MATH 209: HW DUE APRIL 29ND

INSTRUCTOR: STEVEN MILLER

Question 1 (30 points): Using the Euler (or tangent line) method with step size h = .5 and h = .25, find the approximate values of the solution to y'(t) = 3 + t - y(t) with y(0) = 1 at the points 0, .25, .5, .75 and 1. Compare your answer to the exact solution to this equation.

Question 2 (20 points) : Let

$$A = \begin{pmatrix} 1 & 2 & \pi \\ \sqrt{7} & 5 & 0 \\ 2 & e & 1 \end{pmatrix}, \quad \overrightarrow{x}(0) = \begin{pmatrix} 1 \\ \pi \\ \sqrt{2009} \end{pmatrix}.$$

Find the solution to $\overrightarrow{x}'(t) = A\overrightarrow{x}(t)$ with A and $\overrightarrow{x}(0)$ as above. Hint: you don't need to be able to work with your solution, just write the solution down.

Question 3 (20 points): (1) Solve $y'(t) = ay(t) + by(t)^2$ with parameters a, b > 0 and $y(0) = y_0 \ge 0$. (2) Solve $y''(t) + y(t) = \tan(t)$ for $0 < t < \pi/2$. Hint: some of the techniques from chapter 3 might be useful.

Question 4 (10 points): Let f(x) be a continuous, strictly increasing differentiable function from $[0, \infty)$ to the real numbers such that

$$(f(x))^3 = \int_0^x t (f(t))^2 dt$$

for any $x \ge 0$. Determine f(x) for all $x \ge 0$. Aside: this problem is similar to something we have done previously in class, and thus there is a reason it is included in the homework!

Date: April 27, 2009.