-length =

=Ð>Ñ œ Ð Ñ .( l l
+

>
w< 7 7 (2.7)

with derivative given by

= Ð>Ñ œ Ð>Ñw l l<w . (2.8)

Combining eqs. (2.6) and (2.8), we find that  may be interpreted asthe unit tangent vector
the rate of change of  with respect to :< =

X
< < <

´ œ œ œ ß á ß Þ
Ð>Ñ . Î.> . .B .B

= Ð>Ñ .=Î.> .= .= .=

w

w

" 8Œ � (2.9)

In , we write , so‘$ < 3 4 5Ð>Ñ œ BÐ>Ñ � CÐ>Ñ � DÐ>Ñ

X 3 4 5œ � � Þ
.B .C .D

.= .= .=

Now suppose that  is a differentiable scalar field defined on .  Let : :H 1 ´ ‰ <Þ Then
1À +ß , Ä > − +ß ,c d c d‘ and for each 

1Ð>Ñ ´ Ð>Ñ Þ:c d<

Under these assumptions, the function  is differentiable, and the derivative  is given by1 1 Ð>Ñw

the following chain rule:

1 Ð>Ñ œ fw :
:c d< <Ð>Ñ † wÐ>Ñ œ B Ð>Ñ

`

`B
"
3œ"

8

3
3
w (2.10)

where each partial derivative is evaluated at .  The dot product<Ð>Ñ
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f:c d< XÐ>Ñ † Ð>Ñ

is called the   .  Some authors write  for thisdirectional derivative of along the curve: :. Î.=
directional derivative, as

f † œ œ Þ
.

.=
:

: :
X "

3œ"

8 ` .B

`B .=
†

3

3

Potential functions.  The meaning of “potential function” varies from author to author.
Broadly speaking, there are two definitions, one used by mathematicians and the other used
by physicists.

Mathematicians.  Let  be a vector field defined on a set J H © ‘8.  If there exists a
scalar field  defined on  such that , then  is said to be a : : :H œ fJ potential function
for .J

Physicists.  .  If there exists a scalar fieldLet  be a vector field defined on a set J H © ‘8

Y H œ �fY Y defined on  such that , then  is said to be a  for . InJ Jpotential function   
mechanics, the notion of a potential function is applied almost exclusively to .force fields
A vector field  may be interpreted as the  actingJ J < is said to be a  if force field a b force
on a particle at the point .  If there exists a potential function for a force field  < J J, then
is said to be  (for reasons that will be explained later).  In other parts ofconservative
physics, the use of “potential function” is broadened.  For example, in electrostatics the
force on a charge  is given by  where  is a vector field called the “electric field ”  If; ; ÞI I
there exists a scalar field  such that Y œ �I fY Y, then  is said to be an electrostatic
potential.

The two notions of “potential function” differ principally in a sign convention; clearly
Y Ð Ñ œ � Ð Ñ Y< <: :.  I will attempt to use the symbols  and  consistently to denote,
respectively, the mathematician's and physicist's meaning of “potential function.”

Example 2.  In , let , where  is an integer and .  Generalizing‘$ PY œ < P < ´a b l l< <
Example 1, it may be shown that

�fY œ �P<P�#<

Hence  is a potential function of the force fieldY œ �P<J <P�# .  The equipotential surfaces
of  are concentric spheres centered at the origin.Y

Example 3: The Newtonian potential.  Newton's law of gravitation says that the force
which a particle of mass  exerts on a particle of mass  is a vector of norm Q 7 K7QÎ<#

and directed from the particle of mass  towards the particle of mass , where  is a7 Q K
proportionality constant and  is the distance between the two particles.  Hence, if the<
particle of mass  is placed at the origin and the particle of mass  is located atQ 7
< 3 4 5œ B � C � D 7, then the force acting on the particle of mass  is given by
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J < <œ � < ´ Þ
K7Q

<$
where l l

Using Example 2, we see that  where .  It follows thatJ <œ �fY Y œ �K7Q<a b �"

Y Ð Ñ ´ �
K7Q

<
<

is a potential function for Newtonian gravity.

Example 4: Central forces.  A central or “radial” force field  in  is one that can beJ ‘$

written in the form

J < /Ð Ñ œ 2Ð<Ñ <

where  and is a unit vector in the direction of .  That is, a central force< ´ ´ <l l< / < <<
�"  

is directed radially, either towards the origin (if ), or away from the origin (if2Ð<Ñ � !
2Ð<Ñ � !), and the magnitude of the force at any point depends only on  the distance from
the center to that point.  .  Every central force field is conservative.  .Proposition Proof
Define

LÐ<Ñ œ 2Ð<Ñ .< Y Ð Ñ œ �LÐ ÑÞ( l land < <

Then

`Y `< B

`B `B <
œ �L Ð<Ñ œ �2Ð<Ñw

from eq. (2.2).  Similar results holds for  and .  Therefore,`Y Î`C `Y Î`D

�fY Ð Ñ œ œ 2Ð<Ñ œ Ð Ñ
2Ð<Ñ

<
< < / J <<

as required.

3. Divergence and Curl

The symbol  is called “del” or “nabla.”  It is useful to think of  as a vector :f f operator

f œ ß ß âß Þ
` ` `

`B `B `B
Œ �

" # 8

In , we write‘$

f œ � � Þ
` ` `

`B `C `D
3 4 5

“Multiplication” by /  means “take the partial derivative with respect to .”  That is, if` `B B3 3
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: :Ð Ñ œ ÐB ß B ß á ß B Ñ< " # 8  is a scalar field,

Œ �` `

`B `B
´ Þ

3 3
:

:

Playing with this operator as if it were a real vector often (but not always) yields results that
turn out to be true.  For the true results, then, this device has heuristic utility.

For example, suppose that  is a vector field defined on .  For anypointJ H © ‘$

< 3 4 5´ B � C � D H in  we'll write

J < < 3 < 4 < 5Ð Ñ œ J Ð Ñ � J Ð Ñ � J Ð ÑB C D .

Operating in a purely formal manner, we may form both a dot product and a cross product
of  and   These operations yield a scalarf ÞJ

f † ´ � �
`J `J

`B `C `D

`J
J

B DC (3.1)

and a vector

f ‚ ´

J J J

œ � � � � �
`J `J `J `J

`C `D `D `B `B `C

`J `J

J

3 4 5

3 4 5

â ââ ââ ââ ââ ââ ââ â
Œ � Œ � Œ �

` ` `
`B `C `D

B C D

D B D BC C ,

(3.2)

where all partial derivatives are to be evaluated at the point .  Amazingly, both these<
objects are meaningful and useful.  The scalar  is called the  of  and isf † J Jdivergence
also written “div   The vector  is called the  of  and is also writtenJ J J.” f ‚ curl
“curl .”J

We will give geometric interpretations of f † f ‚J J and  after our discussion of line and
surface integrals.  However, two simple examples at this stage will start to give the reader
some idea of the meaning of the divergence and the curl.

Example 1.  Suppose .  That is, this vector field is radiallyJ < < 3 4 5Ð Ñ ´ œ B � C � D
directed, and , the distance from the origin to .  Hence,l l l lJ < < <Ð Ñ œ

div J <Ð Ñ œ � � œ $Þ
`B `C `D

`B `C `D

Example 2.  Consider a rigid circular disk rotating around an axis through its center and
perpendicular to the plane of the disk.  Without loss of generality, we may set up the
coordinate system so that the disk rotates in the -plane, and the axis of rotation coincidesBC
with the  coordinate.  Let  denote the angular  of the disk (in radians per second).D = speed
Physicists find it convenient to let denote the angular  of the disk: that is,= œ =5 velocity
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angular velocity is a vector with magnitude  directed along the  axis.  Let = D œ B � C< 3 4
denote a point on the disk.  The speed of that point depends on  and on  according= < ´ l l<
to the equation .  In more detail, the  of that point (a vector) is given by@ œ <= velocity @

@ < 3 4

3 4 5

œ ‚ œ œ �C � B! !
B C !

=

â ââ ââ ââ ââ ââ â a b= =

where Note that  is a vector field.  We now ask: what is the curl of ?  From@ ´ Þl l@ @ @  
eq. (3.2),

curl@ @ 5

3 4 5

œ f ‚ œ

â ââ ââ ââ ââ ââ ââ â
` ` `

`B `C `D
� C B !

œ # œ # Þ

= =

= =

In words, the curl of linear velocity is just twice the angular velocity of the disk.

So far in our play with  we've only considered first derivatives.  When we consider secondf
derivatives, four of the possible combinations turn out to be meaningful and useful.

(1) div grad .  Working formally, we findf † f œa b a b: :

f † f œ � � † � �
` ` ` ` ` `

`B `C `D `B `C `D

œ � � Þ
` ` `

`B `C `D

a b Œ � Œ �:
: : :

: : :

3 4 5 3 4 5

# # #

# # #

It turns out that this scalar field is very useful in physics.  The operation  isf † fa b:
called the  of  and is written .  If  for all  in some volumeLaplacian : : :f f œ !# # a b< <
H, the scalar function  is said to be .  The Laplacian of a vector field  is: harmonic J
defined “component-wise”: if  thenJ 4 5œ J � J � JB C D3

f œ f J � f J � f J Þ# # # #
B C DJ 4 53

Ð#Ñ f ‚ f œ ‚ œa b a b a b: : 0 0curl grad .  For any vector  and scalar , we know that  @ @ @a b a b@ @ ! !‚ œ f ‚ f0 :.  This suggests that , the curl of a gradient, should equal .
This turns out to be true under some weak conditions: if  is a scalar field with:
continuous second-order mixed partial derivatives, then curl(grad ) Conversely, it: œ Þ!
may be shown that if curl  for all points  in an open convex set , then thereJ ! Bœ H
exists a scalar field  defined on  such that : :H œ f ÞJ

(3) ( div curl  For any vectors  and , we know that 0.f † f ‚ Ñ œ Þ † ‚ œJ J + , + + ,a b a b 
This suggests that ( div curl .  This is in fact the case: if all thef † f ‚ Ñ œ œ !J Ja b
mixed partial derivatives of a vector field  are continuous, then (  J Jf † f ‚ Ñ œ
div curl .  Conversely, if  is an open interval in , and  throughouta bJ Kœ ! H f † œ !‘$
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H œ, then curl  for some vector field . [An “open interval” in  is the CartesianK J J ‘$

product of open intervals.  That is, an open interval in  has the form‘$

a b+ ß , ‚ Ð+ ß , Ñ ‚ Ð+ ß , Ñ + � , ß + � , ß + � ,B B C C D D B B C C D D where  and .]

(4) curl curl  f ‚ f ‚ œ ‚ ‚ œa b a b a bJ J + , -.  Equation (1.4) may be written 
, + - + , - + , J -Ð † Ñ � Ð † Ñ f.  If we substitute  for  and , and  for , we obtain

f ‚ f ‚ œ f f † � f † f œ f f † � fa b a b a b a bJ J J J J# (3.3)

which holds if all mixed partial derivatives are continuous.  In other words,

curl curl grad div .a b a bJ J Jœ � f#

(There are other ways the right-hand side of eq. (1.4) may be written, but these lead to
meaningless formulae when  is substituted for  and .)f + ,

4. Line Integrals.

Let  be a vector-valued function that maps an interval of real numbers  into .< c d+ß , H © ‘8

If  is continuous on , then  is said to be a  in -space.  The path is< <c d+ß , 8continuous path
said to be  if  exists and is continuous in  The path is said to be smooth piecewise<w a b+ß , Þ
smooth if  can be partitioned into a finite number of subintervals in each of which thec d+ß ,
path is smooth.

Let  be a piecewise smooth path in -space defined on an interval , and let  be a< J8 +ß ,c d
vector field defined and bounded on the graph of .  The line integral of  along  is< J <
denoted by the symbol  and is defined by the equation' J <† .

( ( c dJ < J < <† . ´ Ð>Ñ † Ð>Ñ .>ß
+

,
w (4.1)

whenever the integral on the right exists, either as a proper or improper integral.

Other notations for line integrals.  If  denotes the graph of , the line integral G † .< J <'
is also written as  and is called     If  and'

G J < J + <† . the integral of along GÞ œ Ð+Ñ

, < J < Jœ Ð,Ñ, then the line integral is sometimes written as  or  and is called ' '
+ +
, ,

† . the
line integral of from to along      .  When the notation  is used it should be kept inJ + , < J'

+
,

mind that the integral depends not only on the end points  and  but also (in general) on+ ,
the path  joining them.  When  the path is said to be .  The symbol  is often< + ,œ closed )
used to indicate integration along a closed path.  When  and  are expressed in terms ofJ <
their components, say

J < < < < <Ð Ñ œ J Ð Ñß J Ð Ñß á ß J Ð Ñ Ð>Ñ œ B Ð>Ñß B Ð>Ñß á ß B Ð>Ña b a b" # 8 " # 8and

then the integral on the right in eq. (4.1) becomes the integral of a sum (and a sum of
integrals):
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( J < < <† . œ J Ð>Ñ B Ð>Ñ .> œ J Ð>Ñ B Ð>Ñ .>Þ( (" "c d c d
+ +

, ,

3œ" 3œ"

8 8

3 33 3
w w

In this case, the line integral is also written as .  In  the' J .B � J .B � â � J .B" " # # 8 8
#‘

path  is usually written as a pair of parametric equations , and the line integral< a bBÐ>Ñß CÐ>Ñ'
G J < <† .  is written .  Similarly, in  the path  is usually written as a'

G B C
$J .B � J .C ‘

triple of parametric equations  and the line integral  is writtena bBÐ>Ñß CÐ>Ñß DÐ>Ñ '
G J <† .'

G B C D .J .B � J .C � J .D

Basic properties of line integrals.  Line integrals share many of the fundamental properties
of ordinary integrals.  For example, they have a  with respect to thelinearity property
integrand:

( ( (a bα " α "J K < J < K <� † . œ † . � † .

and an additive property with respect to the path of integration:

( ( (
G G G

J < J < J <† . œ † . � † .
" #

where the two curves  and  make up the curve .G G G" #

Change of parameter.  As evaluation of the integral  makes use of the parametric'
G J <† .

representation , it might seem that an alternative parameterization of the curve  would<Ð>Ñ G
yield a different value of .  In fact, the value of  is invariant with respect' '

G GJ < J <† . † .

to the parameterization of  up to a change of sign.  Let  be a continuous path in -spaceG 8<
defined on an interval , and let  be a differentiable real-valued function defined on anc d+ß , 1
interval  such that (1)  is never zero on , and (2)  maps  onto .  Thenc d c d c d c d-ß . 1 -ß . 1 -ß . +ß ,w

the function defined by<ë ‘À -ß . Äc d 8

< <ëÐ?Ñ ´ 1 ?c da b
is a continuous path having the same graph  as . Two paths  and  so related are said toG < < <ë
be .  If  everywhere on , we say that  and  trace out  in the equivalent same1 � ! -ß . Gw c d < <ë
direction opposite, and if  everywhere on , we say that  and  trace out  in 1 � ! -ß . Gw c d < <ë
directions orientation-.  In the first case, the change of parameter function  is said to be 1
preserving orientation-reversing, and in the second case it is said to be .

Theorem 4.1.  Let  and  be equivalent piecewise smooth paths.  Then we have< <ë

( (
G G

J < J <† . œ † .ë

if  and  trace out  in the same direction, and< <ë G
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( (
G G

J < J <† . œ � † .ë

if  and  trace out  in opposite directions.< <ë G

Line integrals with respect to arc length.  In some circumstances the arc-length function =
provides a natural and convenient parameterization of , the graph of .  Suppose that  isG 2<
a scalar field defined and bounded on .  The G line integral of  with respect to arc length2
along  is denoted by  and defined byG 2 .='

G

( ( c d
G +

,
w2 .= ´ 2 Ð>Ñ = Ð>Ñ .>ß< (4.2)

whenever this integral exists.  In particular, consider the scalar field given by

2 Ð>Ñ ´ Ð>Ñ † Ð>Ñßc d c d< J < X

the dot product of a vector field  defined on  and the unit tangent vector.  In this case,J G
the integral with respect to arc length  is identical to the line integral ' '

G G2 .= † .J <

because

J < < J < X <c d c d c dÐ>Ñ † Ð>Ñ œ Ð>Ñ † Ð>Ñ= Ð>Ñ œ 2 Ð>Ñ = Ð>ÑÞw w w

The integral in (4.2) is naturally viewed as the limiting value of a Riemann sum

" a b
4œ"

R

4 42 =< ?

obtained when the curve  is partitioned into  segments, where the th segment is ofG R 4
length  and contains the point .?=4 4<

If  is a closed path, the line integralG

* *
G G

J X J <† .= œ † .

is called the  of  around .circulation J G

The concept of work in mechanics.  Consider a particle which moves along a curve in ‘$

under the action of a force field .  If the curve is the graph of a piecewise smooth path ,J <
then the  done by  is defined to be the line integral work J J <' † . Þ

The principle of work and energy.  Suppose a particle of mass  moves freely through7
space under the action of a force field .  If the speed of the particle at time  is , thenJ > @Ð>Ñ
its kinetic energy is defined to be .  We may show that the change in the particle's"

#
#7@Ð>Ñ

kinetic energy in any time interval is equal to the work done by  during that time interval.J
Proof.  Let  denote the position of the particle at time , for all .  We want to<Ð>Ñ > > − +ß ,c d
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show that

( a b
<

<

Ð+Ñ

Ð,Ñ
# #J <† . œ 7@Ð,Ñ � 7@ +

" "

# #
. (4.3)

The motion of the particle at any time is governed by Newton's second law of motion, which
says

J < < @c dÐ>Ñ œ 7 Ð>Ñ œ 7 Ð>Ñww w

where  denotes the velocity vector at time , and .  Hence@ @Ð>Ñ > @Ð>Ñ ´ Ð>Ñl l
J < < @ @ @ @c d a b ˆ ‰Ð>Ñ † Ð>Ñ œ 7 Ð>Ñ † Ð>Ñ œ 7 Ð>Ñ † Ð>Ñ œ 7 @Ð>Ñ Þ

" . " .

# .> # .>
w w #

Integrating from  to  we obtain+ ,

( ( c d a b� ‘
<

<

Ð+Ñ +

Ð,Ñ ,
w # #

+

, #J < J < <† . œ Ð>Ñ † Ð>Ñ .> œ 7 @Ð>Ñ œ 7@Ð,Ñ � 7@ +
" " "

# # #
,

as was to be shown.

Independence of the path.  Suppose that  is a vector field that is continuous on an openJ
connected set .  [For the definition of “open connected set” see Apostol, pp. 332-H © ‘8

333.]  In general, the line integral

(
+

,

J <† .

depends not only on the end points  and , but also on the path  that connects them.+ , <ÐÞÑ

For some vector fields , however,  doesn't depend on , and in this case weJ J < <'
+
,

† . ÐÞÑ

say the integral is    .  If the integral  isindependent of the path from to+ , J <'
+
,

† .

independent of the path from    for all  and  in , then we'll say that  is+ , + , J <to H † .'
+
,

independent of the path in .H

Let  be a piecewise smooth closed path in , where is an open connected set in .G H H ‘8

Let  and  be two distinct points on the path .  If the integral  is independent of+ , J <G † .'
+
,

the path from  to , then the circulation of  around  is zero:+ , J G

*
G

J <† . œ !Þ

If the integral  is independent of the path from  to  for every pair of points  and'
+
,
J < + , +† .

, J, then the circulation of  around  is zero,G

*
G

J <† . œ !ß (4.4)
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for every piecewise smooth closed path  in .  Conversely, if eq. (4.4) holds for everyG H

piecewise smooth closed path  in , then  is independent of the path in .G H † . H'
+
,
J <

The second fundamental theorem of calculus for real functions states that:

(
+

,
w: : :ÐBÑ .B œ Ð,Ñ � Ð+Ñ

provided that  is continuous on some open interval containing both  and .  An:w + ,
analogous result holds for line integrals.   (The second fundamental theorem ofTheorem 4.2
calculus for line integrals).  Let  be a differentiable scalar field with a continuous gradient:
f H ©: ‘ on an open connected set .  For any two points  and  joined by a piecewise8 + ,
smooth path in  we have<ÐÞÑ H

(
+

,

f † . œ Ð Ñ � Ð ÑÞ: : :< , + (4.5)

Corollary.  Equation (4.5) implies that  is independent of the path from   .'
+
,
f † .: < + ,to

As eq. (4.5) holds for every pair of points  and  in , it follows that  is+ , <H f † .'
+
,

:

independent of the path in .  Hence,H

*
G

f † . œ !: < (4.6)

for every piecewise smooth closed path  in   In words, the circulation of a gradientG HÞ
around any piecewise smooth closed path in  is zero.H

The conservation of mechanical energy in a conservative force field.  Suppose a particle
of mass  moves freely through space under the action of a force field .  We have7 J
previously shown that the work done by  over an interval of time equals the change in theJ
kinetic energy of the particle during that time interval.  To be precise, if  is the timeÒ+ß ,Ó
interval, then

( a b
<

<

Ð+Ñ

Ð,Ñ
# #J <† . œ 7@Ð,Ñ � 7@ +

" "

# #
(4.3)

where  denotes the location and  denotes the speed of the particle at any time<Ð>Ñ @Ð>Ñ
> − Ò+ß ,Ó œ �fY.  Assume now that  is a  force field, so  for someJ Jconservative
potential function .  ThenY

( ( c d c d
< <

< <

Ð+Ñ Ð+Ñ

Ð,Ñ Ð,Ñ

J < < < <† . œ � fY † . œ Y Ð+Ñ � Y Ð,Ñ . (4.7)

Combining equations (4.3) and (4.7) and rearranging, we find

" "

# #
7@Ð,Ñ � Y Ð,Ñ œ 7@ + � Y Ð+Ñ# #c d a b c d< < . (4.8)
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The function  gives the  of the particle at .  Equation (4.8), then,Y a b< <potential energy
says that the sum of the kinetic and potential energy of a particle is a conserved quantity if
the particle moves under the action of a conservative force field.  (This explains why such
force fields are said to be “conservative.”)

A converse of Theorem 4.2 is also true.  .  Let  be a continuous vector fieldTheorem 4.3 J

defined on an open connected set .  If the line integral  is independent ofH © † .‘8 '
+
,
J <

the path in [or if eq. (4.4) holds for every piecewise smooth closed path  in ] thenH G H
there exists a differentiable scalar field  on  such that .: :H Ð Ñ œ f Ð ÑJ < <

Suppose that  is a vector field that is continuous on an open connected set .J H © ‘8

Theorems 4.2 and 4.3 give us necessary and sufficient conditions for  to be a gradient: J J

is a gradient if and only if  is independent of the path in .  Equivalently,  is a'
+
,
J < J† . H

gradient if and only if the circulation of  around any piecewise smooth closed path in  isJ H
zero.  These necessary conditions are not very useful, however, because they're generally
impossible to check.  The following theorem provides a set of necessary conditions for  toJ
be a gradient that are readily checked.

Theorem 4.4.  Let  be a continuously differentiableJ < < < <Ð Ñ œ J Ð Ñß J Ð Ñß á ß J Ð Ña b" # 8

vector field defined on an open connected set .  If  is a gradient, thenH © ‘8 J

`J

`B `B
Ð Ñ œ Ð Ñ

`J3

4 3

4
< < (4.7)

for all  and  in  and all .  .  Suppose that  for some scalar3 4 "ß #ß á ß 8 − H œ fe f < JProof :
field  defined on .  Then: H

`J ` ` ` ` ` `

`B `B `B `B `B `B `B `B `B `B
œ œ œ œ Þ

`J3

4 4 3 4 3 3 3 4 3 4

# #
4Œ � Œ �: : : :

and

The conditions of the theorem guarantee the equality of these two “mixed partials.”  (See
Apostol, page 278.)

As a corollary of Theorem 4.4, we have formula (2) of Section 3: for any continuously twice
differentiable scalar field  defined on an open connected set ,: ‘H © $

curla bf œ f ‚ f œ Þ: : !

The proof is left to the reader.

If the set  of Theorem 4.4 is assumed to be , then eq. (4.7) gives H convex sufficient
conditions for  to be a gradient.  .  Let  beJ J < < < <Theorem 4.5 Ð Ñ œ J Ð Ñß J Ð Ñß á ß J Ð Ña b" # 8

a continuously differentiable vector field defined on a convex open connected set .H © ‘8

If



Vector Calculus.  Page 15

`J

`B `B
Ð Ñ œ Ð Ñ

`J3

4 3

4
< <

for all  and  in  and all , then there exists a scalar field  defined on 3 4 "ß #ß á ß 8 − H He f < :
such that .  For the proof, see Apostol, pp. 351-352.  : Suppose that J Jœ f: Corollary
is a continuously differentiable vector field defined on a convex open connected set  in .H ‘$

If

curl J J !œ f ‚ œ

everywhere in , then there exists a scalar field  defined on  such that .H H œ f: :J

5. Surface Integrals

There are several ways to specify a “surface” in .  (1) .  The set‘$ Implicit representation
of all points  that satisfy an equation of the form .  (2) a b a bBß Cß D J Bß Cß D œ ! Explicit
representation.  Sometimes one can solve  for one of the variables in termsJ Bß Cß D œ !a b
of the other two.  For example, suppose it's possible to solve for  in terms of  and .  TheD B C
solution  is said to be an  representation of the surface.  (3) D œ 0ÐBß CÑ explicit Parametric
representation.  We have 3 equations expressing , , and  as functions of two parametersB C D
? @ and :

B œ \Ð?ß @Ñß C œ ] Ð?ß @Ñß D œ ^Ð?ß @Ñand (5.1)

where  is allowed to vary over some connected set  in the -plane.  Sometimes we'lla b?ß @ X ?@
write the three parametric equations of eq. (5.1) in a single  form:vector

< 3 4 5Ð?ß @Ñ œ \Ð?ß @Ñ � ] Ð?ß @Ñ � ^Ð?ß @Ñ Þ (5.2)

The image of  under the mapping  is called a  and is denoted .X ÐX Ñ< <parametric surface
We assume that , , and  are continuous.  If the mapping  is one-to-one, the image\ ] ^ <
<ÐX Ñ is called a .  Note that an explicit representation of a surfacesimple parametric surface
is obtained from a parametric representation with the functions , ,\Ð?ß @Ñ œ ? ] Ð?ß @Ñ œ @
and .^Ð?ß @Ñ œ 0Ð?ß @Ñ

The fundamental vector product.  If , , and  are differentiable on , we consider the\ ] ^ X
two vectors

` `\ `] `^

`? `? `? `?
œ � �

<
3 4 5

and

` `\ `] `^

`@ `@ `@ `@
œ � � Þ

<
3 4 5

The cross product of these two vectors is referred to as the  offundamental vector product
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the representation .<

R
< <

3 4 5

3 4

´ ‚ œ
` `

`? `@

œ � �

â ââ ââ ââ ââ ââ ââ ââ ââ ââ â â â ââ â â â ââ â â â ââ â â â ââ â â â ââ â â â ââ â â â

`\ `] `^
`? `? `?

`\ `] `^
`@ `@ `@

`] `^ `^ `\
`? `? `? `?

`] `^ `^ `\
`@ `@ `@ `@ â â

ââââââ
a b a b a ba b a b

`\ `]
`? `?

`\ `]
`@ `@

5

3 4 5œ � �
` ] ß ^ ` ^ß \ ` \ß ]

` ?ß @ `Ð?ß @Ñ ` ?ß @
.

(5.3)

If  is a point in  at which both  and  are continuous and , thenÐ?ß @Ñ X ` Î`? ` Î`@ Á< < R !
the image point  is said to be a  of .  If  is not a regular point,< < <Ð?ß @Ñ Ð?ß @Ñregular point
then it is said to be a  of .  A surface  is said to be  if all of itssingular point smooth< <ÐX Ñ
points are regular points.

In the case of an explicitly represented surface

< 3 4 5ÐBß CÑ œ B � C � 0ÐBß CÑ

we have

` `0 ` `0

`B `B `C `C
œ � œ �

< <
3 5 4 5and

so

R 3 4 5

3 4 5

œ œ � � � Þ" ! `0Î`B
! " `0Î`C

`0 `0

`B `C

â ââ ââ ââ ââ ââ â (5.4)

Note that

l l Ë Œ � Œ �R œ " � �
`0 `0

`B `C

# #

(5.5)

in this case.

As each vector  and  is tangent to the surface , it follows that  is` Î`? ` Î`@ ÐX Ñ< < < R
“normal” (i.e., perpendicular) to the surface at .  Hence, if ,< RÐ?ß @Ñ Á !l l

8
R

R
´ l l (5.6)

is a unit vector that is normal to the surface at .<Ð?ß @Ñ
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Let  denote a rectangle with base  and height  in , where  and  are “small.”V ? @ X ? @? ? ? ?
The image  is approximately a parallelogram with sides<ÐVÑ

` `

`? `@
? @

< <
? ?and .

The area of this parallelogram is

¾ ¾ ¾ ¾` ` ` `

`? `@ `? `@
? ‚ @ œ ‚ ? @Þ

< < < <
? ? ? ?

Hence

l l ¾ ¾R
< <

œ ‚
` `

`? `@

may be thought of as a local magnification factor for areas.

The area of a parametric surface.  Let .  The computation given above suggestsW ´ ÐX Ñ<
the following definition.  The area of , denoted , is defined by the double integralW EÐWÑ

EÐWÑ ´ ‚ .? .@Þ

X

` `

`? `@
( ( ¾ ¾

  
(5.7)

< <

If  is defined explicitly, this integral becomesW

EÐWÑ ´ " � � .B .C

X

`0 `0

`B `C
( ( Ë Œ � Œ �

  

# #

where  is the projection of  onto the -plane.X W BC

Definition.  Let  be a parametric surface described by a differentiable function W ´ ÐX Ñ< <
defined on a region  in the -plane, and let  be a scalar field defined and bounded on .X ?@ 1 W
The surface integral of  over  is denoted by the symbol  [or by ],

 
1 W 1 .W 1 Bß Cß D .W

W ÐX Ñ

' ' ' ' a b
<

and is defined by

( ( ( ( ¾ ¾
<

<
< <

ÐX Ñ

1 .W ´ 1Ò Ð?ß @ÑÓ ‚ .? .@

X

` `

`? `@
  

(5.8)

whenever the double integral on the right exists.

Note: the symbol  used in a surface integral always denotes a differential element of.W
surface area, whereas the symbol  used in a line integral always denotes a differential.=
element of arc length.  (Later we'll use the symbol  to denote a differential volume.Z
element.  That is,  is just shorthand for .).Z .B .C .D
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Any surface  may be represented parametrically in different ways.  It may be shown thatW
the value of  does not depend on the parameterization.' '

W
1 .W

Although it's necessary to go back to eq. (5.8) to actually calculate a surface integral,
intuitively we may think of this surface integral as the limiting value of a Riemann sum.
Suppose we approximate the surface by a polyhedron of  faces, where the th face hasW P j
area  and is tangent to  at .  Now consider the sum?W W ÐB ß C ß D Ñj j j j

"
jœ"

P

j j j j1ÐB ß C ß D Ñ W? .

If we let  in such a way that max , this Riemann sum approaches .P Ä ∞ W Ä ! 1 .W
W

e f ' '? j

If the surface  is represented explicitly by , the surface integral may be writtenW D œ 0ÐBß CÑ

( ( ( ( Ë Œ � Œ �
W

1 .W œ 1ÒBß Cß 0ÐBß CÑÓ " � � .B .C

X

`0 `0

`B `C
    

# #

The flux of a vector field through a surface.  Let  be a simple parametricW œ X<a b
surface, let  be the unit normal vector to  defined by eq. (5.6), and let  be a vector field8 JW
defined on .  At any point on  the dot product  is the component of  in theW W †J 8 J
direction of .  The surface integral8

( ( ( ( ( (¾ ¾
W

† .W œ † ‚ .? .@ œ † .? .@

X X

` `

`? `@
      

 (5.9)J 8 J 8 J R
< <

is called the  of  through the surface.  This kind of surface integral occurs frequently influx J
applications.  The flux of a vector field through a surface is meaningful regardless of the
nature of , but perhaps the situation where flux is easiest to interpret is whenJ

J @ÐBß Cß DÑ œ ÐBß Cß DÑ ÐBß Cß DÑ3

where and  denote the  of a fluid at3ÐBß Cß DÑ ÐBß Cß DÑ@ density velocity and the , respectively,
the point .  Then the flux measures the mass of fluid passing through the surface perÐBß Cß DÑ
unit time.  See the discussions in Feynman and Schey for more on the intuitive meaning of
“flux.”

Suppose that  is represented explicitly by .  From eq. (5.4) we haveW D œ 0ÐBß CÑ

R 3 4 5œ � � � Þ
`0 `0

`B `C

Now write the vector field  in terms of its components:J
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J 3 4 5ÐBß Cß DÑ œ J ÐBß Cß DÑ � J ÐBß Cß DÑ � J ÐBß Cß DÑ ÞB C D

It follows that the flux integral in this case may be written

( ( ( ( ” •
W

† .W œ �J � J � J .B .C

X

`0 `0

`B `C
    

J 8 B C D

where , , and  are evaluated at .J J J ÐBß Cß 0ÐBß CÑÑB C D

6. The Divergence Theorem

Mathematical solids.  To a mathematician, a “solid” is a particular kind of subset of .‘$

As my mathematical dictionary quaintly defines it, a “geometric solid” is “[a]ny portion of
space which is occupied conceptually by a physical solid; e.g., a cube or a sphere.”  The key
word here is “conceptually.”  A mathematical solid, unlike a physical solid, has no .solidity
For example, a spherical bubble trapped in a block of ice is a mathematical solid.  In this
document we'll implicitly assume various things about the solids of interest.  In particular,
we'll assume of any solid of interest  that (1)  is a connected set, (2)  is bounded, andZ Z Z
(3) the boundary of  is a regular surface in the sense of section 5, or the union of severalZ
such surfaces.  In addition, this surface must be “orientable”; for a definition, see Apostol,
page 456.  The boundary of a solid partitions  into two parts, an  (the solid) and‘$ interior
an , and it's not possible to pass from the interior to the exterior along a continuousexterior
path without going through the surface.

Open and closed surfaces.  Vector calculus deals with two different kinds of surface: ,open
and .  An  surface is bounded by an edge that we'll assume is a piecewise smoothclosed open
curve.  For example, a piece of paper is an open surface.  A  surface is not boundedclosed
by an edge, but itself forms the boundary of a solid.  The surface of a beach ball is an
example of a closed surface.

Unit normal vectors.  Suppose  is a parametric representation of a surface .<À X Ä W‘$

At any regular point  there are  unit vectors that are normal to the surface:<Ð?ß @Ñ two

8 R
R < <

R
" ´ ´ ‚

` `

`? `@l l where

and
8 8# "´ � Þ

In calculating a “flux integral”

( (
W

† .W

  
J 8
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it is necessary to specify which of these two unit normal vectors is to be used.  If the surface
W is closed, a universal convention is that the  normal unit vector is used.outward facing

Let  be a differentiable vector field defined on , sayJ H © ‘$

J < < 3 < 4 < 5 < 3 4 5Ð Ñ œ J Ð Ñ � J Ð Ñ � J Ð Ñ ´ B � C � DB C D where .

We've defined the divergence of  by eq. (3.1):J

div (3.1)J J´ f † ´ � �
`J `J

`B `C `D

`JB DC .

This expression may seem totally dependent on the chosen system of coordinates.
Miraculously enough, it turns out that div has a physical interpretation that is completelyJ
independent of the coordinate system.

To explain this interpretation, we need to introduce the concept of “flux density” at a point.
Let denote a mathematical solid with surface , let  denote the volume of , andZ W Z Z?
suppose that  is in the interior of .  For example,  could be a sphere, or a rectangular< Z Z
parallelepiped.  By the “flux density of over ” I mean the ratio of the flux of  throughJ JZ
W Z to the volume of :

"

Z
W

† .W
?

( (
  

.J 8

By “the flux density of at ” I mean the limit of this ratio as the solid  is allowed toJ < Z
shrink down to the singleton set :e f<

Flux density of  at .
  

J < J 8´ † .W
"

Z
W

lim
?Z Ä! ?

( (
The discerning reader may object that this limit apparently depends on how the set of
contracting solids  are chosen, so “flux density” appears not to be well-defined by thisZ
formula.  It's a remarkable fact, however, that this is not the case: the limiting value of this
ratio does not depend on how the contracting solids  are chosen.  To fix ideas, it'sZ
convenient to let  be a rectangular parallelepiped with dimensions , , and , andZ B C D? ? ?
centered around .  An instructive and easy calculation then shows that< œ ÐBß Cß DÑ

lim
?Z Ä!

"

Z
W

† .W œ
?

( (
  

J 8
`J `J

`B `C `D
� � Þ

`JB DC

In words, the flux density of  at is just the divergence of  at :J < J < 

div .  
  

(6.1)J J 8œ † .W
"

Z
W

lim
?Z Ä! ?

( (
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Some authors simply  div  to be what I've called the flux density.  While thisdefine J
approach has some conceptual advantages, it also complicates the exposition.

The Divergence Theorem.  The Divergence Theorem, also called Gauss' Theorem, relates
a triple integral over the interior of a solid to an integral over the surface of that solid.
Theorem 6.1 (The Divergence Theorem).  Let  be a solid in  bound by an orientableZ ‘$

closed surface , and let  be the outwardly directed unit vector on .  If  is aW W8 J
continuously differentiable vector field defined on , thenZ

( ( ( ( (a b
Z W

.Z œ † .WÞdiv (6.2)J J 8

For a proof of the Divergence Theorem, see Apostol, pp. 457-459.  Given that we may
interpret div  as a “flux density,” we see that eq. (6.2) says just that the flux of  throughJ J
the surface of a solid  is the integral of the flux density of  over the interior of .Z ZJ

Exercise.  Prove the following proposition.  Let  be a solid in  bound by an orientableZ ‘$

closed surface , and let  be the outwardly directed unit vector on .  If  is aW W8 J
continuously differentiable vector field defined on , thenZ

( ( a b
W

† .W œ !Þcurl (6.3)J 8

Exercise.  Use the Divergence Theorem to prove eq. (6.1).

We can gain some insight into the Divergence Theorem if we combine eq. (6.1) with what I
call the “shared surface” theorem .  Let  be a solid bounded by a surface .  Suppose we1 Z W
divide  into two solids  and  by inserting a surface , which becomes part of theZ Z Z W" # "#

surface of both  and .  We'll say that  is a “shared surface.”  Let  denote the partZ Z W W" # "# "

of  that still bounds , and let  denote the part of  that still bounds .  Hence,W Z W W Z" # #

Z œ Z ∪ Z W œ W ∪ W Z W ∪ W" # " # " " "#, , the boundary surface of  is , and the boundary
surface of  is .  For example, let  be the rectangular parallelepipedZ W ∪ W Z# # "#

Z ´ ÐBß Cß DÑÀ ! Ÿ B Ÿ #ß ! Ÿ C Ÿ "ß ! Ÿ D Ÿ "e f
and insert the square surface

W ´ ÐBß Cß DÑÀ B œ "ß ! Ÿ C Ÿ "ß ! Ÿ D Ÿ " Þ"# e f
Then  and  are cubes:Z Z" #

Z ´ ÐBß Cß DÑÀ ! Ÿ B Ÿ "ß ! Ÿ C Ÿ "ß ! Ÿ D Ÿ "" e f
1 As the Divergence Theorem is used to prove eq. (6.1), this analysis may seem more than a little ass-
backwards.  Point taken!  But this analysis has heuristic utility as it increases our insight into why the
Divergence Theorem is true.
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and

Z ´ ÐBß Cß DÑÀ " Ÿ B Ÿ #ß ! Ÿ C Ÿ "ß ! Ÿ D Ÿ "# e f
that share the face .  Returning to the general case, if  is a vector field defined over ,W Z"# J
then the flux of  out of  may be writtenJ Z"

( ( ( ( ( (
W ∪ W W W

† .W œ † .W � † .W

" "# " "#

" " "J 8 J 8 J 8

where  denotes an outwardly directed unit normal vector for .  Similarly, the flux of 8 J" "Z
out of  may be writtenZ2

( ( ( ( ( (
W ∪ W W W

† .W œ † .W � † .W

2 2

2 2 2

"# "#

J 8 J 8 J 8

where  denotes an outwardly directed unit normal vector for .  As  and  are8 8 82 2 2Z "

outward normal vectors to  and , respectively, it follows that on .Z Z œ � W" # " "#8 82
Hence, the flux out of  through the shared face  is just the negative of the flux out ofZ W# "#

Z W" "# through .  In symbols,

( ( ( (
W W

† .W œ � † .WÞ

"# "#

"J 8 J 82

Hence the sum of the fluxes out of the two solids  and  is given byZ Z" #

( ( ( (
W W

† .W � † .WÞ

"

"J 8 J 8

2

2 (6.4)

The flux of  out of the whole solid  is given byJ Z

( (
W

† .WJ 8

where  is a unit normal vector on .  But this flux can be rewritten as8 W

( ( ( ( ( (
W W W

† .W œ † .W � † .WJ 8 J 8 J 8

"

"

2

2 (6.5)

because  on  and  on .  Comparing eqs. (6.4) and (6.5), we conclude:8 8 8 8œ W œ W" " # #

the flux of  out of the whole solid  is equal to the sum of the fluxes out of the twoJ Z
component solids  and , and this is true because the fluxes from  and  across theZ Z Z Z" # " #

shared surface cancel.

This conclusion holds if the original solid  is partitioned into any number of componentZ
solids , , , .  .  Suppose a mathematical solid  withZ Z á Z Z" # R The shared surface theorem
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surface  is partitioned into any number of component solids , , ,  with surfacesW Z Z á Z" # R

W W á W Z" # R, , , .  If  is a vector field defined on , thenJ

( ( ( ("
W W

† .W œ † .WJ 8 J 8
jœ"

R

j

j (6.6)

where  is a unit normal vector on  and  is a unit normal vector on  for .8 8W W j œ "ß á ß Rj j

In words, the flux of  out of the original solid  is equal to the sum of the fluxes out ofJ Z
the  component solids.  This conclusion follows from the fact that partitioning  intoR Z
component subsolids creates internal shared surfaces, and all the fluxes across shared
surfaces cancel.

We may combine eqs. (6.1) and (6.6) to gain some insight into the Divergence Theorem.
Let  be a solid in  bound by an orientable closed surface , let  be the outwardlyZ W‘$ 8
directed unit vector on , and let  be a continuously differentiable vector field defined onW J
Z .  The expression on the right-hand side of eq. (6.2)

( (
W

† .WJ 8

is the flux of  out of .  We now partition  into a large number  of componentJ Z Z R
“subsolids” , , ,  with surfaces , , , .  From the shared surface theorem,Z Z á Z W W á W" # R " # R

( ( ( ("
W W

† .W œ † .WJ 8 J 8
jœ"

R

j

j (6.6)

where the terms in this equation are explained above.  Let  denote the volume of  for?Z Zj j

j œ "ß #ß á ß R Z.  If  is small enough, it follows from eq. (6.1) that? j

( ( a ba b
W

† .W ¸ Z

j

j j jJ 8 J <div (6.7)?

where  is any point in .  Combining eqs. (6.6) and (6.7), we find<j jZ

( ( " a ba b
W

† .W ¸ Z ÞJ 8 J <
jœ"

R

j jdiv (6.8)?

This approximation becomes an equality if we let  and max .  But theR Ä ∞ Z Ä !e f? j

sum on the right-hand side of eq. (6.8) is just a Riemann sum for  div  .  This' ' ' a b
Z

.ZJ

completes our heuristic “proof” of the Divergence Theorem.
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7. Stokes' Theorem.

Let  be a vector field defined on .  In the previous section we used the concept ofJ H © ‘$

a “flux density” to give a geometric meaning to div .  In this section we'll introduce theJ
concept of “circulation density” to give a geometric meaning to curl .  To be precise, letJ
< 8 < 8 <´ ÐBß Cß DÑ H ß be a point in , let  be a unit vector in , let  be the plane through ‘ C$ a b
that is normal to , let  be a piecewise smooth closed path in  that encloses , and8 < 8 <G ßCa b
let  denote the area of the region enclosed by .  Now consider the “circulation integral”?W G

M ´ † .=*
G

J X . (7.1)

By convention, in calculating  the path  is traversed in a counterclockwise direction asM G
viewed from the tip of  when  is based at .  The circulation  given by eq. (7.1) is a8 8 < M
scalar whole path vector defined as an integral over the  , whereas the curl of  at  is a G J <
defined at the   alone.  What can  possibly tell us about ?  Our strategypoint < J <M f ‚ a b
will be to examine the limiting behavior of  as we let the curve  contract down to theM G
point .  The circulation  necessarily decreases to zero as  goes to zero, but the limit of< M W?
the ratio of  to , the circulation per unit area, is more interesting.  We'll define theM W?
“circulation density of  around  at ” to beJ 8 <

#
?

Ð ß Ñ ´ † .=
"

W
< 8 J Xlim

?WÄ! G
* .

An astute reader might object that this limit apparently depends on how the family of curves
G  that contract down to  are chosen.  As it turns out, this isn't the case; it may be shown<
that the limit of  as  does not depend on how the curves  are chosen.MÎ W W Ä ! G? ?

To appreciate the utility of , it's best to see some examples.  First, let , so#Ð ß Ñ œ< 8 8 5
C ? ?Ð ß Ñ BC G B C< 8  is parallel to the -plane. Let  be the rectangle with base , height , and
centered around  in the plane .  An instructive and easy calculation shows that< < 5CÐ ß Ñ

#Ð ß Ñ œ< 5
`J

`B `C
� Þ

`JC B

From eq. (3.2), this is the  component of curl  at .  Hence,5 J <

c df ‚ J Ð Ñ † œ Ð ß ÑÞ< 5 < 5#

Similar calculations with planes parallel to the -plane and the -plane yieldBD CD

c d c df ‚ J Ð Ñ † œ Ð ß Ñ f ‚ J Ð Ñ † œ Ð ß Ñ< 3 < 3 < 4 < 4# #and .

These results suggest (but don't exactly prove) the following: for any unit vector ,8

c df ‚ J Ð Ñ † œ Ð ß ÑÞ< 8 < 8# (7.2)

In words,  is a vector whose component in the direction of  is equal to ,f ‚ J Ð Ñ Ð ß Ñ< 8 < 8#
the circulation density of  at  in the plane .J < < 8CÐ ß Ñ
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Jordan curves.  A path  in  is specified parametrically by a continuous vector valued> ‘8

function .  If , the path is .  If  is closed and# # #À Ò+ß ,Ó Ä Ð+Ñ œ Ð,Ñ‘ >8 closed
# #Ð> Ñ Á Ð> Ñ > Á > Ð+ß ,Ó" # " # for every  in , then  is said to be a  closed curve.> simple
Geometrically, a simple closed curve doesn't intersect itself.  A simple closed curve in a
plane is called a .  Every Jordan curve  partitions the plane into two disjointJordan curve >
open connected sets having  as their common boundary.  One of these sets is bounded and>
is called the  of .  The other is unbounded and is called the  of .interior exterior> >

“Counterclockwise” traversal.  Let  be a Jordan curve in the -plane, and let  denote> BC V
the interior of .  We need to define (somewhat informally) what it means to traverse  in a> >
“counterclockwise” direction.  First, we define “upright” to mean: in the direction of
positive values of .  : an upright pedestrian walking on  is moving in aD Definition >
counterclockwise left direction if  is on his or her .V

Green's Theorem (for a plane region bounded by a piecewise smooth Jordan curve).  Let
T U W and  be scalar fields be scalar fields that are continuously differentiable on an open set 
in the -plane.  Let  be a piecewise smooth Jordan curve, and let  denote the union ofBC G V
G V © W and its interior.  Assume that .  Then the following equation is true:

( ( *Œ �
V

`U `T

`B `C
� .B .C œ T .B � U .C

G

(7.3)

where the line integral is taken around  in the counterclockwise direction.G

Stokes' Theorem is a direct generalization of Green's Theorem.  Let  be a surface in W ‘$

bounded by a curve , and let  be a vector field defined on .  Stokes' Theorem statesG WJ
that the circulation of  around  is equal to the surface integral of curl  over ,J J 8G † Wa b
where  is a suitably chosen unit normal vector at each point of .8 W

Stokes' Theorem.  Let  be a smooth simple parametric surface, say , where  isW W œ ÐX Ñ X<
a region in the -plane bounded by a piecewise smooth Jordan curve .  Assume also that?@ >
< is a one-to-one mapping whose components have continuous second-order partial
derivatives on some open set containing .  Let denote the image of  under , andX ∪ G> > <
let  be a continuously differentiable vector field defined on .  ThenJ W

( ( *a b
W

† .W œ † .=curl  (7.4)J 8 J X
G

where  is the unit normal vector defined by eq. (5.6), and the path  is traversed in the8 >
counterclockwise direction when the line integral is evaluated.

This statement of Stokes' theorem is taken from Apostol, where a proof may be found.

Remark 1.  This statement of Stokes' theorem makes explicit use of the parameterization
W œ ÐX Ñ<  and the parameterization of .  As noted previously, the value of a surface>
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integral doesn't depend on how the surface is parameterized, and the value of a line integral
doesn't depend on parameterization up to a sign.  Hence eq. (7.4) is true almost regardless
of how  and  are parameterized.  It might seem preferable, therefore, to state Stokes'W >
theorem in a way that makes no explicit reference to a particular parameterization.
Significant complication arise, however, if one attempts to rephrase Stokes' theorem without
making explicit use of these parameterizations.  In particular, eq. (5.6) gives us a convenient
way to ensure that the normal unit vectors  are all on the same “side” of , and it's difficult8 W
to see how this condition could be guaranteed without using the parameterization.  Also, it's
much easier to define “counterclockwise” for the Jordan curve  in the -plane than for the> ?@
closed path  in .G ‘$

Remark 2.  Stokes' theorem reduces to Green's theorem if  is a region in the -plane.  ToW BC
see this, write

J 3 4 5ÐBß Cß DÑ œ T ÐBß Cß DÑ � UÐBß Cß DÑ � VÐBß Cß DÑ Þ

If  is a region in the -plane, then  everywhere on , and henceW BC œ W8 5

a bcurl J 8† œ � Þ
`U `T

`B `C

Also, the closed curve  lies entirely in the -plane, so the line integral in eq. (7.4)G BC
becomes

* (
G G

J X† .= œ T .B � U .CÞ

Remark 3.  The surface  is said to be a “capping surface” of the closed curve .  For anyW G
given closed curve , there are an infinite number of capping surfaces.  Some are as tightG
and “minimal energy” as a soap film on a wire frame.  Others billow out to Betelgeuse or
beyond.  To me, the most amazing thing about Stokes' theorem is that it says that the value
of the surface integral

( ( a b
W

† .Wcurl J 8

is  over all surfaces  that cap , so long as  is defined and continuouslyinvariant W G J
differentiable on .  Now imagine a  capping surface on a  closed path .  If weW Glarge small
let  shrink down to a point, the circulation  necessarily decreases to zero.G † .=)

G J X

This gives us another way to prove eq. (6.3).  (I learned of this method from Feynman.)

Remark 4  .  Equation (7.2) tells us that curl may be interpreted as a “circulationa bJ 8†
density.”  On the other hand, we recognize that the line integral in Stokes' theorem is the
circulation of  around .  Hence, Stokes' theorem tells us that the circulation of  aroundJ JG
G G is equal to the integral of circulation density over any surface that caps .
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There are several ways to extend the conclusion of Stokes' theorem (eq. (7.4)) to more
general surfaces than are stated in the hypotheses of the theorem.  In particular, one may
knit several surfaces together along their edges, so long as the directions of integration
along any edge shared by two surfaces is opposite.  This is easiest to explain by an
illustration.  Consider the two rectangles and  with a common edge shown below.W W" #

 

 

W W" #

Let  and denote the borders of  and , respectively, let  denote theG G W W G œ G ∩ G" # " # "# " #

shared edge, let , and let  denote the border of   WeW ´ W ∪ W G œ G ∪ G � G WÞ" # " # "#a b
want to compute the sum of the circulations of  around  and , i.e.,J G G" #

* *
G G" #

J X J X† .= � † .=, (7.5)

where the direction of integration is counterclockwise (as indicated by the arrows shown in
the figure), and compare this sum to the circulation of  around , i.e.,J G

*
G

J X† .=,

also integrated in a counterclockwise direction.  Now consider the contributions to) )
G G "#

" #
J X J X† .= † .= G  and  attributable to integration along the shared edge .

Because   and  are integrated in opposite directions along the) )
G G" #

J X J X† .= † .=

shared edge, we see that their contributions to the sum (7.5) just cancel (see Theorem 4.1),
so

* * *
G G G

J X J X J X† .= œ † .= � † .=Þ
" #

(7.6)

Now, Stokes' theorem applies to both  and :W W" #

* ( ( a b
G

"

"
"

J X J 8† .= œ † .W

W

curl (7.7)

and
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* ( ( a b
G

#

#
#

J X J 8† .= œ † .W

W

curl (7.8)

where  and  are normal unit vectors to  and , respectively.  If we now define  to8 8 8" # " #W W
be  on  and  on , we see that8 8" " # #W W

( ( ( ( ( (a b a b a b
W W W

† .W œ † .W � † .Wcurl curl curl . (7.9)J 8 J 8 J 8

" #

" #

Combining eqs. (7.6) through (7.9), we see that eq. (7.4) holds for the composite surface .W

This kind of argument may be extended to any kind of surface that may be construed as the
union of simpler surfaces knit together along part of their edges.  The only requirement for
this argument to go through is that it be possible for “counterclockwise” to be defined for
each subsurface in such a way that the direction of integration along any arc that is a shared
edge will be opposite.  For example, surfaces with “holes” can be treated by introducing
“cross-cuts.”  A picture is worth a thousand words here, and I advise the reader to consult
almost any text on advanced calculus.

We can knit together surfaces in more complicated ways.  Consider the two rectangles X"

and  in -space shown below.X ?@#

 

 
X X" #

Let and  denote the boundaries of  and , respectively, and let .> >" # " # " #X X X ´ X ∪ X
Suppose that the image  in  is the  where (in effect) the long<ÐX Ñ ‘$ cylinder shown below
strip  has been bent around until the image of the left edge of  has been brought intoX X"

coincidence with the image of the right edge of .  The images  and  coincideX Ð Ñ Ð Ñ# " #< <> >
on two arcs: the image  of the short vertical line where  and  join, and the<Ð ∩ Ñ X X> >" # " #

common image under  of the left edge of  and the right edge of .  An argument similar< X X" #

to that given above shows that Stokes' equation applies to this cylinder, where the total
circulation is the sum of the line integrals taken over the upper and lower rims of the
cylinder, and in the directions indicated in  the diagram.
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The argument works because the line integrals along arcs that are common to two regions
are always in  directions, so they cancel.  In summary, the sum of the line integralsopposite
over the two component surfaces is just equal to the line integral over the  edge (orexterior
edges) of the amalgamated surface because the contributions to line integrals over interior
(and therefore shared) arcs just sum to zero.

Now suppose that the mapping  gives, in effect, the strip  a half twist before the image of< X
the left edge of  and the image of the right edge of  are brought into coincidence.  TheX X" #

image  is called a Möbius band.  Stokes' equation fails to hold in this case because the<ÐX Ñ
direction of integration of the two line integrals is necessarily in the  direction alongsame
some arc that is common to  and .  The Möbius band is an example of a< <ÐX Ñ ÐX Ñ" #

nonorientable surface.

8. Some concluding remarks.

Remark 1.  Green's theorem, Stokes' theorem, and the divergence theorem are all
extensions of the second fundamental theorem of calculus.  Each of these theorems states
that the integral of some function over a “region” of  is equal to the integral of a related‘$

function over the boundary of that region.  For Green's theorem and Stokes' theorem, the
region is a surface and the boundary is a closed curve.  For the divergence theorem, the
region is a mathematical solid and the boundary is a closed surface.

Remark 2.  The divergence (eq. (3.1)) and curl (eq. (3.2)) were defined for a vector field J
that's defined on a subset of .  That's adequate for electromagnetism, the subject for‘$

which these tools were essentially invented.  However, the dot product is naturally extended
to  (see eq. (1.1)), and it's natural to extend the definition of divergence to .  If  is a‘ ‘8 8 J
vector field defined on a subset of , say‘8

J < < < < <Ð Ñ ´ J Ð Ñß J Ð Ñß á ß J Ð Ñ ´ B ß B ß á ß Ba b a b" # 8 " # 8where

then

div (8.1)J < J <Ð Ñ ´ f † Ð Ñ ´
`J

`B
"
3œ"

8
3

3
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where all the partial derivatives are evaluated at .  This plays an important role in (for<
example) the kinetic theory of gases.

Similarly, the gradient is naturally defined on , and plays an important role in many fields,‘8

including economics.

It follows that the “Laplacian” operator , defined as the divergence of a gradient, isf#

naturally defined on : for any scalar field ,‘ :8
" # 8a bB ß B ß á ß B

f ´ œ Þ
`

`B
#

3œ"

8 #

3
#: :
:

div grad (8.2)a b "

On the other hand, both the cross product (eq. (1.3)) and the curl are meaningful constructs
only in , so far as I can tell.‘$

Remark 3: Some commuting and some non-commuting operators.  The Laplacian
operator  is defined as the  of a .  If  is a vector fieldf ´ J ß J ß J#

B C Ddivergence gradient J a b
in , the Laplacian of  is defined “component-wise”:‘$ J

f ´ f J ß f J ß f J Þ# # # #
B C DJ ˆ ‰ (8.3)

For any vector field  in , the  of the  of J J‘$ gradient divergence

grad div a b a bJ Jœ f f †

is a meaningful vector field It occurs, for example, in the formula for the curl of a curl:Þ

f ‚ f ‚ œ f f † � f Þa b a bJ J J# (8.4)

The unwary student might naively assume that grad div  is equal to div grad .  Thisa b a bab ab
would be a gross error!  Among other differences, grad div  is a vector, whereasa bab
div grad  is a scalar.  In words, the operators “grad” and “div”  commute.a bab do not

On the other hand, consider the two operators “curl” and “Laplacian.”  For any vector field
J  defined on a subset of , the following formula‘$

f ‚ f œ f f ‚ˆ ‰ a b# #J J (8.5)

is true.  In words, “curl” and “Laplacian”  commute.  Feynman passes eq. (8.5) off withdo
the casual remark “[s]ince the Laplacian is a scalar operator, the order of the Laplacian and
curl operations can be interchanged.”  I don't buy this; so far as I can see, eq. (8.5) needs a
proof.  The work is grungy but straightforward, and it all works out in the end.

Remark 4: spherical coordinates.  The gradient, curl, and divergence were defined in
terms of derivatives with respect to and , the coordinates of a point relative to theBß Cß D
standard coordinate system of For example, if  is a vector field in ,‘ ‘$ $

B C DÞ ´ ÐJ ß J ß J ÑJ
then
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div J ´ � � Þ
`J `J

`B `C `D

`JB DC

We gave geometric interpretations of the gradient, curl, and divergence that showed that
these operations have physical meanings that are independent of the coordinate system used
to locate points in .  For some problems, it's useful to express grad, div, and curl in terms‘$

of derivatives relative to alternative coordinate systems.  In particular, one can find such
expressions relative to cylindrical and spherical coordinates.  A full discussion may be found
in Schey.  Here I'll just state the formulas for  in spherical coordinates.  I need thisf 0#

formula for the discussion of “spherical waves” in the appendix.

A point  in  is located in spherical coordinates by a triple of numbers  where< ‘ 9 )$ a b<ß ß
<   ! < œ is a distance, and  and  are angles.  Specifically,  is the distance from the9 ) l l<
origin to ,  is the angle between  and the -axis, and  is the angle between the -axis< <) 9D B
and the projection of onto the -plane.  The angle  corresponds to “latitude” in< BC )
geography, except that  is measured from the north pole rather than the equator.  The angle)
9 corresponds to “longitude,” with the -axis essentially in the role of “prime meridian,”B
except that  is only measured in an “eastward” direction (i.e., counterclockwise as seen9
from the North Pole.)  With spherical coordinates, a scalar field is expressed as a function of
<, , and .9 )

With these conventions, the following may be shown.  Let  denote a scalar field.0 <ß ßa b9 )
Then

f 0 œ < � � Þ
" ` `0 " ` `0 " ` 0

< `< `< < ` ` < `
# #

# # # # #

#Œ � Œ �sin sin
sin

) ) ) ) 9
) (8.6)

Although this formula is impressively complicated, in a problem with spherical symmetry it
quickly reduces to a much simpler expression.
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Appendix: Supplementary Material.

1. Linearity of grad, div, and curl.  The gradient, divergence, and curl are all linear
operators.  That is, if  and  are scalars,  and  are scalar fields on , and  and  are+ , : < ‘$ J K
vector fields on , then‘$

f + � , œ +f � ,f ßa b: < : < (A1.1)

f † + � , œ + f † � , f † ßa b a b a bJ K J K (A1.2)

f ‚ + � , œ + f ‚ � , f ‚ Þa b a b a bJ K J K (A1.3)

2. Product Differentiation Formulas.  The following identities are all generalizations of the
rule in elementary calculus for differentiating the product of two functions.  Let  and  be: <
scalar fields on , and let  be a vector field on .  Then‘ ‘$ $J

f œ f � f ßa b:< : < < : (A2.1)

f † œ f † � † f ßa b a b: : :J J J (A2.2)

f ‚ œ f ‚ � f ‚ Þa b a b: : :J J J (A2.3)

3. “Irrotational” and “Solenoidal” Vector Fields.  If  is a vector field in  andJ ‘$

curl  on some set , then  is said to be .  We know that ifJ ! Jœ H © ‘$ irrotational
J œ f: : for some scalar field  with continuous second-order mixed partial derivatives,
then  is irrotational.  Conversely, it's known that if  is irrotational at all points in an openJ J
convex set , then there exists a scalar field  defined on  such that H H œ f Þ: :J

If  is a vector field in  and div  on some set , then  is said to beJ J J‘ ‘$ $œ ! H ©
solenoidal.  We know that if all the mixed partial derivatives of a vector field  areK
continuous, then curl  is solenoidal.  Conversely, if  is solenoidal everywhere inJ K J´
some open interval , then there exists a vector field  defined on  such thatH HK
J Kœ curl .

Suppose that  is a continuously differentiable vector field defined on an open interval  inJ H
‘$.  It's known that every such vector field may be written in the form  whereJ G Kœ �
G K G is solenoidal and  is irrotational [Apostol, p. 452].  As is solenoidal, it follows that
G L L Kœ curl  for some vector field .  Similarly, as  is irrotational, it follows that
K œ f: : for some scalar field .  Hence, we can write

J Lœ � fcurl . (A3.1):

To find  and  given , we take the curl and divergence of each side of eq. (A3.1) andL J:
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make use of the linearity of curl and divergence.  This yields the following partial differential
equations for  and :: L

f œ#: div J

and

curl curl curl a b a bL L L Jœ f f † � f œ Þ#

4. “Central” Vector Fields.  We previously defined “central” force fields.  We now wish to
extend this vocabulary to general vector fields.  A vector field  defined on  is said to beJ ‘8

central if it can be written in the form  where .  The purpose of thisJ < < <Ð Ñ œ 1Ð<Ñ < ´ l l
section is to record some of the properties of central vector fields.

We previously showed that every central force field is conservative; that is, if  is a centralJ
force field defined on some set , then for some potential function .H © œ �fY Y‘$ J
This result clearly isn't restricted just to force fields: if  is a central vector field defined onJ
H © œ f H‘ : :8, then  for some scalar field  defined on .  As a corollary, we see thatJ
every central vector field is irrotational.

We next want to find  for an arbitrary function .  Let  andf1 1 Þ œ ÐB ß B ß á ß B Ña b a bl l< < " # 8

let .  Recall eq. (2.2):< œ l l<

`< B

`B <
œ 3 œ "ß á ß 8Þ

3

3 for (2.2)

Hence

`1 `< B

`B `B <
œ 1 Ð<Ñ œ 1 Ð<Ñ Þ

3 3

w w 3

It follows that

f1Ð<Ñ œ Þ
1 Ð<Ñ

<

w

< (A4.1)

We may use this result to find the divergence of a central vector field.  Suppose that
J <œ 1Ð<Ñ  is a central vector field in . From eq. (A2.2), Example 1 of Section 3, and eq.‘$

(A4.1), we find

div div  (A4.2)J < <œ 1Ð<Ñ � † f1Ð<Ñ œ $1Ð<Ñ � <1 Ð<ÑÞa b w

In particular, consider the central vector field given by  for some constant .  ThenJ <œ < PP

div  (A4.3)J œ $< � < P< œ $ � P < ÞP P�" Pˆ ‰ a b
If  this formula holds for all .  If  this formula holds for all   In theP   ! P � ! Á Þ< < !
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interesting case that , we haveP œ �$

div unless (A4.4)J < !œ ! œ Þ

Hence, the vector field  is irrotational everywhere in , and is solenoidalJ <œ <�$ $‘
everywhere except at  We'll use this result in the next section.< !œ Þ

5. Inverse Square Laws.  If the magnitude of a central force field  at a point  isJ < − ‘$

inversely proportional to  (i.e., inversely proportional to the square of the distance froml l< #

the origin), then the force field is said to obey an “inverse square law.”  Let  andJ œ l lJ
let   The best known examples of inverse square laws are Newton's law of< œ Þl l<
gravitation

J œ
KQ7

<#

(which gives the gravitational force between a point mass of  and a point mass of ) andQ 7
Coulomb's law

J œ
" ;;

% <1%!

!

#

k k
which gives the magnitude of the electrical force acting between stationary charges  and .; ;!

(  and  are constants.)  To give the  as well as the  of these forces, letK %! direction magnitude
/ < < << ´ l l�"  be a unit vector in the direction of .  Then Newton's law may be written

J / <œ � œ �
KQ7 KQ7

< <# $<

(where the point mass  is at the origin, the point mass  is at , and  denotes the forceQ 7 < J
acting on the point mass ), and Coulomb's law may be written7

J / <œ œ
" ;; " ;;

% < % <1% 1%! !

! !

# $<

(where the charge  is at the origin, the charge  is at , and  denotes the force acting on; ;! < J
the charge ).;

A force that obeys an inverse square law can be written

J / <œ „ œ „
J J

< <
" "

# $< (A5.1)

where  denotes the magnitude of the force at unit distance.  The plus sign is used if theJ"

force is repulsive, and the negative sign is used if the force is attractive.  Note that

Y Ð Ñ œ „
J

<
<

" (A5.2)

is a potential function for the force given by eq. (A5.1); i.e.,   Also, note thatJ œ �fY Þ
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eq. (A4.4) applies if  obeys an inverse square law.  I'll only consider repulsive forces in theJ
remainder of this section, but the same results apply to attractive forces with suitable
modifications of language.

Let  satisfy eq. (A5.1) with a plus sign.  Let's compute the flux of  out of the surface ofJ J

a sphere of radius  centered at the origin.  Let  denote the unit normal at< ´ œ8 < < /l l�"
<

any point on the surface of the sphere.  Hence,

J 8 8 8† œ † œ Þ
J J

< <
" "

# #

The total flux out of this surface is therefore

( ( ( (
W W

J J J

< < <
.W œ .W œ † % < œ % J Þ

" " "

# # #
#

"1 1 (A5.3)

Note that this flux is  of the radius .  That is, the flux of  through the surfaceindependent < J
of  sphere centered at the origin equals .  Combining this result with theany % J1 "

observation that div  = 0 except at the origin yields the following theorem.J

Theorem.  Suppose that  obeys the inverse square law of eq. (A5.1) (with a plus sign).J
Let  denote a solid that includes the origin  as an interior point.  Then the flux of Z ! J
through the surface of  equals .Z % J1 "

Proof.  As  is an interior point of , we can find  such that a sphere with radius ! Z � !% %
centered at  will be entirely contained within .  Let  denote this sphere, and let ! Z Z WÐ Ña b% %
denote the surface of .  Let  denote the surface of  and define .Z W Z Z ´ Z � Z Ð Ña b% %w

You may think of  as being  with a bubble removed.  The surface of  equalsZ Z Zw w

W ∪ WÐ Ñ W Z WÐ Ñ% %.  We'll say that  is the  surface of  and  is the  surfaceexterior interiorw

of .  As div  = 0 throughout , it follows from the divergence theorem that the totalZ Zw wJ
flux of  out of  must equal zero.  Therefore, the total flux of  into  through theJ JZ Zw w

interior surface  must equal the total flux of  out of  through the exterior surface .WÐ Ñ Z W% J w

But the flux of  into  through the interior surface  is just equal to , the flux ofJ Z WÐ Ñ % Jw
"% 1

J  out of .Z Ð Ñ%

6. Maxwell's Equations.  In the following 4 equations, denotes time, , , and  are> I F N
vector fields in ,  is a scalar field in , and  and  are constants.  In somewhat more‘ 3 ‘ %$ $

!-
detail,

I

F

N

œ

œ

œ

œ

the electric field,
the magnetic field,
current density, and

charge density.3

Maxwell's equations in  are as follows:differential form
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f † œ ßI
3

%!
(A6.1)

f ‚ œ � ß
`

`>
I

F
(A6.2)

- f ‚ œ � ß
`

`>
#

!
a bF

I N

%
(A6.3)

f † œ !ÞF (A6.4)

If we apply the divergence theorem to the first and last of these equations, and apply Stokes'
theorem to the second and third, we obtain Maxwell's equations in :integrated form
(1) The flux of  through a closed surface  equals the total charge contained within I W W

divided by   (Both this statement and eq. (A6.1) are known as “Gauss' law.”)%!Þ

(2) The clockwise circulation of  around a closed loop  is equal to the rate of change ofI G
the flux of  through any surface that caps   (Both this statement and eq. (A6.2) areF GÞ
known as “Faraday's law.”)

(3)  times the counterclockwise circulation of  around any closed loop  equals the rate- G# F
of change of the flux of  through any surface  that caps , plus the total flux ofI W G
electric current through  divided by .W %!

(4) The flux of  through any closed surface is zero.F

7. Electrostatics and Magnetostatics.  If the charge density  and the current density  in3 N
Maxwell's equations do not depend on time, then the two time derivatives equal zero, and
Maxwell's equations reduce to two pairs of equations:

Electrostatics:

f † œ ßI
3

%!
(A7.1)

f ‚ œI !. (A7.2)

Magnetostatics:

- f ‚ œ ß#

!
a bF

N

%
(A7.3)

f † œ !ÞF

(A7.4)



Vector Calculus.  Page 38

Equation (A7.3) is known as “Ampere's law.”

In this static situation, the electric field  appears in only the first two equations and theI
magnetic field  appears in only the second two equations.  Hence, if charges and currentsF
are static, then electricity and magnetism are distinct and separate phenomena.

Notice that in electrostatics, the electric field  is irrotational.  Hence, there exists a scalarI
field  such thatF

I œ �f ÞF (A7.5)

The scalar field  is called the .  By substituting eq. (A7.5) intoF electrostatic potential
eq. (A7.1), we see that  satisfies :F Poisson's equation

f œ � Þ#

!
F

3

%
(A7.6)

The specialization of Poisson's equation obtained when , i.e.,3 œ !

f œ !ß#F (A7.7)

is called .Laplace's equation

Before turning  to the subject of magnetostatics, let's examine the electrostatic potential in a
little more detail.  We may write Coulomb's law as

J / <œ œ
" ;; " ;;

% < % <1% 1%! !

" "

# $<

where the charge  is at the origin, the charge  is at , and  denotes the force acting on; ;" < J
the charge .  Hence  where the electric field  at  produced by a charge  is at; œ ; ;J I I < "

the origin is

I / <œ œ Þ
" ; " ;

% < % <1% 1%! !

" "

# $<

Note that  whereI œ �fF

F
1%

a b< œ
" ;

% <!

" .

Generalizing, the electric field at  produced by a point charge  at  is given by< <;" "

I < <
< <

" "
!

"

"
$œ �

" ;

% �1% l l a b
and  whereI" "œ �fF

F
1%

"
! "

"a b l l<
< <

œ Þ
" ;

% �

Now suppose we have  point charges  at points .  By the7 ; ß ; ß á ß ; ß ß á ß" # 7 " # 7< < <



Vector Calculus.  Page 39

principle of superposition, the electric field  at any point  is the vector sum of the electricI <
fields produced by the individual point charges.  That is,

I < < <
< <

Ð Ñ œ � Þ
" ;

% �1%! 3œ"

7
3

3
$ 3" l l a b (A7.8)

Now let  denote the potential function associated with the point charge  at ,F3 3 3; <

F
1%

3
! 3

3a b l l<
< <

œ 3 œ "ß á ß 7
" ;

% �
for

and define

F F
1%

a b a b" " l l< <
< <

´ œ Þ
" ;

% �
3œ" 3œ"

7 7

3
! 3

3 (A7.9)

By the linearity of the gradient,

�f œ �f œ � œ Ð ÑÞ
" ;

% �
F F

1%
" "a b a bl l3œ" 3œ"

7 7

3 3
!

3

3
$< <

< < I <

In summary, the principle of superposition applies to potential functions as well as to force
and electric fields.

We may extend these results from point charges to a continuous distribution of charge over
‘$.  This yields an electric field

I < < <
<

< <
Ð Ñ œ � .Z

" Ð Ñ

% �1%

3

!

w

w $
w( ( ( l l a b (A7.10)

and an associated potential function

F
1%

3a b ( ( ( l l<
<

< <
œ .Z

" Ð Ñ

% �!

w

w
(A7.11)

where these integrals are over all  in .  In principle, eq. (A7.11) provides an explicit<w $‘
solution to eq. (A7.6).  Whether this is a  method of finding the electrostaticpractical
potential depends on the particular situation under consideration.  We have, then, two
methods to find : we can evaluate the explicit integral given by (A7.10), or we can find ,I F
either by the explicit integral (A7.11) or by solving eq. (A7.6), and then find .  In�fF
general, it is somewhat easier to evaluate (A7.11) than (A7.10), for two reasons.  First, the
integral of (A7.10) is actually 3 integrals, one for each of the components of .  Second,I
the integrand of (A7.10) involves  raised to the third power, and this usually makesl l< <� w

the integrand of (A7.10) more complicated than the integrand of (A7.11).

We now turn to the subject of magnetostatics.  From eq. (A6.4), we see that the magnetic
field is solenoidal.  The physical meaning of this is often stated as “there are no magnetic
monopoles.”  As  is solenoidal, it follows that there exists a vector field  such thatF E
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F E Eœ f ‚ œ Þcurl (A7.12)

The vector field  is called the .  In magnetostatics, we may combine eqs.E vector potential
(A7.12) and (A7.3) to see that  satisfiesE

curl curl (A7.13)a b a bE E E Nœ f f † � f œ#
!.

where

.
%

! #
!

´ Þ
"

-
(A7.14)

The vector potential  is not uniquely determined by eq. (A7.12).  Let  be a vector fieldE E
that satisfies eq. (A7.12), let  be  scalar field defined on , and let < ‘ <any $ wE E´ � f Þ
Because the curl of a gradient is always , it follows that!

f ‚ œ f ‚ � f œ f ‚ œ ÞE E E Fw a b<

In short, we have a considerable amount of freedom in how the vector potential  isE
chosen.  In particular, it's possible (and convenient) to impose the restriction

f † œ œ !ÞE Ediv 

With this restriction, eq. (A7.13) simplifies to

f œ � Þ#
!E N. (A7.15)

Hence, the vector potential  in magnetostatics may be found by solving a vector version ofE
Poisson's equation.  That is, eq. (A7.15) is really  equations: one for each of thethree
components of .  By comparing eqs. (A7.6), (A7.11), and (A7.15), we see that an explicitE
solution of (A7.15) is given by

E <
N <

< <
a b ( ( ( l lœ .Z Þ

% �

Ð Ñ.

1
!

w

w
(A7.16)

8. Conservation of Charge (and Other “Stuff”).  Let  be a mathematical solid in  with aZ ‘$

boundary surface , and let  denote “charge density” at any point  in W Bß Cß Dß > Bß Cß D Z3a b a b
at time   The total amount of “charge” inside  at time  is therefore given by>Þ Z >

UÐ>Ñ ´ ÐBß Cß Dß >Ñ .Z Þ

Z

( ( ( 3

Hence, the rate of change of  is given byU

U Ð>Ñ œ .Z Þ

Z

`

`>
w ( ( ( 3

(A8.1)

(The operation of differentiating under the integral sign is justified if  is continuous.)` Î`>3



Vector Calculus.  Page 41

On the other hand, the only way the amount of charge in  can change is if there is aZ
current across the border of .  If we let denote current density as before, it follows thatZ N

U Ð>Ñ œ � † .W

W

w ( ( N 8 (A8.2)

where  is a outward unit normal.  (The integral on the right hand side of eq. (A8.2) is the8
flux of current across , and the negative sign is motivated by the observation that a W positive
flux of current across  implies a  in charge inside .)  Applying the divergenceW Zdecrease
theorem to the right hand side of eq. (A8.2), we find

U Ð>Ñ œ � f † .Z Þ

Z

w ( ( (  (A8.3)N

Combining eqs. (A8.1) and (A8.3), we find that

( ( ( ( ( (
Z Z

`

`>
.Z œ � f † .Z Þ

3
 (A8.4)N

But as the solid  is quite arbitrary, it follows thatZ

`

`>
œ �f †

3
N

at all points where  is defined.  This equation is usually written3

`

`>
� f † œ !Þ

3
N (A8.5)

Equation (A8.5) is called a  as it expresses a conservation law: in thiscontinuity equation
case, the conservation of charge.  However, it applies in any situation where there is some
kind of “stuff” that is conserved where fields  and  may be defined that quantify the3 N
density of stuff at a point and the movement of stuff through space.  For example, this
analysis applies to the study of heat.

The derivation of eq. (A8.5) given above was intended to motivate its' interpretation as an
expression of the conservation of some “stuff.”  It is also possible to derive eq. (A8.5)
directly from Maxwell's equations.  By taking the divergence of both sides of eq. (A6.3) we
obtain

f † � f † œ !
` "

`>

I
N

%!
(A8.6)

as the divergence of a curl is always zero.  Now,

f † œ f †
` `

`> `>

I
Ia b
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as we may exchange the order of time and space derivatives.  But  fromf † œ ÎI 3 %!

eq. (A6.1), so

f † œ Þ
` " `

`> `>

I

%

3

!

Substituting this relation into eq. (A8.6) yields eq. (A8.5).  The point of this demonstration
is to show that the conservation of charge is a consequence of Maxwell's equations.

9. Waves.  We next want to take up the topic of electromagnetic radiation.  This requires a
brief review of the physics of waves.

The Wave Equation.  Based on physical consideration, a wave propagating at speed -
along the -axis may be modeled by the hyperbolic partial differential equationB

` " `

`B - `>
œ Þ

# #

# # #

< <
(A9.1)

This is the (one-dimensional) .  It's easy to show that any function of the formwave equation
< œ 0ÐB � ->Ñ is a solution.  This represents a wave propagating to the right.  Another
solution is , which represents a wave propagating to the left.  Equation< œ 0ÐB � ->Ñ
(A9.1) is .  This implies that if  and  are two solutions to the wave equation, thenlinear < <" #

any linear combination of  and  is also a solution.< <" #

Sinusoidal waves and fundamental wave vocabulary.  The sinusoidal waves are solutions
of (A9.1) of fundamental importance.  These solutions can be written in the form

< =ÐBß >Ñ œ E OB � >cosa b (A9.2)

where .  The three coefficients  and  are named and interpreted as follows.- œ ÎO Eß Oß= =
E B O is the  of the wave and measures its vertical size relative to the  axis.   isamplitude
called the “wave number” and specifies how the wave varies with space.  If the unit of space
is the “meter,” then  specifies the number of .   is the “angularO radians per meter =
frequency” and specifies how the wave varies with time.  If the unit of time is the “second,”
then  specifies the number of .  The combined expression  is= =radians per second OB � >
called the “phase” of the wave.

We can relate  and  to properties of waves that may be more familiar to the reader.O =
Suppose we look at a snapshot of the wave taken at a particular moment (so  is fixed).  The>
wavelength  of the wave is the distance (in meters) between peaks.  This is the change in - B
required to change the phase by , so#1

-
1

œ Þ
#

O

Now fix  and consider how  varies with time.  The   is the amount of timeB >< period !

required for the phase to change by , so#1
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> œ Þ
#

!
1

=

Putting these two equations together, the speed of the wave (in meters per second) is given
by

- œ œ œ
> # Î O

# ÎO- 1 =

1 =!

as stated above.  Let  denote the frequency of the wave measured in  per second.  As/ cycles
there are radians per cycle, it follows that#1

/
=

1
œ œ ß

# >

"

!

which makes sense, as  is the number of seconds per cycle.>!

The wave equation in space.  As noted above, eq. (A9.1) is the wave equation for a wave
propagating along the -axis.  The equation for a wave propagating at speed  in  isB - ‘$

f œ
" `

- `>
#

# #

#

<
<

.  (A9.3)

Some authors write eq. (A9.3) as

ñ< œ !

where the “wave operator”  (also called the d'Alembert operator or “quabla”) is defined asñ

ñ ´ f � Þ
" `

- `>
#

# #

#

(A9.4)

Equation (A9.3) is linear, so any linear combination of solutions is also a solution.

Sinusoidal “plane” waves.  The reader may confirm that one solution of eq. (A9.3) is given
by

< =a b a b< O <ß > œ E † � >cos (A9.5)

where

<

O

O

œ Bß Cß D ß

œ ÐO ß O ß O Ñß

- œ Î Þ

a b
l lB C D

=

The wave number  in eq. (A9.2) has been replaced by a “wave vector”  whoseO O
components give the number of radians per meter in the directions of the three coordinate
axes.  If  and  are two points in  such that  is perpendicular to , then < < < < O <" # " # "

$‘ �
and  are on the same “wave front”; i.e., for any time ,<# >
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O < O <† � > œ † � >Þ" #= =

It follows that the wave specified by eq. (A9.4) propagates in the direction of , the waveO
fronts of eq. (A9.4) are planes perpendicular to  (which is why we call this solution “planeO
waves”), and  gives the number of radians per meter in the direction of propagation.  Ifl lO
- does not depend on  (which is the case with light, for example), then it's convenient to=
write .l lO œ Î-=

Spherical waves.  Although plane waves are mathematically and conceptually agreeable,
they are physically problematic: it's difficult to imagine a mechanism that can generate a
plane wave that is not physically infinite in some way.  Therefore, we now consider solutions
of eq. (A9.5) whose wave fronts consist of spheres expanding at speed  away from the-
origin.  Specifically, consider

< œ 0Ð< � ->ÑÞ
"

<
(A9.6)

We wish to show that eq. (A9.6) satisfies eq. (A9.3).  It's convenient to use spherical
coordinates for this problem.  Because  has no dependence on  or , the equation for< ) 9
f#< becomes

f œ < Þ
" ` `

< `< `<
# #

#
<

<Œ �
The reader may use this formula to confirm that (A9.6) satisfies the wave equation.  Notice
that the amplitude of these waves are inversely proportional to .<

10 Electromagnetic Radiation. .  We now consider solutions of Maxwell's equations in “free
space.”  In a region of  where there is no charge and no current (so  and ),‘ 3$ œ ! œN !
Maxwell's equations become

f † œ !ßI (A10.1)

f ‚ œ � ß
`

`>
I

F
(A10.2)

- f ‚ œ ß
`

`>
#a bF

I
(A10.3)

f † œ !ÞF (A10.4)

The situation here is “dual” in some sense to the situation considered in electrostatics and
magnetostatics, where we allowed (constant) charge density  and (steady) currents , but3 N
required that  and not vary with time.  The “trivial” solution of these equations isI F 
I F !œ œ , but we're interested in the possibility of non-trivial solutions.  To start, rewrite
eq. (A10.2) as
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`

`>
œ � f ‚ Þ

F
Ia b

Now differentiate with respect to time.  Under normal conditions, which we assume here,
we can exchange the order of differentiation, so

` `

`> `>
œ � f ‚ Þ

#

#

F IŒ �
Substituting eq. (A10.3), we obtain

`

`>
œ � - f ‚ f ‚ Þ

#

#
#F

Fc da b
From eqs. (8.4) and (A10.4),

f ‚ f ‚ œ f f † � f œ �f ßa b a bF F F F# #

so

`

`>
œ - f

#

#
# #F

F.

We'll rewrite this as

f œ
" `

- `>
#

# #

#

F
F

(A10.5)

which we recognize as having the form of a “vector” wave equation.  The reader may show
that eq. (A10.5) is actually three equations, one for each component of :F

f F œ ß f F œ ß f F œ Þ
" ` F " " ` F

- `> - `> - `>

` F# # #
B C D# # # # # #

# #
B D

#
C and

An exactly parallel derivation starting with eq. (A10.3) and using eq. (A10.1) yields

f œ
" `

- `>
#

# #

#

I
I

(A10.6)

which actually means

f I œ ß f I œ ß f I œ Þ
" ` I " " ` I

- `> - `> - `>

` I# # #
B C D# # # # # #

# #
B D

#
C and

In summary, Maxwell's equations in free space permit solutions for each component of I
and  that have the form of waves traveling with speed , the speed of light.  These wavesF -
are , the most familiar example being light itself.electromagnetic radiation

We can say more about the nature of electromagnetic radiation.  To begin, let's consider
“plane wave” solutions for  and .  Without loss of generality, suppose that  and I F I F
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propagate in plane waves in the direction of the -axis, so the wave fronts of  and  areB I F
perpendicular to the -axis.  This implies that  and  can have no dependence on or ,B C DI F
so we can write

I I <œ ß > œ I ÐBß >Ñß I ÐBß >Ñß I ÐBß >Ña b a bB C D

and

F F <œ ß > œ F ÐBß >Ñß F ÐBß >Ñß F ÐBß >Ñ Þa b a bB C D

Without going into the details (see Feynman, Chapter 20), eqs. (A10.1) - (A10.4) imply that
I œ ! F œ !B B and , so we may write

I I <œ ß > œ !ß I ÐBß >Ñß I ÐBß >Ña b a bC D

and

F F <œ ß > œ !ß F ÐBß >Ñß F ÐBß >Ñ Þa b a bC D

That is, all the variation in  and  is in a plane perpendicular to the direction ofI F
propagation of the waves.

To make further headway, let's consider a “trial solution” of the following form:

I 4œ !ß 0ÐB � ->Ñß ! œ 0ÐB � ->Ñ Þa b
That is,  is a wave traveling to the right and the  component of  is zero. It follows thatI 5 I

`

`>
œ � f ‚ œ � œ �0 ÐB � ->Ñ Þ

! 0ÐB � ->Ñ !

F
I 5

3 4 5

a b Ô ×Ö ÙÕ Ø
` ` `

`B `C `D
w

Hence, the  and  components of  are constant over time.  As above, the only physicallyB C F
interesting solution of these equations is .  Hence, is zero except in theF œ F œ !B C F 
direction of , and5

`F

`>
œ �0 ÐB � ->ÑÞ

D w

Integrating, we obtain plus a constant of integration.  On physicalF œ - 0ÐB � ->ÑD
�"

grounds again, it may be shown that the constant of integration is zero, so we conclude in
this case that

F Bß > œ - 0ÐB � ->ÑÞD
�"a b

We may repeat this analysis under the assumption that the component of  is zero,C I

I 5œ !ß !ß 0ÐB � ->Ñ œ 0ÐB � ->Ña b .
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We may also repeat both analyses under the trial solution of a wave traveling to the left:

a b a b a b a bI ß I œ 0ÐB � ->Ñß ! I ß I œ !ß 0ÐB � ->Ñ ÞC D C Dand

Our results are summarized in the following table.

I I F F

0ÐB � ->Ñ ! ! - 0ÐB � ->Ñ

0ÐB � ->Ñ ! ! �- 0ÐB � ->Ñ

! 0ÐB � ->Ñ �- 0ÐB � ->Ñ !

! 0ÐB � ->Ñ - 0ÐB � ->Ñ !

C D C D
�"

�"

�"

�"

By the linearity of the wave equation, the general formula for  as a plane wave movingI
along the -axis is an arbitrary combination of the components given in the columns headedB
I IC D and , and the implied solution for  is the same combination of the components givenF
in the columns headed  and .  For example, if a wave propagating to the right isF FC D

written

I 4 5œ 0 ÐB � ->Ñ � 0 ÐB � ->Ñ ßα α" " 2 2

(where  and  are arbitrary constants, and  and  are arbitrary functions), thenα α" # " #0 0

F 5 � 4œ 0 ÐB � ->Ñ 0 ÐB � ->Ñ Þ
"

-
’ “α α" " # #

Similarly, if a wave propagating to the left is written

I 4 5œ 0 ÐB � ->Ñ � 0 ÐB � ->Ñ ßα α" " 2 2

then

F 5 4œ � 0 ÐB � ->Ñ � 0 ÐB � ->Ñ Þ
"

-
’ “α α" " # #

Note that and  are perpendicular to one another in both cases.I F 

An important class of solutions to these equations are the sinusoidal waves.  To fix ideas,
suppose  is a wave propagating to the right along the -axis and oscillating with angularI B
frequency .  Then we may write  as= I

I 4 5œ E OB � > � E OB � > �C Dcos cosa b a b= = α

where .  The parameter  is a “phase shifter” that may vary from  to .  IfO œ Î- �= α 1 1
α œ ! CD, then the two components of  are “in phase” and the path of  in the -plane is aI I
straight line segment from  to If , then the two componentsa b a bE ß E �E ß �E Þ œ „C D C D α 1
of  are ° out of phase, and the path of  in the -plane is a straight line segmentI I")! CD
from  to   If , then the path of  is an ellipse with semi-axesa b a bE ß �E �E ß E Þ œ „C D C D

"
#α 1 I

E E B œ >C D
"
# and .  For fixed , if  the path is traversed in a clockwise direction as α 1

increases, and if , the path is traversed in a counterclockwise direction as α 1œ � >"
#

increases.  (These directions of traversal are reversed if  is fixed and  is allowed to> B
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increase.)  The phase shifter  and the two amplitudes  and  control the “polarization”α E EC D

of .  In any case, the value of implied by this equation isI F 

F 4 5œ �E OB � > � � E OB � > Þ
"

-
’ “a b a bD Ccos cos= α =

11. Solving Maxwell's equations.  In section 7 of this appendix we solved Maxwell's equations
for electrostatics and magnetostatics.  We found that

I œ �fF

where the “electrostatic potential”  satisfies Poisson's equationF

f œ � ß#

!
F

3

%

and

F Eœ f ‚

where the “vector potential”  satisfies a vector version of Poisson's equationE

f œ � Þ#
!E N. (A11.1)

To get eq. (A11.1) we needed to impose a restriction on , namelyE

f † œ !ÞE (A11.2)

We now show how this analysis may be extended to solve Maxwell's equations in general.
For reference, here are Maxwell's equations.

f † œ ßI
3

%!
(A11.3)

f ‚ œ � ß
`

`>
I

F
(A11.4)

- f ‚ œ � ß
`

`>
#

!
a bF

I N

%
(A11.5)

f † œ !ÞF (A11.6)

As before, we begin with eq. (A11.6).  As  is solenoidal, it follows that we may writeF

F Eœ f ‚ (A11.7)

for some vector field  called the vector potential (as before).E
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Next, substitute eq. (A11.7) into eq. (A11.4).  This yields

f ‚ œ � f ‚ œ � f ‚ Þ
` `

`> `>
I E

Ea b Œ �
Hence,

f ‚ � œ Þ
`

`>
Œ �I !

E

In the language introduced above,  is irrotational.  Therefore, there exists aI E� ` Î`>
scalar field  called the  such thatF scalar potential

I
E

� œ �f Þ
`

`>
F

We rewrite this as

I
E

œ �f � Þ
`

`>
F (A11.8)

As before, there's some flexibility in our choice of .  For given  and , suppose  andE F I E
F satisfy eqs. (A11.7) and (A11.8).  If we make the substitution

E Ew œ � f<

for some scalar field , then eq. (A11.7) will still be satisfied, but eq. (A11.8) will not.<
However, if we make the simultaneous substitution

E Ew wœ � f œ � ß
`

`>
< F F

<
and (A11.9)

then both eq. (A11.7) and (A11.8) will be satisfied.  The simultaneous transformation

a bE Eß Ä Ð ß ÑF Fw w

is called a .gauge transformation

Equations (A11.7) and (A11.8) express  and  in terms of vector potential  and a scalarI F E
potential .  We now substitute eqs. (A11.7) and (A11.8) into eqs. (A11.3) and (A11.5) toF
obtain equations for  and  in terms of the “sources”  and .  This yieldsE NF 3

f � f † œ �
`

`>
#

!
F

3

%
a bE

and

f � œ � � f f † �
" ` " `

- `> - `>
#

# # #

#

!E N E
E

.
FŒ �

where   To simplify the mathematics, we impose a gauge transformation (the. %! !
#´ "Î- Þ

“Lorentz gauge”) such that
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f † œ � Þ
" `

- `>
E

#

F
(A11.10)

Substituting eq. (A11.10) into the preceding two equations, we obtain

f � œ œ �
" `

- `>
#

# #

#

!
F ñF

F 3

%
(A11.11)

and

f � œ œ � Þ
" `

- `>
#

# #

#

!E E N
E

ñ .  (A11.12)

Equation (A11.12) is actually three equations, one for each component of :E

ñ . ñ . ñ .E œ � N ß E œ � N ß E œ � NB ! B C ! C D ! Dand .

Recall that an equation of the form  is said to be a “wave equation.”  Given this, youñ< œ !
shouldn't be too surprised to learn that an equation of the form  is called a “waveñ< 5œ
equation with a source term.”  A wave equation with a source term effectively combines a
wave equation

f � œ !
" `

- `>
#

# #

#

<
<

and Poisson's equation

f œ Þ#< 5

To summarize, we've replaced Maxwell's four equations with the four equations

F E

I
E

E N

œ f ‚

œ �f �
`

`>

œ � ß

œ � Þ

F

ñF
3

%
ñ .

!

!

and

These four equations contain the same physical content as Maxwell's equations, and in many
circumstances are easier to handle.  I refer the reader to Feynman for the physical
interpretation of  and .E F


