
MATH 209: TAKE AWAYS

STEVEN J. MILLER

ABSTRACT. Below we summarize some items to take away from the class. In particular, what are
one time tricks and methods, and what are general techniques to solve a variety of problems.

1. SPECIFIC TECHNIQUES

Obviously, in a ‘service’ class such as Differential Equations, one of the major objects is clearly
to learn how to solve a variety of problems. There are often two stages to this: (1) coming up with
a tractable mathematical model that captures many of the key features; (2) solving the model.

Much of the class has been about the second point, namely solving the model. To do this we’ve
developed the theory of Ordinary Differential Equations (i.e., differential equations where every-
thing is a function of just a single variable) for a wide class of problems, including:

(1) First order linear differential equations: y′(x) + p(x)y(x) = g(x). The key idea here is
integrating factors.

(2) Separable equations: M(x) + N(y)dy/dx = 0. Here the main point is that we can write
it so that all the y-dependence is on one side and all the x-dependence on the other, so
we have reduced the problem to integrating functions of one variable. While in general we
won’t be able to find closed form solutions, we can numerically approximate these integrals.

(3) Exact equations: M(x, y) + N(x, y)dy/dx = 0 with ∂M/∂y = ∂N/∂x. Here we find
a function ψ(x, y) such that dψ/dx = M(x, y) + N(x, y)dy/dx, and thus the solution is
ψ(x, y) = c for some c.

(4) Second order linear constant coefficient homogenous equations: y′′(x)+ay(x)+by(x) =
0. We solve by guessing y(x) = exp(rx), or modifying our guess if there is a repeated root
of the characteristic polynomial r2 + ar + b = 0. Note the theory generalizes to nth order
constant coefficient differential equations.

¦ A similar analysis solves linear, constant coefficient difference equations: an+1 =
c1an + c2an−1 + c3an−2 + · · ·+ ckan−k+1.

A natural question to ask is how many systems can be modeled by these types of equations.
Fortunately, there are numerous, ranging from the Solow growth equations (separable equation) to
why double-plus-one is a bad strategy at roulette (difference equation).
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2. GENERAL SOLUTION TECHNIQUES

Below we describe three techniques for solving differential equations. These techniques are
singled out from the methods above as the ideas behind them can be generalized to work on a
variety of problems.

(1) Picard’s iteration method. This is an incredible method. Namely, to solve a first order
differential equation (with initial conditions y(0) = 0) we guess the solution is y(x) = 0,
and then use a completely specified method to determine a sequence of guesses which, un-
der weak assumptions about f (where y′(x) = f(x, y(x)) converges to the solution to the
problem. These iterative methods are very important in mathematics and its applications.
In particular, they are useful in proving fixed point theorems (these arise very frequently in
economics).

(2) Method of Undermined Coefficients: ay′′ + by′ + cy = g(t) with g(t) = eαtPn(t) (with
Pn(t) a polynomial of degree n in t) or g(t) = eαt cos(βt) or g(t) = eαt sin(βt); see also
the method of variation of parameters. What is nice about this method is that we start with a
solution to a related problem, and then modify it (in the case of variation of parameters) or
then bring in the solution to a related problem (in the method of undetermined coefficients).

(3) Series expansions: p(x)y′′(x) + q(x)y′(x) + r(x)y(x) = 0 with p(x0) 6= 0 and guess-
ing y(x) =

∑∞
n=0 an(X − x0)

n. This is but one of many expansions to guess for a so-
lution. Other popular approaches include doing a Fourier Series expansion for the guess
(y(x) =

∑∞
n=−∞ (an sin(2πnx) + bn cos(2πnx))); the exact nature of the guess depends on

the symmetry of the problem. The difficulty in practice is that in general one does not get
a nice closed form answer in the end, but rather an infinite series expansion where we have
some (but not complete) knowledge of the coefficients of the expansion. While in principle
this method is straightforward to use, the algebra can quickly become overwhelming.
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3. GENERAL TECHNIQUES

When confronted with a theorem to prove or a problem to solve, it is often not clear how to
begin. Over time, one accumulates experiences from solving similar problems. Here are some very
powerful techniques and a quick description of where you may have seen them.

(1) Adding zero / multiplying by one: The difficult part of these methods is figuring out how
to ‘do nothing’ in an intelligent way. The first example you might remember is proving the
product rule from calculus. Let A(x) = f(x)g(x). Then

A′(x) = lim
h→0

A(x + h)− A(x)

h

= lim
h→0

f(x + h)g(x + h)− f(x)g(x)

h

= lim
h→0

f(x + h)g(x + h)-f(x)g(x+h) + f(x)g(x+h)− f(x)g(x)

h

= lim
h→0

[
f(x + h)g(x + h)− f(x)g(x + h)

h
+

f(x)g(x + h)− f(x)g(x)

h

]

= lim
h→0

f(x + h)− f(x)

h
g(x + h) + lim

h→0
f(x)

g(x + h)− g(x)

h

= lim
h→0

f(x + h)− f(x)

h
lim
h→0

g(x + h) + f(x) lim
h→0

g(x + h)− g(x)

h
= f ′(x)g(x) + f(x)g′(x). (3.1)

In our class, we’ve seen this a few times. One was in finding the series expansion to
xy′′(x) + y′(x) + xy(x) = 0 about x0 = 1, where we wrote x as x− 1 + 1.

(2) Numerical accuracy: Frequently we can write down solutions to differential equations,
but to actually compute with these quantities can be difficult. For example, the method
of integrating factors solves many first order linear differential equations, but involves two
integrals which typically can only be approximated numerically. Thus it is very important
to have an idea of how accurate an expansion is. On a related note, we frequently need to
do computations quickly. Thus while there are straightforward ‘naive’ approaches to do a
calculation, these can take too long in practice to be useful. Frequently an intelligent re-
arrangement of the algebra can lead to an incredible time savings. Examples range from
telescoping series (which is actually one of the key ingredients in the proof of the fun-
damental theorem of calculus) to Horner’s algorithm (to evaluate polynomials rapidly) to
Strassen’s and others algorithms (to compute products of matrices). Another example, from
linear algebra, is diagonalizing matrices. We talked about using matrices to model discrete
time systems (Markov models); this requires us to be able to compute An for large n. If A
is diagonalizable (say S−1AS = Λ so A = SΛS−1) then A2 = SΛS−1SΛS−1 = SΛ2S−1,
and more generally we see An = SΛnS−1 (and Λn is easily computed as Λ is a diagonal
matrix).

(3) Linear combinations: One of the most important techniques we’ve seen is the power of
linear combinations of solutions or approaches. The first instance was in seeing how to find
additional solutions to difference or differential equations with constant coefficients whose



4 STEVEN J. MILLER

characteristic polynomial has repeated roots. For example, consider an+2−10an+1+25an =
0. The characteristic polynomial arises from guessing an = rn. We find r2−10r+25 = 0, or
(r−5)2 = 0. Thus we do not have two distinct roots. Consider instead a related polynomial
which has two distinct roots, say r1 and r2. The two solutions are rn

1 and rn
2 . While we may

take the two independent solutions as c1r
n
1 and c2r

n
2 , we could also take the solutions to be

b1r
n
1 + b2r

n
2 and b′1r

n
1 + b′2r

n
2 for ‘most’ b1, b

′
1, b2, b

′
2. There are particularly good choices

to take: (rn
1 + rn

2 )/(r1 + r2) and (rn
2 − rn

1 )/(r2 − r1). These are not the most ‘obvious’
combinations of the two solutions rn

1 and rn
2 , but there is an advantage. The first converges

to rn
1 as r2 → r1; the second, however, is interesting. As r2 → r1 we get 0/0, and thus need

to use L’Hopital’s rule or the definition of the derivative and find

lim
r2→r1

rn
2 − rn

1

r2 − r1

= lim
h→0

(r1 + h)n − rn
1

h
= nrn−1

1 ; (3.2)

and, of course, since r1 is a constant we see we may take nrn
1 and not nrn−1

1 as the second
solution. Thus we find the second solution by taking an appropriate linear combination.

Another instance of this is in the proof of Simpson’s rule. We are trying to approximate
the area under y = f(x) from a to b. We have the Median method, using M = f

(
a+b
2

) ·
(b−a); we have the Trapezoid method, using T = f(a)+f(b)

2
· (b−a). Each of these methods

has an error of size (b − a)3 (the first has an error − 1
24

f ′′(a)(b − a)3 + O((b − a)4) and
the second has an error of size 1

12
f ′′(a)(b − a)3 + O((b − a)4); however, by taking the

combination 2
3
M + 1

3
T , we get an error of size O((b − a)5) (while one would expect an

error of size O((b − a)4), there is some extra cancelation). This is phenomenal; somehow
by taking the ‘right’ combination of two methods that have errors of size (b − a)3 we get
something with an error of size (b− a)5.

There are many other situations where the appropriate linear combinations lead to better
results than one might initially expect. Another example is in economics or finance. Imagine
there are two independent stocks (or mutual funds, investments, ...), denoted X1 and X2

with expected mean returns µ1 = µ2 = µ and variances σ2
1 = σ2

2 = σ2. Consider the
allocation of our funds among the two stocks, where ω percent of our money goes to X1

or 1 − ω to X2. Thus our new combined investment is X = ωX1 + (1 − ω)X2. We
have the expected value of X is ωµ + (1 − ω)µ = µ (ie, the new combined investment
has the same expected mean return); however, the variance of X is ω2σ2

1 + (1 − ω)2σ2
2 =

(ω2 + (1− ω)2) σ2 (this is because, for independent random variables, Var(aX1 + bX2) =
a2Var(X1) + b2Var(X2)). Note that ω2 + (1 − ω)2 ≤ 1; in fact, its minimum value arises
when ω = 1/2, in which it is 1/2. Thus the new combined investment has the same expected
return but a smaller variance (ie, less uncertainty).

All of these instances are examples of taking appropriate weighted combinations of the
quantities of interest; these are just a few of numerous instances of the power of this method.
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