PROBLEMS ON DIFFERENCE EQUATIONS

STEVEN J. MILLER

ABSTRACT. Below we give some exercises on linear difference equations with constant coefficients. These problems are taken from [MT-B].

1. EXERCISES

Exercise 1.1 (Recurrence Relations). Let $\alpha_0, \ldots, \alpha_{k-1}$ be fixed integers and consider the recurrence relation of order k

$$x_{n+k} = \alpha_{k-1}x_{n+k-1} + \alpha_{k-2}x_{n+k-2} + \dots + \alpha_1x_{n+1} + \alpha_0x_n.$$
(1.1)

Show once k values of x_m are specified, all values of x_n are determined. Let

$$f(r) = r^{k} - \alpha_{k-1}r^{k-1} - \dots - \alpha_{0}; \qquad (1.2)$$

we call this the characteristic polynomial of the recurrence relation. Show if $f(\rho) = 0$ then $x_n = c\rho^n$ satisfies the recurrence relation for any $c \in \mathbb{C}$.

Exercise 1.2. Notation as in the previous problem, if f(r) has k distinct roots r_1, \ldots, r_k , show that any solution of the recurrence equation can be represented as

$$x_n = c_1 r_1^n + \dots + c_k r_k^n \tag{1.3}$$

for some $c_i \in \mathbb{C}$. The Initial Value Problem is when k values of x_n are specified; using linear algebra, this determines the values of c_1, \ldots, c_k . Investigate the cases where the characteristic polynomial has repeated roots. For more on recursive relations, see [GKP], §7.3.

Exercise 1.3. Solve the Fibonacci recurrence relation $F_{n+2} = F_{n+1} + F_n$, given $F_0 = F_1 = 1$. Show F_n grows exponentially, i.e., F_n is of size r^n for some r > 1. What is r? Let $r_n = \frac{F_{n+1}}{F_n}$. Show that the even terms r_{2m} are increasing and the odd terms r_{2m+1} are decreasing. Investigate $\lim_{n\to\infty} r_n$ for the Fibonacci numbers. Show r_n converges to the golden mean, $\frac{1+\sqrt{5}}{2}$. See [PS2] for a continued fraction involving Fibonacci numbers.

Exercise 1.4 (Binet's Formula). For F_n as in the previous exercise, prove

$$F_{n-1} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$
(1.4)

This formula should be surprising at first: F_n is an integer, but the expression on the right involves irrational numbers and division by 2.

Exercise 1.5. Notation as in the previous problem, more generally for which positive integers m is

$$\frac{1}{\sqrt{m}} \left[\left(\frac{1+\sqrt{m}}{2} \right)^n - \left(\frac{1-\sqrt{m}}{2} \right)^n \right]$$
(1.5)

Date: February 4, 2009.

an integer for any positive integer n?

Exercise^(h) **1.6** (Zeckendorf's Theorem). Consider the set of distinct Fibonacci numbers: $\{1, 2, 3, 5, 8, 13, ...\}$. Show every positive integer can be written uniquely as a sum of distinct Fibonacci numbers where we do not allow two consecutive Fibonacci numbers to occur in the decomposition. Equivalently, for any *n* there are choices of $\epsilon_i(n) \in \{0, 1\}$ such that

$$n = \sum_{i=2}^{\ell(n)} \epsilon_i(n) F_i, \quad \epsilon_i(n) \epsilon_{i+1}(n) = 0 \text{ for } i \in \{2, \dots, \ell(n) - 1\}.$$
 (1.6)

Does a similar result hold for all recurrence relations? If not, can you find another recurrence relation where such a result holds?

Exercise^(hr) 1.7. Assume all the roots of the characteristic polynomial are distinct, and let λ_1 be the largest root in absolute value. Show for almost all initial conditions that the coefficient of λ_1 is non-zero.

Exercise^(hr) **1.8.** Consider 100 tosses of a fair coin. What is the probability that at least three consecutive tosses are heads? What about at least five consecutive tosses? More generally, for a fixed k what can you say about the probability of getting at least k consecutive heads in N tosses as $N \to \infty$?

REFERENCES

- [GKP] R. L. Graham, D. E. Knuth, and O. Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, Addison-Wesley, Reading, MA, 1988.
- [Kos] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001
- [MT-B] S. J. Miller and R. Takloo-Bighash, *An Invitation to Modern Number Theory*, Princeton University Press, Princeton, NJ, 2006.
- [PS2] A. van der Poorten and J. Shallit, *A specialised continued fraction*, Canad. J. Math. **45** (1993), no. 5, 1067–1079.

E-mail address: Steven.J.Miller@williams.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MA 01267