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1. Dot Product, Cross Product, Scalar Triple Product.

The standard inner product in R” is the “dot product,” defined as follows. If
a=(ay,as,...,a,) and b= (b1,b9,...,b,)
then
i=1

The standard norm in R" is defined in terms of the dot product as

lal = Va-a=1/a? +a}++a. (1.2)

In R? and R? the norm of a vector is its length. If ||u|| = 1, then w is said to be a unit
vector. Some special notation is used in R? and R3. A point in R? is sometimes written
(x,y) and a point in R? is sometimes written (x,, z). Alternatively, the symbols x, y, and
z replace the indices 1, 2, and 3. For example, we might write @ = (a,, a,, a,) for a vector
in R3. The symbols %, j, and k denote the three standard unit coordinate vectors. Hence

(x,y,2) =zt +yj+ zk and a = (a;,ay,a,) = a,%+a,j+ a.k.
Suppose that w is a unit vector. For any vector z,
z - u = ||z||||u||cos§ = ||z|cos b

where 6 is the angle between w and . This means that - w is the component of z in the
direction of u, and (z - w)w is the orthogonal projection of  onto the subspace of scalar
multiples of w (called the subspace of vectors “spanned” by w). This is illustrated below.
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The cross product of two vectors @ = (a,, a,,a,) and b = (b,,b,,b.) in R? is defined as

axb=(ayb, —a,by)i+ (a,b, — a,b.)j+ (ab, — a,b,)k

T J k (1.3)
=|Q; Gy Ga,].
b, b, b,

It may be shown that ||a x b|| equals the area of the parallelogram determined by a and b
(i.e., ||a||||b||sin @ where @ is the angle between a and b, 0 < § < ), and that @ X b is
orthogonal to the plane determined by a and b. More precisely, the direction of @ x b is
determined by the “right-hand” rule as follows: if the right hand is held with the thumb stuck
out and with the fingers curled in the direction of rotation of @ into b, then the thumb points
in the direction of @ x b. In other words, if the index finger of the right hand is pointed
forward and shows the direction of @, and if the middle finger is bent to show the direction
of b, and if the thumb is perpendicular to the plane determined by the index and middle
finger, then the thumb points in the direction of @ x b. Because a x b is orthogonal to both
a and b, it follows that

a-(axb)=>b-(axb)=0.

Also, it's clear that @ x a = 0 for any vector a. Cross products have the following
algebraic properties.

axb=—(bxa)
ax(b+c)=(axb)+(axc)
&(a x b) = (€a) x b=a x (£b)

(where £ is any scalar). It may be shown that
ax(bxe)=(a-¢c)b—(a-b)c (1.4)

for any three vectors a, b, and c.

The scalar triple product of any three vectors a, b, and c is defined as the scalar
(axb)-ec

It may be shown that |(a x b) - ¢| is the volume of the parallelepiped determined by a, b,
and c. This suggests (and it may be shown to be true) that a cyclic permutation of the three
vectors does not affect the scalar triple product; that is,

(axb)-ce=(bxc)-a=(cxa)-b. (1.5)

The commutativity of the dot product then implies that the dot and cross products in a
scalar triple product may be interchanged:

(axb)-c=a-(bxec). (1.6)
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Finally, it may be shown that the scalar triple product a - (b x ¢) may be written in terms of
a determinant as follows:

a; ay a,
a-(bxc)=|b, b, b.|. (1.7)

Cr Cy C

. The Gradient.

Let D be a subset of R". Definition: a scalar field on D is a mapping from D into R; a
vector field on D is a mapping from D into R".

Suppose that D be a subset of R" and that ¢ is a differentiable scalar field defined on D.

For any point » = (z1, xs,...,x,) in D, the n-tuple

oo 0 Dy
Volr) = gud oir) = (52, 52 52 )

2.1)

(where each partial derivative is evaluated at 7) is called the gradient of . We'll write Vp
or grad ¢ if the point where the partial derivatives are to be evaluated is clear. The
collection of vectors V(r) constitutes a vector field over D.

Example 1. Let p(r) = ||r|| =r = /2? + 22 +--- + 22. Then

dp _Or 1 2, .2 2\—y _ Li
e = B = 5(29:1-)(@1 +as+tal) P = - (2.2)

It follows that
Veo(r) = |r|'r, (2.3)

a unit vector in the direction of 7.

As ¢ is differentiable, the derivative of ( at 7 with respect to any vector w exists and is
denoted ¢’ (r;w). It may be shown that

¢ (r;u) = Vo(r) - u. (2.4)

If w is a unit vector, ¢’ (r;w) is said to be a directional derivative; it's the rate of change of
o with respect to distance in the direction of w. In this case,

¢ (r;u) = [|[V(r)||cos (2.5)

where 0 is the angle between V() and w. That is, Vip(r) - w is the component of Vp(7)
in the direction of w. As cos 6 is maximal when 6 = 0, it follows that V¢ points in the
direction at which ¢ increases fastest, and ||V (7)|| gives the rate of change of ¢ in that
direction.
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Suppose, now, that r is a differentiable vector-valued function that maps an interval of real
numbers [a, b] into D C R". For any ¢ € [a, b] we write

r(t) = (z1(t), z2(t), ..., 2, (t)).

The parameter ¢ is commonly interpreted as time. The vector 7(t) traces out a curve or
“path” in R™ as ¢ varies over [a, b]. The vector of derivatives

r(t) = (21(8), 25(), ..., 2, (1))

is called the velocity vector and is tangent to the curve at each point. The norm of the
velocity vector ||7/(t)|| measures the speed at which the curve is traversed. The unit tangent
vector T'(t) is defined as

(1)
T=T(t) = . (2.6)
D= T
The arc-length function s is given by
t
= [Ir@lar ex)
with derivative given by

s'(t) = lIr' (@)]. (2.8)

Combining egs. (2.6) and (2.8), we find that the unit tangent vector may be interpreted as
the rate of change of  with respect to s:

_7r(t)  dr/dt  dr (% d:);n>

~J(t)  ds/dt  ds ds’ 7 ds

(2.9)

In R3, we write 7(t) = z(t)i + y(t)7 + 2(t)k, so

dx dy . dz
T=—i+—
st T as? Tk
Now suppose that ¢ is a differentiable scalar field defined on D. Let g = ¢ o 7. Then

g:[a,b] — R and for each ¢ € [a, D]

Under these assumptions, the function g is differentiable, and the derivative ¢/ (¢) is given by
the following chain rule:

g(t) = Volr Z 7, (2.10)

where each partial derivative is evaluated at r(¢). The dot product
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Veolr(t)] - T'(t)

is called the directional derivative of ¢ along the curve. Some authors write dp/ds for this
directional derivative, as

Op dx; dyp
T = =
Ve Z 8931 ds  ds

Potential functions. The meaning of “potential function” varies from author to author.
Broadly speaking, there are two definitions, one used by mathematicians and the other used
by physicists.

Mathematicians. Let F' be a vector field defined on a set D C R"™. Ifthere exists a
scalar field ¢ defined on D such that F' = V¢, then ¢ is said to be a potential function
for F'.

Physicists. Let F' be a vector field defined on a set D C R". Ifthere exists a scalar field
U defined on D such that F' = —V U, then U is said to be a potential function for F'. In
mechanics, the notion of a potential function is applied almost exclusively to force fields.
A vector field F is said to be a force field if F'(r) may be interpreted as the force acting
on a particle at the point 7. If there exists a potential function for a force field F', then F
is said to be conservative (for reasons that will be explained later). In other parts of
physics, the use of “potential function” is broadened. For example, in electrostatics the
force on a charge ¢ is given by ¢ & where E is a vector field called the “electric field.” If
there exists a scalar field U such that E = —V U, then U is said to be an electrostatic
potential.

The two notions of “potential function” differ principally in a sign convention; clearly
U(r) = —p(r). Twill attempt to use the symbols ¢ and U consistently to denote,
respectively, the mathematician's and physicist's meaning of “potential function.”

Example 2. InR3, let U(r) = r%, where L is an integer and 7 = ||7||. Generalizing
Example 1, it may be shown that

—VU = —Lr2p

Hence U is a potential function of the force field I = —Lr"~2r. The equipotential surfaces
of U are concentric spheres centered at the origin.

Example 3: The Newtonian potential. Newton's law of gravitation says that the force
which a particle of mass M exerts on a particle of mass m is a vector of norm GmM /r?
and directed from the particle of mass m towards the particle of mass M, where G is a
proportionality constant and r is the distance between the two particles. Hence, if the
particle of mass M is placed at the origin and the particle of mass m is located at

r = x% + yJ + zk, then the force acting on the particle of mass m is given by
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GmM

F=——ftTr where r=|r|.
T
Using Example 2, we see that F' = —VU where U (r) = —GmMr~!. It follows that
GmM
Ulr)=— mn
,

is a potential function for Newtonian gravity.

Example 4: Central forces. A central or “radial” force field " in R? is one that can be
written in the form

F(r)=h(r)e,

where r = ||7|| and e, = 7! is a unit vector in the direction of 7. That is, a central force
is directed radially, either towards the origin (if h(r) < 0), or away from the origin (if

h(r) > 0), and the magnitude of the force at any point depends only on the distance from
the center to that point. Proposition. Every central force field is conservative. Proof.
Define

H(r)= /h(r) dr and U(r)=—H(|r])-

Then
oUu or x
— —_Fg - -
ox (r) ox () r
from eq. (2.2). Similar results holds for U /0y and OU /0z. Therefore,
—VU(r) = @’r = h(r)e, = F(r)
as required.

. Divergence and Curl

The symbol V is called “del” or “nabla.” It is useful to think of V as a vector operator:
o 0 0
VvV = , . )
( 0x1’ O0xs ox,, )

o, N, 0
V—’L%-Fjay-f‘kaz.

In R?, we write

“Multiplication” by 0/0x; means “take the partial derivative with respect to x;.” That is, if
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o(r) = p(x1, 9, ...,x,) is a scalar field,

0 _ Oy

Playing with this operator as if it were a real vector often (but not always) yields results that
turn out to be true. For the true results, then, this device has heuristic utility.

For example, suppose that F' is a vector field defined on D C R3. For any point
r =2t + yj+ zk in D we'll write

F(r) = F(r)i + F,(r)j + F(r)k.

Operating in a purely formal manner, we may form both a dot product and a cross product
of V and F'. These operations yield a scalar

oF, OF, OF,
+

Vo= Ty T as

(3.1)

and a vector

VX F =

J Qv .
A >

)
9
ox
F,

OF, OF,\. (0F, OF,\. (0F, OF,
= - 2+ - J + - ka
oy 0z 0z ox ox oy
where all partial derivatives are to be evaluated at the point . Amazingly, both these
objects are meaningful and useful. The scalar V - F' is called the divergence of £ and is

also written “div F'.” The vector V x F'is called the curl of F' and is also written
“curl F'.”

(3.2)

We will give geometric interpretations of V - F' and V x F' after our discussion of line and
surface integrals. However, two simple examples at this stage will start to give the reader
some idea of the meaning of the divergence and the curl.

Example 1. Suppose F'(r) = r = xi + yj + zk. That is, this vector field is radially

directed, and | F'(r)|| = ||r||, the distance from the origin to . Hence,
. or Oy 0z
divF(r) = == + 24 4 2£ _ 3,
VEr) =5 oyt o

Example 2. Consider a rigid circular disk rotating around an axis through its center and
perpendicular to the plane of the disk. Without loss of generality, we may set up the
coordinate system so that the disk rotates in the xy-plane, and the axis of rotation coincides
with the z coordinate. Let w denote the angular speed of the disk (in radians per second).
Physicists find it convenient to let w = wk denote the angular velocity of the disk: that is,
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angular velocity is a vector with magnitude w directed along the z axis. Let r = x¢ + yj
denote a point on the disk. The speed of that point depends on w and on r = ||r|| according
to the equation v = wr. In more detail, the velocity v of that point (a vector) is given by

V=wXTr= = w(—yi + xJ)

8 O
< o\,
=R

where v = ||v||. Note that v is a vector field. We now ask: what is the curl of v? From
eq. (3.2),

z J k
curlv =V x v = % (% % = 2wk = 2w.
—wy wzr 0

In words, the curl of linear velocity is just twice the angular velocity of the disk.

So far in our play with V we've only considered first derivatives. When we consider second
derivatives, four of the possible combinations turn out to be meaningful and useful.

(1) V- (V) = div(grad ). Working formally, we find
(90 L0 (90, 00 0%
\Y (Vgo)—(zax—kjay—i-kaZ) (zax—kjay—i-kaZ)

B o 0% D
02 oy 022

It turns out that this scalar field is very useful in physics. The operation V - (V) is
called the Laplacian of  and is written V2. If V2 (r) = 0 for all 7 in some volume
D, the scalar function ¢ is said to be harmonic. The Laplacian of a vector field F' is
defined “component-wise”: if F' = F,4 + F, j + F,k then

V:F = V*F,i+ V*F,j+ V*F.k.

(2) V x (V) = curl(grad ¢). For any vector v and scalar £, we know that v x (v€) =
(v x v)€ = 0. This suggests that V x (V¢), the curl of a gradient, should equal O.
This turns out to be true under some weak conditions: if ¢ is a scalar field with
continuous second-order mixed partial derivatives, then curl(grad ¢) = 0. Conversely, it
may be shown that if curl £ = O for all points z in an open convex set D, then there
exists a scalar field ¢ defined on D such that F' = V.

(3) V- (V x F) = div(curl F). For any vectors a and b, we know that a - (a x b) = 0.
This suggests that V - (V x F') = div(curl F) = 0. This is in fact the case: if all the
mixed partial derivatives of a vector field F' are continuous, then V - (V x F') =
div(curl F) = 0. Conversely, if D is an open interval in R3, and V - G' = 0 throughout
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D, then G' = curl F' for some vector field F'. [An “open interval” in R? is the Cartesian
product of open intervals. That is, an open interval in R? has the form
(ag,by) x (ay,by) x (a,,b,) where a, < b, a, <by, anda, <b,.]

(4) V x (V x F') = curl(curl F). Equation (1.4) may be writtena x (b x ¢) =
b(a-c)— (a-b)e. If wesubstitute V for a and b, and F for ¢, we obtain

Vx(VxF)=V(V-F)-(V-V)F=V(V-F)-VF (3.3)
which holds if all mixed partial derivatives are continuous. In other words,
curl(curl F) = grad(div F) — V*F.

(There are other ways the right-hand side of eq. (1.4) may be written, but these lead to
meaningless formulae when V is substituted for @ and b.)

4. Line Integrals.

Let 7 be a vector-valued function that maps an interval of real numbers [a, b] into D C R".
If r is continuous on [a, b], then 7 is said to be a continuous path in n-space. The path is
said to be smooth if ' exists and is continuous in (a, b). The path is said to be piecewise
smooth if [a, b] can be partitioned into a finite number of subintervals in each of which the
path is smooth.

Let 7 be a piecewise smooth path in n-space defined on an interval [a, b], and let F be a
vector field defined and bounded on the graph of 7. The line integral of £ along r is
denoted by the symbol [ F' - dr and is defined by the equation

b
/F ~dr= [ Flr(t)] 7 (t)dt, 4.1)
whenever the integral on the right exists, either as a proper or improper integral.

Other notations for line integrals. If C' denotes the graph of 7, the line integral [ F' - dr
is also written as [, F' - dr and is called the integral of F" along C. If a = r(a) and

b = r(b), then the line integral is sometimes written as f:F -dr or f:F and is called the
line integral of F' from a to b along r. When the notation f:F is used it should be kept in
mind that the integral depends not only on the end points @ and b but also (in general) on
the path 7 joining them. When a = b the path is said to be closed. The symbol § is often
used to indicate integration along a closed path. When F' and r are expressed in terms of
their components, say

F(r) = (Fi(r), Fy(r),..., F,(7r)) and r(t) = (z1(t), z2(1),..., x,(1))

then the integral on the right in eq. (4.1) becomes the integral of a sum (and a sum of
integrals):
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b n n b
/ Fedr— / > Elr(v)ai(t) dt =Y / E[r ()] () dt.

In this case, the line integral is also written as [ F} dzy + Fydzy + --- + F, dz,. InR? the
path 7 is usually written as a pair of parametric equations (x(t), y(¢)), and the line integral
Jo F - driswritten [ F, dz + F, dy. Similarly, in R® the path r is usually written as a
triple of parametric equations (x(t), y(t), z(t)) and the line integral [, F" - dr is written

Jo Fodx + F,dy + F. dz.

Basic properties of line integrals. Line integrals share many of the fundamental properties
of ordinary integrals. For example, they have a linearity property with respect to the
integrand:

/(aF-l—ﬁG)-d’r‘za/F-d'r‘—i—ﬁ/G-d’r
and an additive property with respect to the path of integration:
/F-dr: F.-dr+ [ F-dr
C Gy

Cs

where the two curves C'; and C'y make up the curve C'.

Change of parameter. As evaluation of the integral |, o F' - dr makes use of the parametric
representation (¢), it might seem that an alternative parameterization of the curve C' would
yield a different value of |, o F' - dr. In fact, the value of i) o F' - dr is invariant with respect
to the parameterization of C' up to a change of sign. Let 7 be a continuous path in n-space
defined on an interval [a, b], and let g be a differentiable real-valued function defined on an
interval [c, d] such that (1) ¢ is never zero on [c, d], and (2) g maps|c, d] onto [a, b]. Then
the function 7: [c, d] — R" defined by

7(u) = rlg(u)]

is a continuous path having the same graph C as . Two paths r and 7 so related are said to
be equivalent. 1f ¢ > 0 everywhere on [c, d], we say that 7 and 7 trace out C in the same
direction, and if ¢’ < 0 everywhere on [c, d], we say that  and 7 trace out C' in opposite
directions. In the first case, the change of parameter function g is said to be orientation-
preserving, and in the second case it is said to be orientation-reversing.

Theorem 4.1. Let 7 and 7 be equivalent piecewise smooth paths. Then we have

/F-d'r:/F-d"F'
c c

if r and 7 trace out C in the same direction, and
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/F-d'r:—/F-d"F'
C C

if r and 7 trace out C' in opposite directions.

Line integrals with respect to arc length. In some circumstances the arc-length function s
provides a natural and convenient parameterization of C, the graph of . Suppose that A is
a scalar field defined and bounded on C. The line integral of h with respect to arc length
along C' is denoted by fc h ds and defined by

b
/ hds = / hlr(t)]s (t) dt, (4.2)

C a
whenever this integral exists. In particular, consider the scalar field given by

hir(t)] = Flr(t)] - T(1),

the dot product of a vector field F' defined on C' and the unit tangent vector. In this case,
the integral with respect to arc length fC h ds is identical to the line integral fC F.dr
because

Flr(t)]-r'(t) = Flr(t)] - T(t)s'(t) = h[r(t)] s'(¢).

The integral in (4.2) is naturally viewed as the limiting value of a Riemann sum
N
> h(r)As;
=1

obtained when the curve C' is partitioned into /N segments, where the jth segment is of
length As; and contains the point 7.

If C is a closed path, the line integral

%F-Tds:j{F-d'r
C C

is called the circulation of £’ around C.

The concept of work in mechanics. Consider a particle which moves along a curve in R?
under the action of a force field F'. If the curve is the graph of a piecewise smooth path 7,
then the work done by F is defined to be the line integral [ F - dr.

The principle of work and energy. Suppose a particle of mass m moves freely through
space under the action of a force field F'. If the speed of the particle at time ¢ is v(), then
its kinetic energy is defined to be %mv(t)Q. We may show that the change in the particle's
kinetic energy in any time interval is equal to the work done by £ during that time interval.
Proof. Let r(t) denote the position of the particle at time ¢, for all t € [a, b]. We want to
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show that
'I‘(b) 1 1
F - dr = Zmv(b)? — Zmw(a)’. (4.3)

The motion of the particle at any time is governed by Newton's second law of motion, which
says

Flr(t)] = mr'(t) = md/(t)

where v(t) denotes the velocity vector at time ¢, and v(t) = ||v(t)||. Hence

Flr(r)] /(1) = mo (1) -o(t) = ym 5 (0(0) -0(0) = 2m % (o(0)7).
Integrating from a to b we obtain
r(b) b
F.dr= [ Flr@t) -r(t)dt = %m[v(t}Q]Z = %mv(b)2 - %mv(a)Q,

r(a) a

as was to be shown.

Independence of the path. Suppose that F' is a vector field that is continuous on an open
connected set D C R"™. [For the definition of “open connected set” see Apostol, pp. 332-
333.] In general, the line integral
b
/ F.dr

depends not only on the end points a and b, but also on the path 7(.) that connects them.
For some vector fields F', however, f:F - dr doesn't depend on 7(.), and in this case we
say the integral is independent of the path from a to b. If the integral f:F - dris
independent of the path from a to b for all @ and b in D, then we'll say that f:F - dris
independent of the path in D.

Let C' be a piecewise smooth closed path in D, where D is an open connected set in R”.
Let a and b be two distinct points on the path C'. If the integral f:F - dr is independent of
the path from a to b, then the circulation of F' around C' is zero:

]{F-d'rzo.
C

If the integral f:F - dr is independent of the path from a to b for every pair of points @ and
b, then the circulation of F' around C' is zero,

]{F -dr =0, (4.4)
C
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for every piecewise smooth closed path C' in D. Conversely, if eq. (4.4) holds for every
piecewise smooth closed path C' in D, then f:F - dr is independent of the path in D.

The second fundamental theorem of calculus for real functions states that:

b
/ o (z) dz = p(b) — p(a)

provided that ¢’ is continuous on some open interval containing both a and b. An
analogous result holds for line integrals. Theorem 4.2 (The second fundamental theorem of
calculus for line integrals). Let ¢ be a differentiable scalar field with a continuous gradient
V¢ on an open connected set D C R". For any two points a and b joined by a piecewise
smooth path 7(.) in D we have

b
/ Vo -dr=¢b)—pla). 4.5)

Corollary. Equation (4.5) implies that f:Vgo - dr is independent of the path from a 0 b.

As eq. (4.5) holds for every pair of points @ and b in D, it follows that f:Vgo ~dris
independent of the path in D. Hence,

]{w dr =0 (4.6)
C

for every piecewise smooth closed path C' in D. In words, the circulation of a gradient
around any piecewise smooth closed path in D is zero.

The conservation of mechanical energy in a conservative force field. Suppose a particle
of mass m moves freely through space under the action of a force field F'. We have
previously shown that the work done by F" over an interval of time equals the change in the
kinetic energy of the particle during that time interval. To be precise, if [a, b] is the time
interval, then

r(b)
F -dr = 1mv(b)2 — 1mv(a)2 (4.3)

where () denotes the location and v(¢) denotes the speed of the particle at any time
t € [a,b]. Assume now that F' is a conservative force field, so F' = —VU for some
potential function U. Then

r(b) r(b)
F.dr=— VU -dr = Ulr(a)] — Ur(b)]. (4.7

r(a) r(a)
Combining equations (4.3) and (4.7) and rearranging, we find

%mv(b)Q + Ur(b)] = %mv(a)Q + Ulr(a)). (4.8)
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The function U (7) gives the potential energy of the particle at ». Equation (4.8), then,
says that the sum of the kinetic and potential energy of a particle is a conserved quantity if
the particle moves under the action of a conservative force field. (This explains why such
force fields are said to be “conservative.”)

A converse of Theorem 4.2 is also true. Theorem 4.3. Let F' be a continuous vector field
defined on an open connected set D C R"™. If the line integral f:F - dr is independent of

the path in D [or if eq. (4.4) holds for every piecewise smooth closed path C' in D] then
there exists a differentiable scalar field ¢ on D such that F'(r) = V(7).

Suppose that £ is a vector field that is continuous on an open connected set D C R".
Theorems 4.2 and 4.3 give us necessary and sufficient conditions for F' to be a gradient: £’
is a gradient if and only if f:F - dr is independent of the path in D. Equivalently, F'is a
gradient if and only if the circulation of F' around any piecewise smooth closed path in D is
zero. These necessary conditions are not very useful, however, because they're generally
impossible to check. The following theorem provides a set of necessary conditions for F’ to
be a gradient that are readily checked.

Theorem 4.4. Let F'(r) = (Fi(r), F5(7),..., F,(r)) be a continuously differentiable
vector field defined on an open connected set D C R". If F' is a gradient, then
OF; OF}

(4.7)

foralliandjin {1,2,...,n} and all» € D. Proof. Suppose that F' = V¢ for some scalar
field ¢ defined on D. Then

OF, 0 [0p _ 9%y
8.13j - 8.13j 8.131 - 8.13j8.131

and

or; 0 8_4,0 B 9%y

The conditions of the theorem guarantee the equality of these two “mixed partials.” (See
Apostol, page 278.)

As a corollary of Theorem 4.4, we have formula (2) of Section 3: for any continuously twice
differentiable scalar field ¢ defined on an open connected set D C RR?,
curl(Vyp) =V x Vo = 0.

The proofis left to the reader.

If the set D of Theorem 4.4 is assumed to be convex, then eq. (4.7) gives sufficient
conditions for F' to be a gradient. Theorem 4.5. Let F'(r) = (Fy(r), Fy(r),..., F,(r)) be
a continuously differentiable vector field defined on a convex open connected set D C R".
If
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OF,, . OF,

foralliand jin {1,2,...,n} and all » € D, then there exists a scalar field ¢ defined on D
such that F' = V. For the proof, see Apostol, pp. 351-352. Corollary: Suppose that F’
is a continuously differentiable vector field defined on a convex open connected set D in R3.
If

curl F=V x F =0
everywhere in D, then there exists a scalar field ¢ defined on D such that ' = V.

. Surface Integrals

There are several ways to specify a “surface” in R?. (1) Implicit representation. The set
of all points (x, y, z) that satisfy an equation of the form F'(x,y, z) = 0. (2) Explicit
representation. Sometimes one can solve F'(z,y, z) = 0 for one of the variables in terms
of the other two. For example, suppose it's possible to solve for z in terms of = and y. The
solution z = f(z,y) is said to be an explicit representation of the surface. (3) Parametric
representation. We have 3 equations expressing z, y, and z as functions of two parameters
uw and v:

x = X(u,v), y =Y(u,v), and z = Z(u,v) (5.1)

where (u, v) is allowed to vary over some connected set 7" in the uv-plane. Sometimes we'll
write the three parametric equations of eq. (5.1) in a single vector form:

r(u,v) = X(u,v)i + Y (u,v)j + Z(u,v)k. (5.2)

The image of 1" under the mapping 7 is called a parametric surface and is denoted (7).
We assume that X, Y, and Z are continuous. Ifthe mapping 7 is one-to-one, the image
r(T) is called a simple parametric surface. Note that an explicit representation of a surface
is obtained from a parametric representation with the functions X (u, v) = u, Y (u,v) = v,
and Z(u,v) = f(u,v).

The fundamental vector product. If X, Y, and Z are differentiable on 7", we consider the
two vectors

ou 8uz 8u'7 ou

and

8v_8vz 81)'7 ’

The cross product of these two vectors is referred to as the fundamental vector product of
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the representation 7.
) J k
or Or 0X 9Y 0Z

NE%X%: ou Ou Ou

oX 9Y 097
ov ov ov
oY 97 0z 90X oX 9y (5.3)
| Ou ou L ou ou P ou ou %
“lay ez |"T|oz ex P ax oy
ov ov ov ov ov ov
AY,2). 9Z,X). XY

= B, ) T+ (. v) J+ 20w, ) k.

If (u, v) is a point in 7" at which both 97 /0u and 0r/0v are continuous and N # 0, then
the image point 7(u, v) is said to be a regular point of r. If r(u,v) is not a regular point,
then it is said to be a singular point of r. A surface r(T) is said to be smooth if all of its
points are regular points.

In the case of an explicitly represented surface

r(z,y) =vi+yj+ f(z,y)k

we have
or .. 9f or_ .. 9f
or +8J:k and oy +8yk
SO
i J k
N=|1 0 0f/0x :—?i—?j—i—k. (5.4)
0 1 8f/dy v Y
Note that
- of 2 of 2
”N”_\/H(ax) +(8y) (5.5)
in this case.

As each vector Or/0u and Or/0v is tangent to the surface r(7), it follows that IV is
“normal” (i.e., perpendicular) to the surface at r(u, v). Hence, if || IN|| # 0,

n=-— (5.6)

is a unit vector that is normal to the surface at (u, v).
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Let R denote a rectangle with base Awu and height Av in T', where Au and Av are “small.”
The image (R) is approximately a parallelogram with sides

or or
%Au and %Av
The area of this parallelogram is
or or or Or
‘8UAUX%AU —‘%x% AuAv.
Hence
or Or
Nl = |[=—= x ==
N1 = 5 < &

may be thought of as a local magnification factor for areas.

The area of a parametric surface. Let S = (7). The computation given above suggests
the following definition. The area of S, denoted A(S ), is defined by the double integral

9=/ /|5

If S is defined explicitly, this integral becomes

[ () () e

where T is the projection of .S onto the xy-plane.

du dv. (5.7)

Definition. Let S = r(7") be a parametric surface described by a differentiable function r
defined on a region 7" in the uv-plane, and let g be a scalar field defined and bounded on S.
The surface integral of g over S is denoted by the symbol ffg dS [orby [ [ g(z,y,2)dS],

ffois= | fre

whenever the double integral on the right exists.

and is defined by
or Or

_X_

90 du dv (5.8)

Note: the symbol d.S used in a surface integral always denotes a differential element of
surface area, whereas the symbol ds used in a line integral always denotes a differential
element of arc length. (Later we'll use the symbol dV' to denote a differential volume
element. That is, dV is just shorthand for dz dy dz.)

Vector Calculus. Page 17



Any surface S may be represented parametrically in different ways. It may be shown that

the value of [ [gdS does not depend on the parameterization.
S

Although it's necessary to go back to eq. (5.8) to actually calculate a surface integral,
intuitively we may think of this surface integral as the limiting value of a Riemann sum.
Suppose we approximate the surface S by a polyhedron of L faces, where the /th face has
area AS; and is tangent to S at (x4, yy, 2¢). Now consider the sum

L
> 9wy, 20) ASy.
=1

If we let L — oo in such a way that max{AS,} — 0, this Riemann sum approaches [ [gdS.
S

If the surface S is represented explicitly by z = f(z, y), the surface integral may be written
] af\*
//gdS //q:y, flz, )\ 1+ of + of dx dy
ox Jy

The flux of a vector field through a surface. Let S = r(7") be a simple parametric
surface, let 7 be the unit normal vector to S defined by eq. (5.6), and let F’ be a vector field
defined on S. At any point on S the dot product F' - n is the component of F' in the
direction of n. The surface integral

[frwis=  frali

is called the flux of F' through the surface. This kind of surface integral occurs frequently in
applications. The flux of a vector field through a surface is meaningful regardless of the
nature of F’, but perhaps the situation where flux is easiest to interpret is when

or

dudv—//F N dudv (5.9)

F(z,y,z) = p(z,y,2)v(z,y, 2)

where p(z,y, z) and v(x, y, z) denote the density and the velocity, respectively, of a fluid at
the point (x,y, z). Then the flux measures the mass of fluid passing through the surface per
unit time. See the discussions in Feynman and Schey for more on the intuitive meaning of
“flux.”

Suppose that S is represented explicitly by z = f(z,y). From eq. (5.4) we have

of . Of .
N__8 z—ayg + k.

Now write the vector field £ in terms of its components:
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F(z,y,z) = F,(x,y,2)i + F,(z,y,2)j + F.(z,y, 2)k.

It follows that the flux integral in this case may be written

_ of pof
//F-ndS—/T/[ qu@x Fyay—i-FZ dx dy

S
where F,,, F,, and F, are evaluated at (z, vy, f(x,y)).

. The Divergence Theorem

Mathematical solids. To a mathematician, a “solid” is a particular kind of subset of R3.
As my mathematical dictionary quaintly defines it, a “geometric solid” is “[a]ny portion of
space which is occupied conceptually by a physical solid; e.g., a cube or a sphere.” The key
word here is “conceptually.” A mathematical solid, unlike a physical solid, has no solidity.
For example, a spherical bubble trapped in a block of ice is a mathematical solid. In this
document we'll implicitly assume various things about the solids of interest. In particular,
we'll assume of any solid of interest V' that (1) V' is a connected set, (2) V' is bounded, and
(3) the boundary of V' is a regular surface in the sense of section 5, or the union of several
such surfaces. In addition, this surface must be “orientable”; for a definition, see Apostol,
page 456. The boundary of a solid partitions R? into two parts, an interior (the solid) and
an exterior, and it's not possible to pass from the interior to the exterior along a continuous
path without going through the surface.

Open and closed surfaces. Vector calculus deals with two different kinds of surface: open,
and closed. An open surface is bounded by an edge that we'll assume is a piecewise smooth
curve. For example, a piece of paper is an open surface. A closed surface is not bounded
by an edge, but itself forms the boundary of a solid. The surface of a beach ball is an
example of a closed surface.

Unit normal vectors. Suppose 7:T" — R is a parametric representation of a surface S.
At any regular point 7(u, v) there are fwo unit vectors that are normal to the surface:

nlzﬁ where NE%X%
and
ny =-—n,.
In calculating a “flux integral”
/ / F.-ndS
S
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it is necessary to specify which of these two unit normal vectors is to be used. If the surface
S is closed, a universal convention is that the outward facing normal unit vector is used.

Let F be a differentiable vector field defined on D C R?, say
F(r)=F,(r)i+ F,(r)j+ F.(r)k where r=uxi+yj+ zk.
We've defined the divergence of F' by eq. (3.1):

) . _0F, O0F, OF,

(3.1)

This expression may seem totally dependent on the chosen system of coordinates.
Miraculously enough, it turns out that div £ has a physical interpretation that is completely
independent of the coordinate system.

To explain this interpretation, we need to introduce the concept of “flux density” at a point.
Let V denote a mathematical solid with surface S, let AV denote the volume of V', and
suppose that 7 is in the interior of V. For example, V' could be a sphere, or a rectangular
parallelepiped. By the “flux density of £ over V' I mean the ratio of the flux of F' through

S to the volume of V':
L / / F.ndS
AV ndS.

S

By “the flux density of F'at " [ mean the limit of this ratio as the solid V' is allowed to
shrink down to the singleton set {r}:

1
Fl ityof Fatr = lim —— F. :
ux density of £ at r AXI/IEOAV// ndS
S

The discerning reader may object that this limit apparently depends on how the set of
contracting solids V' are chosen, so “flux density” appears not to be well-defined by this
formula. It's a remarkable fact, however, that this is not the case: the limiting value of this
ratio does not depend on how the contracting solids V' are chosen. To fix ideas, it's
convenient to let V' be a rectangular parallelepiped with dimensions Az, Ay, and Az, and
centered around = (x,y, z). An instructive and easy calculation then shows that

1 OF, OF, OF.
AIXI/IEOAV//F'ndS_ ox + Oy + 0z
S

In words, the flux density of F' at  is just the divergence of F' at r:

. o1
divF = A1V1r50H//F-mhs. (6.1)
S
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Some authors simply define div F' to be what I've called the flux density. While this
approach has some conceptual advantages, it also complicates the exposition.

The Divergence Theorem. The Divergence Theorem, also called Gauss' Theorem, relates
a triple integral over the interior of a solid to an integral over the surface of that solid.
Theorem 6.1 (The Divergence Theorem). Let V be a solid in R? bound by an orientable
closed surface S, and let n be the outwardly directed unit vector on S. If F' is a
continuously differentiable vector field defined on V', then

///(divF)dV://F-ndS. (6.2)
1% s

For a proof of the Divergence Theorem, see Apostol, pp. 457-459. Given that we may
interpret div F’ as a “flux density,” we see that eq. (6.2) says just that the flux of F' through
the surface of a solid V' is the integral of the flux density of F' over the interior of V.

Exercise. Prove the following proposition. Let V be a solid in R? bound by an orientable
closed surface S, and let n be the outwardly directed unit vector on S. If F' is a
continuously differentiable vector field defined on V', then

//(curl F)-ndS=0. (6.3)
S

Exercise. Use the Divergence Theorem to prove eq. (6.1).

We can gain some insight into the Divergence Theorem if we combine eq. (6.1) with what |
call the “shared surface” theorem!. Let V' be a solid bounded by a surface S. Suppose we
divide V' into two solids V; and V; by inserting a surface S5, which becomes part of the
surface of both V; and V,. We'll say that Sy, is a “shared surface.” Let S; denote the part
of S that still bounds V7, and let S, denote the part of .S that still bounds V5. Hence,

V =V1uUW,, §=51US,, the boundary surface of V; is S; U S5, and the boundary
surface of V5 is So U S12. For example, let V' be the rectangular parallelepiped

V={(z,y,2):0<2x<2,0<y<1,0<z2<1}
and insert the square surface
Sio ={(z,y,2):x2=1,0<y<1,0< 2z <1}.
Then V; and V5 are cubes:
Vi={(z,9,2):0<2<1,0<y<1,0<2<1}

I As the Divergence Theorem is used to prove eq. (6.1), this analysis may seem more than a little ass-
backwards. Point taken! But this analysis has heuristic utility as it increases our insight into why the
Divergence Theorem is true.
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and
Vo={(2,9,2):1<2<20<y<1,0<2<1}

that share the face S1,. Returning to the general case, if F' is a vector field defined over V,
then the flux of F' out of V; may be written

S

Sl U 512 12

where n; denotes an outwardly directed unit normal vector for V;. Similarly, the flux of F'
out of V, may be written

[[ Pomas= [ [Fmass [ [7omas

Sz U 512 52 512

where n, denotes an outwardly directed unit normal vector for V,. As ny and n, are
outward normal vectors to V; and V5, respectively, it follows that n, = —n0n Sis.
Hence, the flux out of V5 through the shared face S5 is just the negative of the flux out of
V; through S15. In symbols,

[ [F mas—[ [Fomas

512 512

Hence the sum of the fluxes out of the two solids V; and V5 is given by

//F-n1d5+//F-n2dS. (6.4)

S Sy

The flux of F out of the whole solid V' is given by

[fr s

S

where 72 1s a unit normal vector on .S. But this flux can be rewritten as

//F-ndS://F-n1d5+//F-n2dS (6.5)

S Sl Sz

because n = ny on S; andn = ny, on S,. Comparing eqgs. (6.4) and (6.5), we conclude:
the flux of F' out of the whole solid V' is equal to the sum of the fluxes out of the two
component solids V; and V5, and this is true because the fluxes from V; and V5, across the
shared surface cancel.

This conclusion holds if the original solid V' is partitioned into any number of component
solids V1, V4, ..., Vy. The shared surface theorem. Suppose a mathematical solid V' with
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surface S is partitioned into any number of component solids Vi, V5, ..., Vi with surfaces
S1, Sa, ..., Sy. If F'is a vector field defined on V', then

//F-ndSzZZl//F-ngdS (6.6)
=17

S

where 7 is a unit normal vector on S and 7y is a unit normal vector on S, for { =1,..., N.
In words, the flux of F' out of the original solid V' is equal to the sum of the fluxes out of
the /N component solids. This conclusion follows from the fact that partitioning V' into
component subsolids creates internal shared surfaces, and all the fluxes across shared
surfaces cancel.

We may combine egs. (6.1) and (6.6) to gain some insight into the Divergence Theorem.
Let V be a solid in R? bound by an orientable closed surface S, let n be the outwardly
directed unit vector on S, and let £ be a continuously differentiable vector field defined on
V. The expression on the right-hand side of eq. (6.2)

[fr s

S
is the flux of F' out of V. We now partition V' into a large number N of component
“subsolids” V1, V5, ..., Vv with surfaces S, Ss, ..., Sy. From the shared surface theorem,
N
//F-ndS:Z//F-ngdS (6.6)
S =g

where the terms in this equation are explained above. Let AV, denote the volume of V; for
¢=1,2,...,N. If AV, is small enough, it follows from eq. (6.1) that

//F “nydS ~ (div F(r)) AV, 6.7)
Sy

where 7, is any point in V;,. Combining egs. (6.6) and (6.7), we find
N
//F ndS =~ (divF(r)) AV, (6.8)
g =1

This approximation becomes an equality if we let N — oo and max{AV;} — 0. But the
sum on the right-hand side of eq. (6.8) is just a Riemann sum for [ [ [ (div F') dV'. This
Vv

completes our heuristic “proof” of the Divergence Theorem.
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7. Stokes' Theorem.

Let F be a vector field defined on D C R3. In the previous section we used the concept of
a “flux density” to give a geometric meaning to div £'. In this section we'll introduce the
concept of “circulation density” to give a geometric meaning to curl £'. To be precise, let

r = (z,y, 2) be a point in D, let nn be a unit vector in R?, let I1(r, ) be the plane through =
that is normal to n, let C be a piecewise smooth closed path in II(7, n) that encloses 7, and
let AS denote the area of the region enclosed by C. Now consider the “circulation integral”

IE]{CF-Tds. (7.1)

By convention, in calculating I the path C' is traversed in a counterclockwise direction as
viewed from the tip of 7 when n is based at . The circulation I given by eq. (7.1) is a
scalar defined as an integral over the whole path C, whereas the curl of F' at r is a vector
defined at the point r alone. What can I possibly tell us about V x F'(r)? Our strategy
will be to examine the limiting behavior of I as we let the curve C' contract down to the
point . The circulation I necessarily decreases to zero as AS goes to zero, but the limit of
the ratio of I to AS, the circulation per unit area, is more interesting. We'll define the
“circulation density of £ around 7 at 7 to be

lim — ¢ F-Td
Y(rm) = Jlim AS]{ >

An astute reader might object that this limit apparently depends on how the family of curves
C that contract down to 7 are chosen. As it turns out, this isn't the case; it may be shown
that the limit of 7/AS as AS — 0 does not depend on how the curves C' are chosen.

To appreciate the utility of 7(7, n2), it's best to see some examples. First, let n = k, so
I1(r,n) is parallel to the zy-plane. Let C' be the rectangle with base Az, height Ay, and
centered around 7 in the plane I1(r, k). An instructive and easy calculation shows that

oF, OF,
Ox oy

7(7'7 k) -

From eq. (3.2), this is the & component of curl F" at . Hence,
[V x F(r)] -k =~(r, k).
Similar calculations with planes parallel to the xz-plane and the yz-plane yield
[V x F(r)] -4 =~v(r,1) and [V x F(r)]-3="~(r, 7).
These results suggest (but don't exactly prove) the following: for any unit vector n,
[V x F(r)] - n=~v(r,n). (7.2)

In words, V x F'(r) is a vector whose component in the direction of 2 is equal to v(7, n),
the circulation density of F' at 7 in the plane II(7, n).
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Jordan curves. A path I in R"” is specified parametrically by a continuous vector valued
function 4: [a, b] — R™. If y(a) = «(b), the path is closed. IfT is closed and

v(t1) # ~(t2) for every t; # t5 in (a, b], then I is said to be a simple closed curve.
Geometrically, a simple closed curve doesn't intersect itself. A simple closed curve in a
plane is called a Jordan curve. Every Jordan curve I' partitions the plane into two disjoint
open connected sets having I" as their common boundary. One of these sets is bounded and
is called the interior of I'. The other is unbounded and is called the exterior of T'.

“Counterclockwise” traversal. Let " be a Jordan curve in the zy-plane, and let R denote
the interior of I'. We need to define (somewhat informally) what it means to traverse I' in a
“counterclockwise” direction. First, we define “upright” to mean: in the direction of
positive values of z. Definition: an upright pedestrian walking on I is moving in a
counterclockwise direction if R is on his or her /eft.

Green's Theorem (for a plane region bounded by a piecewise smooth Jordan curve). Let
P and @) be scalar fields be scalar fields that are continuously differentiable on an open set .S
in the xy-plane. Let C' be a piecewise smooth Jordan curve, and let R denote the union of
C and its interior. Assume that R C S. Then the following equation is true:

//(Z—f—";—];) dxdy:]{cPdaH—Qdy (7.3)
R

where the line integral is taken around C' in the counterclockwise direction.

Stokes' Theorem is a direct generalization of Green's Theorem. Let S be a surface in R?
bounded by a curve C, and let F’ be a vector field defined on S. Stokes' Theorem states
that the circulation of F" around C' is equal to the surface integral of (curl F') - i over S,
where n is a suitably chosen unit normal vector at each point of .S.

Stokes' Theorem. Let S be a smooth simple parametric surface, say S = r(7"), where T is
a region in the uv-plane bounded by a piecewise smooth Jordan curve I'. Assume also that
7 is a one-to-one mapping whose components have continuous second-order partial
derivatives on some open set containing 7" U I'. Let C' denote the image of I" under r, and
let F' be a continuously differentiable vector field defined on S. Then

//(curlF)-ndS:]{CF-Tds (7.4)
S

where n is the unit normal vector defined by eq. (5.6), and the path I is traversed in the
counterclockwise direction when the line integral is evaluated.

This statement of Stokes' theorem is taken from Apostol, where a proof may be found.

Remark 1. This statement of Stokes' theorem makes explicit use of the parameterization
S = r(T) and the parameterization of I'. As noted previously, the value of a surface
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integral doesn't depend on how the surface is parameterized, and the value of a line integral
doesn't depend on parameterization up to a sign. Hence eq. (7.4) is true almost regardless
ofhow S and I' are parameterized. It might seem preferable, therefore, to state Stokes'
theorem in a way that makes no explicit reference to a particular parameterization.
Significant complication arise, however, if one attempts to rephrase Stokes' theorem without
making explicit use of these parameterizations. In particular, eq. (5.6) gives us a convenient
way to ensure that the normal unit vectors n are all on the same “side” of .S, and it's difficult
to see how this condition could be guaranteed without using the parameterization. Also, it's
much easier to define “counterclockwise” for the Jordan curve I' in the uv-plane than for the
closed path C' in R3.

Remark 2. Stokes' theorem reduces to Green's theorem if .S is a region in the xy-plane. To
see this, write

F(z,y,z) = P(z,y,2)i + Q(x,y,2)j + R(z,y, 2)k.

If S is a region in the zy-plane, then n = k everywhere on S, and hence

Also, the closed curve C' lies entirely in the xy-plane, so the line integral in eq. (7.4)
becomes

]{F-Tds:/Pdas-l—Qdy.
C C

Remark 3. The surface S is said to be a “capping surface” of the closed curve C'. For any
given closed curve C, there are an infinite number of capping surfaces. Some are as tight
and “minimal energy” as a soap film on a wire frame. Others billow out to Betelgeuse or
beyond. To me, the most amazing thing about Stokes' theorem is that it says that the value

of the surface integral
//(curl F)-ndS
S

is invariant over all surfaces .S that cap C, so long as F’ is defined and continuously
differentiable on S. Now imagine a /arge capping surface on a small closed path C. If we
let C' shrink down to a point, the circulation §., F" - T' ds necessarily decreases to zero.
This gives us another way to prove eq. (6.3). (I learned of this method from Feynman.)

Remark 4. Equation (7.2) tells us that (curl F") - n may be interpreted as a “circulation
density.” On the other hand, we recognize that the line integral in Stokes' theorem is the
circulation of F" around C'. Hence, Stokes' theorem tells us that the circulation of F' around
C is equal to the integral of circulation density over any surface that caps C'.
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There are several ways to extend the conclusion of Stokes' theorem (eq. (7.4)) to more
general surfaces than are stated in the hypotheses of the theorem. In particular, one may
knit several surfaces together along their edges, so long as the directions of integration
along any edge shared by two surfaces is opposite. This is easiest to explain by an
illustration. Consider the two rectangles S and S, with a common edge shown below.

o e

Let C'; and C; denote the borders of S; and S5, respectively, let C5 = C; N C5 denote the
shared edge, let S = S; U Sy, and let C' = (C; U C5) — C'5 denote the border of S. We

want to compute the sum of the circulations of F" around C; and (5, i.e.,

F.-Tds+ ¢ F-Tds, (7.5)
01 CZ

where the direction of integration is counterclockwise (as indicated by the arrows shown in
the figure), and compare this sum to the circulation of £ around C, i.e.,

]{F-Tds,
c

also integrated in a counterclockwise direction. Now consider the contributions to
$o, F - T ds and ¢, F - T ds attributable to integration along the shared edge C's.

Because fCLF -T ds and fCZF - T ds are integrated in opposite directions along the

shared edge, we see that their contributions to the sum (7.5) just cancel (see Theorem 4.1),
SO

]{F-Tds: F.-Tds+ ¢ F-Tds. (7.6)
C C Cy

Now, Stokes' theorem applies to both S; and S5:

F-Tds= //(curl F)-n;dS (7.7)
Ci
S

and
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F -Tds= //(curl F)-nydS (7.8)
Cy
Sy

where n; and n, are normal unit vectors to S7 and S5, respectively. If we now define n to
be n; on S and 1, on S5, we see that

//(curl F)-ndS = //(curl F)-n dS+ //(curl F)-nydS. (7.9)
S

1 SQ

Combining egs. (7.6) through (7.9), we see that eq. (7.4) holds for the composite surface S.

This kind of argument may be extended to any kind of surface that may be construed as the
union of simpler surfaces knit together along part of their edges. The only requirement for
this argument to go through is that it be possible for “counterclockwise” to be defined for
each subsurface in such a way that the direction of integration along any arc that is a shared
edge will be opposite. For example, surfaces with “holes” can be treated by introducing
“cross-cuts.” A picture is worth a thousand words here, and I advise the reader to consult
almost any text on advanced calculus.

We can knit together surfaces in more complicated ways. Consider the two rectangles 7}
and 75 in uv-space shown below.

b,y T,

Let I'; and I's denote the boundaries of 77 and 75, respectively, and let 7' = T7 U T5.
Suppose that the image 7(T") in R? is the cylinder shown below where (in effect) the long
strip 7" has been bent around until the image of the left edge of 77 has been brought into
coincidence with the image of the right edge of 75. The images 7(I'y) and 7(I';) coincide
on two arcs: the image 7(I'; N ') of the short vertical line where 77 and 75 join, and the
common image under 7 of the left edge of 7} and the right edge of 75. An argument similar
to that given above shows that Stokes' equation applies to this cylinder, where the total
circulation is the sum of the line integrals taken over the upper and lower rims of the
cylinder, and in the directions indicated in the diagram.
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The argument works because the line integrals along arcs that are common to two regions
are always in opposite directions, so they cancel. In summary, the sum of the line integrals
over the two component surfaces is just equal to the line integral over the exterior edge (or
edges) of the amalgamated surface because the contributions to line integrals over interior
(and therefore shared) arcs just sum to zero.

Now suppose that the mapping r gives, in effect, the strip 7" a half twist before the image of
the left edge of 77 and the image of the right edge of 75 are brought into coincidence. The
image r(7) is called a Mobius band. Stokes' equation fails to hold in this case because the
direction of integration of the two line integrals is necessarily in the same direction along
some arc that is common to 7(77) and 7(73). The Mobius band is an example of a
nonorientable surface.

. Some concluding remarks.

Remark 1. Green's theorem, Stokes' theorem, and the divergence theorem are all
extensions of the second fundamental theorem of calculus. Each of these theorems states
that the integral of some function over a “region” of R? is equal to the integral of a related
function over the boundary of that region. For Green's theorem and Stokes' theorem, the
region is a surface and the boundary is a closed curve. For the divergence theorem, the
region is a mathematical solid and the boundary is a closed surface.

Remark 2. The divergence (eq. (3.1)) and curl (eq. (3.2)) were defined for a vector field £
that's defined on a subset of R®. That's adequate for electromagnetism, the subject for
which these tools were essentially invented. However, the dot product is naturally extended
to R” (see eq. (1.1)), and it's natural to extend the definition of divergence to R". If F'is a
vector field defined on a subset of R", say

F(r) = (Fi(r), Fy(r),..., F,(r)) where r=(r1,T2,...,%y,)

then

(8.1)
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where all the partial derivatives are evaluated at . This plays an important role in (for
example) the kinetic theory of gases.

Similarly, the gradient is naturally defined on R"”, and plays an important role in many fields,
including economics.

It follows that the “Laplacian” operator V2, defined as the divergence of a gradient, is
naturally defined on R": for any scalar field p(z1,xo,...,2,),

n 82()0

72 (8.2)
— 81:12

V2 = div(grad ¢) =

On the other hand, both the cross product (eq. (1.3)) and the curl are meaningful constructs
only in R?, so far as I can tell.

Remark 3: Some commuting and some non-commuting operators. The Laplacian
operator V2 is defined as the divergence of a gradient. If F = (F,, F,, F,) is a vector field
in R3, the Laplacian of F is defined “component-wise”:

V?F = (V?F,,V°F,,V*F,). (8.3)
For any vector field F' in R?, the gradient of the divergence of F
grad(div F') = V(V - F)
is a meaningful vector field. It occurs, for example, in the formula for the curl of a curl:
Vx(VxF)=V(V-F)-V*F. (8.4)

The unwary student might naively assume that grad(div()) is equal to div(grad()). This
would be a gross error! Among other differences, grad(div()) is a vector, whereas
div(grad()) is a scalar. In words, the operators “grad” and “div”’ do not commute.

On the other hand, consider the two operators “curl” and “Laplacian.” For any vector field
F defined on a subset of R3, the following formula

V x (VPF) =V*V x F) (8.5)

is true. In words, “curl” and “Laplacian” do commute. Feynman passes eq. (8.5) off with

the casual remark “[s]ince the Laplacian is a scalar operator, the order of the Laplacian and
curl operations can be interchanged.” I don't buy this; so far as I can see, eq. (8.5) needs a
proof. The work is grungy but straightforward, and it all works out in the end.

Remark 4: spherical coordinates. The gradient, curl, and divergence were defined in
terms of derivatives with respect to =, y, and z, the coordinates of a point relative to the
standard coordinate system of R®. For example, if F' = (F,, F,, F,) is a vector field in R?,
then
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} __0F, O0F, OF,
div F' = o + 3y + 9

We gave geometric interpretations of the gradient, curl, and divergence that showed that
these operations have physical meanings that are independent of the coordinate system used
to locate points in R®. For some problems, it's useful to express grad, div, and curl in terms
of derivatives relative to alternative coordinate systems. In particular, one can find such
expressions relative to cylindrical and spherical coordinates. A full discussion may be found
in Schey. Here I'll just state the formulas for V2 f in spherical coordinates. I need this
formula for the discussion of “spherical waves” in the appendix.

A point 7 in R? is located in spherical coordinates by a triple of numbers (7, ¢, §) where

r > 0 is a distance, and ¢ and 6 are angles. Specifically, » = ||7|| is the distance from the
origin to 7, 6 is the angle between r and the z-axis, and ¢ is the angle between the x-axis
and the projection of 7 onto the xy-plane. The angle 6 corresponds to “latitude” in
geography, except that 6 is measured from the north pole rather than the equator. The angle
¢ corresponds to “longitude,” with the z-axis essentially in the role of “prime meridian,”
except that ¢ is only measured in an “eastward” direction (i.e., counterclockwise as seen
from the North Pole.) With spherical coordinates, a scalar field is expressed as a function of
r, ¢, and 6.

With these conventions, the following may be shown. Let f(r, ¢, #) denote a scalar field.

Then
L0 (L0FY L o (or\ 1 o
ViIi=5\"a )t oo\ 50 ) T e a0 (8.6)

Although this formula is impressively complicated, in a problem with spherical symmetry it
quickly reduces to a much simpler expression.
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Appendix: Supplementary Material.

1. Linearity of grad, div, and curl. The gradient, divergence, and curl are all /inear
operators. That is, if @ and b are scalars, ¢ and 1) are scalar fields on R?, and F' and G are
vector fields on R?, then

V(ap + b)) = aVp + bV, (AL.1)
V-(aF+bG)=a(V-F)+bV-G), (A1.2)
V x (aF 4+ bG) =a(V x F)+ bV x Q). (A1.3)

2. Product Differentiation Formulas. The following identities are all generalizations of the
rule in elementary calculus for differentiating the product of two functions. Let ¢ and v be
scalar fields on R?, and let F" be a vector field on R3. Then

V(py) = Vo + Vo, (A2.1)
V- (pF)=o(V-F)+F -V, (A2.2)
V x (oF) = o(V x F) + Vo x F. (A2.3)

3. “Irrotational” and “Solenoidal” Vector Fields. If F is a vector field in R and
curl ¥ = 0 on some set D C R?, then F is said to be irrotational. We know that if
E' = V for some scalar field ¢ with continuous second-order mixed partial derivatives,
then F' is irrotational. Conversely, it's known that if F' is irrotational at all points in an open
convex set D, then there exists a scalar field ¢ defined on D such that F' = V.

If F is a vector field in R? and div F' = 0 on some set D C R?, then F is said to be
solenoidal. We know that if all the mixed partial derivatives of a vector field G are
continuous, then F' = curl G is solenoidal. Conversely, if F’ is solenoidal everywhere in

some open interval D, then there exists a vector field G' defined on D such that
F =curl G.

Suppose that £ is a continuously differentiable vector field defined on an open interval D in
R3. It's known that every such vector field may be written in the form F' = C + G where
C is solenoidal and G is irrotational [Apostol, p. 452]. As C'is solenoidal, it follows that
C = curl H for some vector field H. Similarly, as G is irrotational, it follows that

G = V for some scalar field . Hence, we can write

F =curlH + V. (A3.1)

To find H and ¢ given F', we take the curl and divergence of each side of eq. (A3.1) and
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make use of the linearity of curl and divergence. This yields the following partial differential
equations for ¢ and H:

Vip =divF
and

curl(curl H) = V(V - H) — V*H = curl F.

. “Central” Vector Fields. We previously defined “central” force fields. We now wish to
extend this vocabulary to general vector fields. A vector field F* defined on R" is said to be
central if it can be written in the form F'(r) = g(r)r where r = ||r||. The purpose of this
section is to record some of the properties of central vector fields.

We previously showed that every central force field is conservative; that is, if F' is a central
force field defined on some set D C R?, then F' = —V U for some potential function U
This result clearly isn't restricted just to force fields: if F' is a central vector field defined on
D C R", then F' = V¢ for some scalar field ¢ defined on D. As a corollary, we see that
every central vector field is irrotational.

We next want to find Vg(||r||) for an arbitrary function ¢(.). Let r = (zy, z2,...,x,) and
let » = ||7||. Recall eq. (2.2):

or T

=2  for i=1,...,n. (2.2)
o0x; T

Hence

dg  ,, Or . |

ox; —g(?“)axi =9 T
It follows that

/
Vo(r) = 2 ff") r (A4.1)

We may use this result to find the divergence of a central vector field. Suppose that
F = g(r)r is a central vector field in R3. From eq. (A2.2), Example 1 of Section 3, and eq.
(A4.1), we find

divF = g(r)(divr) +7- Vg(r) = 3g(r) + rd'(r). (A4.2)
In particular, consider the central vector field given by F' = r’r for some constant L. Then
divF = 3rf +r(Lrt™) = (3 + L)rt. (A4.3)

If L > 0 this formula holds for all . If L < 0 this formula holds for all 7 # 0. In the
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interesting case that L = —3, we have
divE =0 unless r=0. (A4.4)

Hence, the vector field F' = r~3r is irrotational everywhere in R?, and is solenoidal
everywhere except at » = 0. We'll use this result in the next section.

. Inverse Square Laws. If the magnitude of a central force field F at a point 7 € R? is
inversely proportional to ||7||* (i.e., inversely proportional to the square of the distance from
the origin), then the force field is said to obey an “inverse square law.” Let F' = || F|| and
let » = ||7||. The best known examples of inverse square laws are Newton's law of
gravitation

B GMm

F==3

(which gives the gravitational force between a point mass of M and a point mass of m) and
Coulomb's law

1
e 90|
4dmey T2

which gives the magnitude of the electrical force acting between stationary charges ¢ and qy.
(G and ¢, are constants.) To give the direction as well as the magnitude of these forces, let
e, = ||r|| "' be a unit vector in the direction of 7. Then Newton's law may be written

GMm GMm

F=— e, =

r

72 r3

(where the point mass M is at the origin, the point mass m is at 7, and £ denotes the force
acting on the point mass m), and Coulomb's law may be written

(where the charge q is at the origin, the charge q is at 7, and F' denotes the force acting on
the charge q).

A force that obeys an inverse square law can be written
F=+—e.=+—r (A5.1)
r

where F] denotes the magnitude of the force at unit distance. The plus sign is used if the
force is repulsive, and the negative sign is used if the force is attractive. Note that

Wﬂ:i% (A5.2)

is a potential function for the force given by eq. (A5.1); i.e., F* = —VU. Also, note that
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eq. (A4.4) applies if F' obeys an inverse square law. I'll only consider repulsive forces in the
remainder of this section, but the same results apply to attractive forces with suitable
modifications of language.

Let F' satisfy eq. (AS5.1) with a plus sign. Let's compute the flux of F out of the surface of
a sphere of radius r centered at the origin. Let 7 = ||7||”'7 = e, denote the unit normal at
any point on the surface of the sphere. Hence,

B !

F-n=—nn=—.
r2 r2

The total flux out of this surface is therefore

F F F

/ —jdsz—g//dsz—;-@rr?:zwl. (A5.3)
r r r

S S

Note that this flux is independent of the radius r. That is, the flux of F' through the surface

of any sphere centered at the origin equals 47 F;. Combining this result with the
observation that div F' = 0 except at the origin yields the following theorem.

Theorem. Suppose that F' obeys the inverse square law of eq. (AS5.1) (with a plus sign).
Let V' denote a solid that includes the origin O as an interior point. Then the flux of F’
through the surface of V' equals 47 F.

Proof. As 0 is an interior point of V', we can find € > 0 such that a sphere with radius e
centered at O will be entirely contained within V. Let V (€) denote this sphere, and let S|(e)
denote the surface of V'(¢). Let S denote the surface of V and define V' =V — V (e).
You may think of V"’ as being V' with a bubble removed. The surface of V' equals

S U S(€). We'll say that S is the exterior surface of V' and S|(¢) is the interior surface

of V'. As div F' = ( throughout V", it follows from the divergence theorem that the total
flux of F" out of ¥V’ must equal zero. Therefore, the total flux of F" into V' through the
interior surface S(e) must equal the total flux of F* out of V' through the exterior surface S.
But the flux of F" into V"’ through the interior surface S(¢) is just equal to 47 F}, the flux of
F out of V (e).

. Maxwell's Equations. In the following 4 equations, ¢ denotes time, £, B, and J are
vector fields in R3, p is a scalar field in R?, and ¢ and ¢ are constants. In somewhat more
detail,

FE = the electric field,

B = the magnetic field,

J = current density, and

p = charge density.

Maxwell's equations in differential form are as follows:
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V-E=L,
€0
0B
E= -
VX at’
OFE J
2 B) = — el
C(VX ) 8t+€0
V-B=0.

(A6.1)

(A6.2)

(A6.3)

(A6.4)

If we apply the divergence theorem to the first and last of these equations, and apply Stokes'

theorem to the second and third, we obtain Maxwell's equations in integrated form:

(1) The flux of E through a closed surface S equals the total charge contained within S

divided by ¢;. (Both this statement and eq. (A6.1) are known as “Gauss' law.”)

(2) The clockwise circulation of E around a closed loop C' is equal to the rate of change of
the flux of B through any surface that caps C'. (Both this statement and eq. (A6.2) are

known as “Faraday's law.”)

(3) ¢? times the counterclockwise circulation of B around any closed loop C' equals the rate
of change of the flux of E through any surface S that caps C, plus the total flux of
electric current through S divided by ¢.

(4) The flux of B through any closed surface is zero.

. Electrostatics and Magnetostatics. If the charge density p and the current density J in
Maxwell's equations do not depend on time, then the two time derivatives equal zero, and
Maxwell's equations reduce to two pairs of equations:

Electrostatics:

Magnetostatics:

v.-E=-"

€0
VxE=0.
A(Vx B) = =,
€0

V-B=0
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Equation (A7.3) is known as “Ampere's law.”

In this static situation, the electric field E appears in only the first two equations and the
magnetic field B appears in only the second two equations. Hence, if charges and currents
are static, then electricity and magnetism are distinct and separate phenomena.

Notice that in electrostatics, the electric field E is irrotational. Hence, there exists a scalar
field @ such that
E=-Vo. (A7.5)

The scalar field ® is called the electrostatic potential. By substituting eq. (A7.5) into
eq. (A7.1), we see that ® satisfies Poisson's equation:

1

Vi = — (A7.6)
€0
The specialization of Poisson's equation obtained when p = 0, i.e.,
V20 =0, (A7.7)

is called Laplace's equation.

Before turning to the subject of magnetostatics, let's examine the electrostatic potential in a
little more detail. We may write Coulomb's law as

1L aqn 1 aqn

F pu— r pu—
4drey 12 ey 13

where the charge ¢, is at the origin, the charge g is at r, and F' denotes the force acting on
the charge q. Hence F' = qE where the electric field £ at r produced by a charge ¢, is at
the origin is
I @ I a
E=—=e,=——=r.
Areg 12" dmey 13 "
Note that E = —V ® where

L@

P(r) = .
(r) 4mey T

Generalizing, the electric field at 7 produced by a point charge ¢; at r; is given by

1 q1
E, = ( - 1)

dmeq r — 7|

and E| = —V®; where
1 q1
O(r) = ——.

() dmeg || — 7|

Now suppose we have m point charges q;, ¢2, ..., @, at points 7, 75, ..., r,,. By the
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principle of superposition, the electric field £ at any point 7 is the vector sum of the electric
fields produced by the individual point charges. That is,

m

1 q;
E(r) r—m). (A7.8)
0= s rnp ™
Now let ®; denote the potential function associated with the point charge ¢; at r;,
1 qi .
o,(r)= — —— fi =1,...,
(r) P pa—— or i m
and define
LR e e (A7.9)

By the linearity of the gradient,

m m
1

Ve =Y (-Ve,)= Z % (r—r)=E®).

i=1 ||”' - "'z”

47reo

In summary, the principle of superposition applies to potential functions as well as to force
and electric fields.

We may extend these results from point charges to a continuous distribution of charge over
R3. This yields an electric field

_ 1 )
B 4W€o///||r_r/||3(r r)dv (A7.10)

and an associated potential function
av A7.11
471'60///”7‘—7"” ( )

where these integrals are over all 7 in R®. In principle, eq. (A7.11) provides an explicit
solution to eq. (A7.6). Whether this is a practical method of finding the electrostatic
potential depends on the particular situation under consideration. We have, then, two
methods to find E': we can evaluate the explicit integral given by (A7.10), or we can find P,
either by the explicit integral (A7.11) or by solving eq. (A7.6), and then find —V®. In
general, it is somewhat easier to evaluate (A7.11) than (A7.10), for two reasons. First, the
integral of (A7.10) is actually 3 integrals, one for each of the components of £. Second,
the integrand of (A7.10) involves ||r — 7/|| raised to the third power, and this usually makes
the integrand of (A7.10) more complicated than the integrand of (A7.11).

We now turn to the subject of magnetostatics. From eq. (A6.4), we see that the magnetic

field is solenoidal. The physical meaning of this is often stated as “there are no magnetic
monopoles.” As B is solenoidal, it follows that there exists a vector field A such that
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B=V x A=culA. (A7.12)

The vector field A is called the vector potential. In magnetostatics, we may combine eqs.
(A7.12) and (A7.3) to see that A satisfies

curl(curl A) = V(V - A) — V?A = ppJ (A7.13)
where
1
C7€

The vector potential A is not uniquely determined by eq. (A7.12). Let A be a vector field
that satisfies eq. (A7.12), let v/ be any scalar field defined on R?, and let A’ = A + V).
Because the curl of a gradient is always 0O, it follows that

VxA =Vx(A+Vy)=VxA=B.

In short, we have a considerable amount of freedom in how the vector potential A is
chosen. In particular, it's possible (and convenient) to impose the restriction

V-A=divA=0.
With this restriction, eq. (A7.13) simplifies to
VA = —pyJ. (A7.15)

Hence, the vector potential A in magnetostatics may be found by solving a vector version of
Poisson's equation. That is, eq. (A7.15) is really three equations: one for each of the
components of A. By comparing egs. (A7.6), (A7.11), and (A7.15), we see that an explicit
solution of (A7.15) is given by

A(r) = Z—;///ﬁ dv'. (A7.16)

. Conservation of Charge (and Other “Stuff”). Let V' be a mathematical solid in R? with a
boundary surface S, and let p(z, y, 2, t) denote “charge density” at any point (z,y, z) in V'
at time ¢. The total amount of “charge” inside V' at time ¢ is therefore given by

Q(t)E///p(x,y,z,t)dV-
v

Hence, the rate of change of () is given by

Q’(t)z/‘l/%dv. (A8.1)

(The operation of differentiating under the integral sign is justified if dp/Jt is continuous.)
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On the other hand, the only way the amount of charge in V' can change is if there is a
current across the border of V. If we let J denote current density as before, it follows that

Qt) = —//J-ndS (A8.2)
s

where n is a outward unit normal. (The integral on the right hand side of eq. (A8.2) is the
flux of current across S, and the negative sign is motivated by the observation that a positive
flux of current across S implies a decrease in charge inside V'.) Applying the divergence
theorem to the right hand side of eq. (A8.2), we find

Q’(t):—///V-JdV. (A8.3)
1%

Combining eqs. (A8.1) and (A8.3), we find that

/‘l/%dvz—/‘[/v-JdV. (A8.4)

But as the solid V' is quite arbitrary, it follows that

o _

ot = VY

at all points where p is defined. This equation is usually written

dp
5 TV I =0 (A8.5)

Equation (A8.5) is called a continuity equation as it expresses a conservation law: in this
case, the conservation of charge. However, it applies in any situation where there is some
kind of “stuff” that is conserved where fields p and J may be defined that quantify the
density of stuff at a point and the movement of stuff through space. For example, this
analysis applies to the study of heat.

The derivation of eq. (A8.5) given above was intended to motivate its' interpretation as an
expression of the conservation of some “stuff.” It is also possible to derive eq. (AS8.5)
directly from Maxwell's equations. By taking the divergence of both sides of eq. (A6.3) we
obtain

oE

1
V-—4+=V-J=0 (A8.6)
ot €0

as the divergence of a curl is always zero. Now,

OB _ 0 o p

Voo T e
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as we may exchange the order of time and space derivatives. But V - E = p/¢; from
eq. (A6.1), so

OE 1dp

Voot Tt

Substituting this relation into eq. (A8.6) yields eq. (A8.5). The point of this demonstration
is to show that the conservation of charge is a consequence of Maxwell's equations.

. Waves. We next want to take up the topic of electromagnetic radiation. This requires a
brief review of the physics of waves.

The Wave Equation. Based on physical consideration, a wave propagating at speed ¢
along the z-axis may be modeled by the hyperbolic partial differential equation

Y _10%
ox2 2 912

This is the (one-dimensional) wave equation. It's easy to show that any function of the form
1 = f(x — ct) is a solution. This represents a wave propagating to the right. Another
solution is ) = f(z + ct), which represents a wave propagating to the left. Equation
(A9.1) is linear. This implies that if ¢); and 1), are two solutions to the wave equation, then
any linear combination of ¢); and 1), is also a solution.

(A9.1)

Sinusoidal waves and fundamental wave vocabulary. The sinusoidal waves are solutions
of (A9.1) of fundamental importance. These solutions can be written in the form

Y(x,t) = Acos(Kz — wt) (A9.2)

where ¢ = w/ K. The three coefficients A, K, and w are named and interpreted as follows.
A is the amplitude of the wave and measures its vertical size relative to the = axis. K is
called the “wave number” and specifies how the wave varies with space. If the unit of space
is the “meter,” then K specifies the number of radians per meter. w is the “angular
frequency” and specifies how the wave varies with time. If the unit of time is the “second,”
then w specifies the number of radians per second. The combined expression Kz — wt is
called the “phase” of the wave.

We can relate K and w to properties of waves that may be more familiar to the reader.
Suppose we look at a snapshot of the wave taken at a particular moment (so ¢ is fixed). The
wavelength X\ of the wave is the distance (in meters) between peaks. This is the change in =
required to change the phase by 27, so

Now fix = and consider how 1) varies with time. The period t is the amount of time
required for the phase to change by 2, so
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2
ty = —.
w

Putting these two equations together, the speed of the wave (in meters per second) is given
by

A 2n/K w
C = — = =
ty 2r/w K

as stated above. Let v denote the frequency of the wave measured in cycles per second. As
there are 27 radians per cycle, it follows that

which makes sense, as ¢ is the number of seconds per cycle.

The wave equation in space. As noted above, eq. (A9.1) is the wave equation for a wave
propagating along the x-axis. The equation for a wave propagating at speed ¢ in R? is

1 0%y
h= ——. A9.3
VY= Son (A9.3)
Some authors write eq. (A9.3) as
Ly =0
where the “wave operator” [J (also called the d'Alembert operator or “quabla”) is defined as
1 o2
O=VvV-—=—. A9.4
v c? Ot? ( )

Equation (A9.3) is linear, so any linear combination of solutions is also a solution.

Sinusoidal “plane” waves. The reader may confirm that one solution of eq. (A9.3) is given
by

Y(r,t) = Acos(K - r — wt) (A9.5)
where
”‘ = (aj7 y? Z)?
K - (K77 Ky> KZ)7
c=uw/||K]

The wave number K in eq. (A9.2) has been replaced by a “wave vector” K whose
components give the number of radians per meter in the directions of the three coordinate
axes. Ifr; and 7 are two points in R? such that 7; — 7 is perpendicular to K, then r;
and 7, are on the same “wave front”; i.e., for any time ¢,
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10.

K -r—wt=K- -ry—wt.

It follows that the wave specified by eq. (A9.4) propagates in the direction of K, the wave
fronts of eq. (A9.4) are planes perpendicular to K (which is why we call this solution “plane
waves”), and || K|| gives the number of radians per meter in the direction of propagation. If
c does not depend on w (which is the case with light, for example), then it's convenient to
write | K|| = w/c.

Spherical waves. Although plane waves are mathematically and conceptually agreeable,
they are physically problematic: it's difficult to imagine a mechanism that can generate a
plane wave that is not physically infinite in some way. Therefore, we now consider solutions
of'eq. (A9.5) whose wave fronts consist of spheres expanding at speed ¢ away from the
origin. Specifically, consider

Y= %f(r —ct). (A9.6)

We wish to show that eq. (A9.6) satisfies eq. (A9.3). It's convenient to use spherical
coordinates for this problem. Because ¢/ has no dependence on 6 or ¢, the equation for

V21 becomes
V2¢ — ig ( 28_¢>

rZ Or " or

The reader may use this formula to confirm that (A9.6) satisfies the wave equation. Notice
that the amplitude of these waves are inversely proportional to r.

Electromagnetic Radiation. We now consider solutions of Maxwell's equations in “free
space.” In a region of R® where there is no charge and no current (so p = 0 and J = 0),
Maxwell's equations become

V- -E=0, (A10.1)
OB

E=-—"—"— A10.2

V X 5 (A10.2)

A(V x B) = 8—E, (A10.3)
ot

V- -B=0. (A10.4)

The situation here is “dual” in some sense to the situation considered in electrostatics and
magnetostatics, where we allowed (constant) charge density p and (steady) currents J, but
required that E' and B not vary with time. The “trivial” solution of these equations is

E = B = 0, but we're interested in the possibility of non-trivial solutions. To start, rewrite
eq. (A10.2) as
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0B
E = —(V X E)

Now differentiate with respect to time. Under normal conditions, which we assume here,
we can exchange the order of differentiation, so

2
83:—(V><8—E>.

ot? ot
Substituting eq. (A10.3), we obtain

0*B
ot?

= —c*[V x (V x B)].

From egs. (8.4) and (A10.4),
Vx(VxB)=V(V-B)-V:B=-V'B,

SO
0°B _ 2v2p
ot?
We'll rewrite this as
1 9°B
V’B = ol (A10.5)

which we recognize as having the form of a “vector” wave equation. The reader may show
that eq. (A10.5) is actually three equations, one for each component of B:

19°B, 1 6°B, 19°B.
2

2 2
B, = ) ) ) d B, = .
VB, c? Ot? c? Ot? and -V c? Ot?

V’B, =

An exactly parallel derivation starting with eq. (A10.3) and using eq. (A10.1) yields

1 0’°FE
V2E = Z 58 (A10.6)
which actually means
1 0°E, 1 0°FE 1 0°F
25 _ x 25 y 25 _ L z
VEm—C—QatQ, VEy_c_28t2’ and VEZ—C2 92

In summary, Maxwell's equations in free space permit solutions for each component of £
and B that have the form of waves traveling with speed c, the speed of light. These waves
are electromagnetic radiation, the most familiar example being light itself.

We can say more about the nature of electromagnetic radiation. To begin, let's consider
“plane wave” solutions for £ and B. Without loss of generality, suppose that £ and B
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propagate in plane waves in the direction of the z-axis, so the wave fronts of £ and B are
perpendicular to the x-axis. This implies that £ and B can have no dependence on y or z,
SO we can write

E =E(r,t) = (E,(z,t), Ey(x,t), E,(2,1))
and
B = B(r,t) = (B,(x,t), By(x,t), B,(z,1t)).

Without going into the details (see Feynman, Chapter 20), egs. (A10.1) - (A10.4) imply that
E, =0and B, = 0, so we may write

E=E(rt) =(0,E/(z,t), E,(x,1))
and
B = B(r,t) = (0, By(z,t), B,(z,1)).

That is, all the variation in E and B is in a plane perpendicular to the direction of
propagation of the waves.

To make further headway, let's consider a “trial solution” of the following form:
E=(0,f(z—ct),0) = f(z - ct)j.

That is, E is a wave traveling to the right and the £ component of E is zero. It follows that

i j k
0B 0 0 0

0 f(x—ect) O

Hence, the z and y components of B are constant over time. As above, the only physically
interesting solution of these equations is B, = B, = 0. Hence, B is zero except in the
direction of k£, and

0B,
ot

= —f'(z — ct).

Integrating, we obtain B, = ¢! f(x — ct) plus a constant of integration. On physical
grounds again, it may be shown that the constant of integration is zero, so we conclude in
this case that

B.(z,t) = ¢ ' f(z — ct).

We may repeat this analysis under the assumption that the y component of E is zero,

E = (0,0, f(x —ct)) = f(x — ct)k.
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We may also repeat both analyses under the trial solution of a wave traveling to the left:
(EZ/7 E,) = (f(z+ct),0) and (EZ/7 E.) = (0, f(z + ct)).

Our results are summarized in the following table.

E, E. B, B.
flx—ct) |0 0 c Lz — ct)
fx+ct) |0 0 —cV f(z + ct)
0 flx —ct) | —cLf(x—ct) | O

0 flx+ect) | ctf(x+ect) |0

By the linearity of the wave equation, the general formula for E as a plane wave moving
along the x-axis is an arbitrary combination of the components given in the columns headed
E, and £, and the implied solution for B is the same combination of the components given
in the columns headed B, and B,. For example, if a wave propagating to the right is
written

E=qofi(zr—ct)j+afa(x —ct)k,

(where a; and vy are arbitrary constants, and f; and f; are arbitrary functions), then
1 ,
B = - [alfl(q: —ct)k — ag fo(x — ct)j|.

Similarly, if a wave propagating to the left is written
E=ofi(x+ct)j+ arfa(z + ct)k,

then

B = %[—alfl(a: + ct)k + as fo(x + ct)j|.

Note that E' and B are perpendicular to one another in both cases.

An important class of solutions to these equations are the sinusoidal waves. To fix ideas,
suppose E is a wave propagating to the right along the x-axis and oscillating with angular
frequency w. Then we may write E as

E =A,cos(Kz —wt)j+ A, cos(Kx —wt — a)k

where K = w/c. The parameter « is a “phase shifter” that may vary from —7 to 7. If

a = 0, then the two components of E are “in phase” and the path of E in the yz-plane is a
straight line segment from (A4,, A,) to (—A,, —A.). If a = £, then the two components
of E are 180° out of phase, and the path of E in the yz-plane is a straight line segment
from (A4,, —A,) to (—A,, A,). If « = i, then the path of E is an ellipse with semi-axes
A, and A.. For fixed z, if o = %’ﬂ' the path is traversed in a clockwise direction as ¢
increases, and if « = — %’ﬂ', the path is traversed in a counterclockwise direction as ¢
increases. (These directions of traversal are reversed if ¢ is fixed and x is allowed to
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increase.) The phase shifter o and the two amplitudes A, and A, control the “polarization”
of E. In any case, the value of B implied by this equation is

1
B = - [—AZ cos(Kx —wt —a)j+ A, cos(Kz — wt)k|.

11. Solving Maxwell's equations. In section 7 of this appendix we solved Maxwell's equations
for electrostatics and magnetostatics. We found that

E=-Vo
where the “electrostatic potential” ¢ satisfies Poisson's equation
v =L
€0
and
B=VxA

where the “vector potential” A satisfies a vector version of Poisson's equation
VZ2A = —poJ. (A11.1)
To get eq. (A11.1) we needed to impose a restriction on A, namely

V-A=0. (A11.2)

We now show how this analysis may be extended to solve Maxwell's equations in general.
For reference, here are Maxwell's equations.

p

V-E=—, (A11.3)
€0
0B
EF=—— .

V x P (A11.4)

oFE J

2 e R
c (VxB)— ot +€0, (A11.5)
V- -B=0. (A11.6)

As before, we begin with eq. (A11.6). As B is solenoidal, it follows that we may write
B=VxA (A11.7)

for some vector field A called the vector potential (as before).
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Next, substitute eq. (A11.7) into eq. (A11.4). This yields

0 0A
VxE:—&(VxA):—(Vx§>.

Hence,

0A
V x (E-i—g) =0.

In the language introduced above, E + 0 A/0t is irrotational. Therefore, there exists a
scalar field ® called the scalar potential such that

0A
F+—=-Vo.
+ ot Vv
We rewrite this as
0A
EF=-Vbd—- —. All.
\V4 5 ( 8)

As before, there's some flexibility in our choice of A. For given B and E, suppose A and
® satisfy egs. (A11.7) and (A11.8). If we make the substitution

A=A+ VY

for some scalar field v, then eq. (A11.7) will still be satisfied, but eq. (A11.8) will not.
However, if we make the simultaneous substitution

9

ot’

then both eq. (A11.7) and (A11.8) will be satisfied. The simultaneous transformation
(A, ®) — (A, D)

A=A+Vy and & =0- (A11.9)

is called a gauge transformation.

Equations (A11.7) and (A11.8) express £ and B in terms of vector potential A and a scalar
potential ®. We now substitute eqs. (A11.7) and (A11.8) into egs. (A11.3) and (A11.5) to
obtain equations for A and ¢ in terms of the “sources” p and J. This yields

0 P
2+ —(V-A) = _——
\Y +8t(v ) o
and
1 0?A 1 00
2o - . —
v c? 0t? MOJ+V(V A+02 8t>

where 11g = 1/c%¢y. To simplify the mathematics, we impose a gauge transformation (the
“Lorentz gauge”) such that
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1 0%
V- A=-——", .
e (A11.10)

Substituting eq. (A11.10) into the preceding two equations, we obtain

1 9%® P
20— ——— =00 =—-" All.11
v c? Ot? €0 ( )
and
1 9%A
2

Equation (A11.12) is actually three equations, one for each component of A:

UA, = —pode, UAy = —pod,, and UA, = —pol..

Recall that an equation of the form [Ji) = 0 is said to be a “wave equation.” Given this, you
shouldn't be too surprised to learn that an equation of the form [y = o is called a “wave
equation with a source term.” A wave equation with a source term effectively combines a
wave equation

2 l82_¢ =0
c? Ot?
and Poisson's equation
Vi =o.
To summarize, we've replaced Maxwell's four equations with the four equations
B=VxA
0A
E=-Vb—- —
ot
e = —ﬁ, and
€0

These four equations contain the same physical content as Maxwell's equations, and in many
circumstances are easier to handle. I refer the reader to Feynman for the physical
interpretation of A and ®.
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