
MATH 209: PROOF OF EXISTENCE / UNIQUENESS
THEOREM FOR FIRST ORDER DIFFERENTIAL

EQUATIONS

INSTRUCTOR: STEVEN MILLER

Abstract. We highlight the proof of Theorem 2.8.1, the existence
/ uniqueness theorem for first order differential equations. In par-
ticular, we review the needed concepts of analysis, and comment
on what advanced material from Math 301 / 305 (real analysis) is
needed. We include appendices on the Mean Value Theorem, the
Intermediate Value Theorem, and Mathematical Induction. The
only result we need which is non-elementary and is not proved
in these notes is the Lebesgue Dominated Convergence Theorem.
This is a major result, and allows us to interchange a limit and an
integral; however, it should be possible to prove the special case we
need elementarily (the proof is left as an exercise for the reader).
There are numerous problems throughout the handout so that you
can test your understanding of the material if desired.

1. Statement

Theorem 1.1. Let f and ∂f/∂y be continuous functions on the rec-
tangle R = [−a, a]× [−b, b]. Then there is an h ≤ a such that there is a
unique solution to the differential equation dy/dt = f(t, y) with initial
condition y(0) = 0 for all t ∈ (−h, h).

Following the textbook, we have elected to simplify notation and
not state the theorem in the greatest generality. We have performed
two translations so that we assume the time interval is centered at 0
and the y values are centered at 0. There is no loss in such generality.
To see this, consider instead the equation du/dτ = g1(τ, u(τ)) with
u(τ0) = u0. Clearly this is the most general such first order equation;
we now show that we may transform this into the form of Theorem
1.1. Let v(τ) = u(τ) − u(τ0). Note v(τ0) = u(τ0) − u(τ0) = 0, and as
dv/dτ = du/dτ we see dv/dτ = g1(τ, v(τ) + u(τ0)) = g2(τ, v(τ)). This
shows that there is no loss in generality in assuming the initial value
is zero. A similar argument shows we may change the time variable to
assume the initial time is zero.
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Exercise 1.2. Find the time change of variables to prove that we may
assume the time variable is centered at 0.

2. Analysis pre-requisites

We need several results from Real Analysis, which we now collect
below.

Lemma 2.1. Let g : R → R be a continuous function on a finite
interval [α, β]. Then there is some M such that |g(x)| ≤ M . If instead
g : R2 → R2 is a continuous function on a finite rectangle [α, β]× [γ, δ],
then there is an M such that |g(x, y)| ≤ M .

A nice feature of many analysis proofs is that the exact value of
M doesn’t matter, instead what is important is that there is some
finite value for M which works. As an example, consider the function
g(x) = e−x2 − x4 + x2 cos(2x) on the interval [0, 2]. We have

|g(x)| ≤ |e−x2|+ |x4|+ |x2| · | cos(2x)|; (1)

this is a very wasteful way to find an upper bound for g, but it will yield
one. The largest the first term can be is 1, the largest the second is
24 = 16, and the largest the last is 22 = 4; thus |g(x)| ≤ 1+16+4 = 21.

Exercise 2.2. The trivial estimate above isn’t off by much; the actual
maximum value is about 19. Determine the optimal value. Unfortu-
nately if you try to use calculus and find the critical points, you end up
with an extremely difficult problem to solve. You’ll have to use New-
ton’s method or divide and conquer. Alternatively, if you can show the
first derivative is positive for x > 1 you know the maximum value is at
the endpoint. One must be careful as we care about the maximum of
the absolute value, and thus you have to break the analysis into cases
where g is positive and negative. This is one reason why we often just
estimate crudely.

Definition 2.3 (Absolutely and Conditionally Convergent Series). We
say a series is absolutely convergent if

∑∞
n=0 |an| converges to some

finite number a; if
∑∞

n=0 |an| diverges but
∑∞

n=0 an converges to a finite
number a, we say the series is conditionally convergent.

Example 2.4. The series
∑∞

n=0 1/2n is absolutely convergent, while
the series

∑∞
n=0(−1)n/n is only conditionally convergent.
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Lemma 2.5 (Comparison Test). Let {bn}∞n=0 be a sequence of non-
negative numbers whose sum converges; this means

∑∞
n=0 bn = b < ∞

(and this immediately implies limn→∞ bn = 0). If {an}∞n=0 is another
sequence of real numbers such that |an| ≤ bn then

∑∞
n=0 an converges

to some finite number a.

Exercise 2.6. If
∑∞

n=0 an converges absolutely, show limn→∞ an = 0.

Remark 2.7. In Lemma 2.5, we don’t need |an| ≤ bn for all n; it
suffices that there is some N such that for all n ≥ N we have |an| ≤ bn.
This is because the convergence or divergence of a series only depends
on the tail of the sequence; we can remove finitely many values without
changing the limiting behavior (convergence or divergence).

Example 2.8. We know
∑∞

n=0 rn = 1
1−r

if |r| < 1. Thus the series
an = (−1)n/n! converges as |an| ≤ (1/2)n for n ≥ 1.

Exercise 2.9. Prove the geometric series formula: if |r| < 1 then∑∞
n=0 rn = 1

1−r
.

Other useful series to know are the p-series. Let C > 0 be any real
number and let p > 0. Then

∑∞
n=1

C
np converges if p > 1 and diverges

if p ≤ 1.

Exercise 2.10. Prove
∑∞

n=1
1

n2+2n+5
converges.

Exercise 2.11. Prove
∑∞

n=1 xn/n! converges for all x (or at least for
|x| < 1).

Theorem 2.12 (Lebesgue’s Dominated Convergence Theorem). Let
fn be a sequence of continuous functions such that (1) limn→∞ fn(x) =
f(x) for some continuous function f , and (2) there is a non-negative
continuous function g such that |fn(x)| and |f(x)| are at most g(x) for
all x and

∫∞
−∞ g(x)dx is finite. Then

lim
n→∞

∫ ∞

−∞
fn(x)dx =

∫ ∞

−∞
lim

n→∞
fn(x)dx =

∫ ∞

−∞
f(x)dx. (2)

We have stated this result with significantly stronger conditions than
is necessary, as these are the conditions that hold in our problem of
interest.

Exercise 2.13. Let fn(x) = 0 if x ≤ n, n(x − n) if n ≤ x ≤ n + 1,
n(n + 2 − x) if n + 1 ≤ x ≤ n + 2, and 0 otherwise; thus fn(x) is
a triangle of height n and width 2 centered at n + 1. Show that for
any x, limn→∞ fn(x) = 0. Why can’t we use Lebesgue’s Dominated
Convergence Theorem to conclude that limn→∞

∫∞
−∞ fn(x)dx = 0?
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Exercise 2.14. Prove Theorem 2.12.

The last result we need is the Mean Value Theorem; we give a proof
in Appendix A (the proof uses the Intermediate Value Theorem, which
we also prove).

Theorem 2.15 (Mean Value Theorem (MVT)). Let h(x) be differen-
tiable on [a, b], with continuous derivative. Then

h(b)− h(a) = h′(c) · (b− a), c ∈ [a, b]. (3)

Remark 2.16 (Application of the MVT). For us, one of the most im-
portant applications of the Mean Value Theorem is to bound functions
(or more exactly, the difference between a function evaluated at two
nearby points). For example, let us assume that f is a continuously
differentiable function on [0, 1]. This means that the derivative f ′ is
continuous, so by Lemma 2.1 there is an M so that |f ′(w)| ≤ M for all
w ∈ [0, 1]. Thus we can conclude that |f(x)− f(y)| ≤ M |x− y|. This
is because the Mean Value Theorem gives us the existence of a c ∈ [0, 1]
such that f(x)− f(y) = f ′(c)(x− y); taking absolute values and noting
|f ′(c)| ≤ max0≤w≤1 |f ′(w)|, which by Lemma 2.1 is at most M , yields
the claim.

Exercise 2.17. Let f(x) = ex2−4 − x2 sin(x2 + 2x) + x+1
x2+5

. Prove
|f(x)− f(y)| ≤ 6|x− y| whenever x, y ∈ [0, 2].

3. Step 1 of the Proof of Theorem 1.1

In the proof of Theorem 1.1 (see the textbook), we use Picard’s
iteration method to construct a sequence of functions φn(t) by setting
φ0(t) = 0 and

φn+1(t) =

∫ t

0

f (s, φn(s)) ds. (4)

Note that φn(0) = 0 for all n, which is good (as we are trying to
solve the differential equation dy/dt = f(t, y) with initial condition
y(0) = 0).

We want to prove two facts: first, that φn(t) exists for all n, and
second that it is continuous. If φn(t) exists for some n, then φn+1(t)
exists as well. This is because

φn+1(t) =

∫ t

0

f(s, φn(s))ds, (5)
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and the integral of a continuous function is continuous (regard f(s, φn(s))
as some new function, say g(s), and now we can use our results from
first year calculus). The only problem is that we want φn+1(t) to always
lie in the interval [−b, b].

Recall that we are trying to solve the differential equation dy/dt =
f(t, y) for t ∈ [−a, a] and y ∈ [−b, b]. As f is continuous, by Lemma
2.1 there is an M such that |f(t, y)| ≤ M for all t ∈ [−a, a] and all
y ∈ [−b, b]. If we restrict to t ∈ [−h, h] for h ≤ min(b/M, a), then the
integral ∫ t

0

f(s, φn(s))ds (6)

is at most M |t| ≤ Mh ≤ b. We see now why we restricting to t ∈ [−h, h]
is potentially needed; this ensures that φn+1(t) takes on values in [−b, b].

4. Step 2 in the Proof of Theorem 1.1

We want to show that limn→∞ φn(t) exists for all t (and is continu-
ous! ). We write φn(t) as

φn(t) =
n∑

k=1

(φn(t)− φn−1(t)) , (7)

remembering that φ0(t) = 0. Thus

φ3(t) = (φ1(t)− 0) + (φ2(t)− φ1(t)) + (φ3(t)− φ2(t)) ; (8)

you might recall that this is a telescoping sum. These sums are often
easy to analyze (and play a role in some of the proofs of the Funda-
mental Theorem of Calculus).

We now show that limn→∞ φn(t) exists for all t. We can do this
for any r < 1 by making sure h is sufficiently small (remember we
have restricted to studying only t ∈ (−h, h)). Let us fix some t ∈
(−h, h). Assume we could show that there is some r < 1 such that
|φk(t)− φk−1(t)| ≤ rk for all k. Then for this t the limit exists by
the Comparison Test (Lemma 2.5). (To use the comparison test, we
let bn = rn and an = φn(t) − φn−1(t), and note that limn→∞ φn(t) =∑∞

n=1 an.
Thus we are reduced to showing that there is an r < 1 with

|φk(t)− φk−1(t)| ≤ rk. (9)

This will follow from using the Mean Value Theorem to estimate the
integrals for φk and φk−1 and Mathematical Induction (for a review
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of Mathematical Induction, see Appendix B. Recalling that φk(t) =∫ t

0
f(s, φk−1(s))ds and similarly for φk−1(s), we find

φk(t)− φk−1(t) =

∫ t

0

[f(s, φk−1(s))− f(s, φk−2(s))] ds. (10)

We now apply the Mean Value Theorem (Theorem 2.15) to the function
g(y) = f(s, y). We take our two points to be φk−1(s) and φk−2(s). Thus
there is some point ck(s) between φk−1(s) and φk−2(s) such that

g (φk−1(s))− g (φk−2(s)) = g′(ck(s)) · (φk−1(s)− φk−2(s)) ; (11)

we chose to write the point as ck(s) to remind ourselves that it depends
on k and s (in particular, we are doing this for every s in the integral).
Noting that g′(y) = ∂f/∂y, we see we have shown

φk(t)− φk−1(t) =

∫ t

0

∂f

∂y
(s, ck(s)) · (φk−1(s)− φk−2(s)) ds. (12)

We now proceed by induction. We assume that we have already shown
|φk−1(s)− φk−2(s)| ≤ rk−1 for s ≤ t. We substitute this into (12), and
use Lemma 2.1 to bound ∂f/∂y by M and find

|φk(t)− φk−1(t)| ≤
∫ t

0

Mrk−1ds = Mtrk−1 ≤ Mhrk−1. (13)

As long as we choose h so that Mh < r (i.e., h < r/M), then
we obtain the desired result!

Exercise 4.1. Give the details for the proof by induction. In particular,
do the basis case and the inductive step carefully.

We now want to show that φ(t) = limn→∞ φn(t) is continuous. (It
better be continuous, as we want it to be the solution to the differential
equation, and if it isn’t continuous then it can’t be differentiable!). To
show φ is continuous, we must show that given any ε > 0 there is a
δ > 0 such that |t2 − t1| < δ implies |φ(t2)− φ(t1)| < ε. For notational
convenience assume t1 < t2. We have

φ(t2)− φ(t1) = lim
n→∞

φn(t2)− lim
n→∞

φn(t1)

= lim
n→∞

(φn(t2)− φn(t1))

= lim
n→∞

∫ t2

t1

f(s, φn(s))ds (14)

(the last line follows from the fact that φ(t1) is an integral from 0 to t1
while φn(t2) is an integral from 0 to t2. By Lemma 2.1, there is an M
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such that |f(s, y)| ≤ M . Thus

|φ(t2)− φ(t1)| ≤
∫ t2

t1

Mds = M |t2 − t1| ≤ Mδ; (15)

therefore as long as we choose δ < ε/M we see that |φ(t2)− φ(t1)| < ε.

5. Step 3 in the Proof of Theorem 1.1

In this step we show that the limit function φ(t) = limn→∞ φn(t)
satisfies the differential equation dy/dt = f(t, y) with initial condition
y(0) = 0 (ie, taking y(t) = φ(t) gives a solution). From construction,
it is clear that φ(0) = 0 as each φn(0) = 0. The difficulty is showing
that dφ/dt = f(s, φ). To see this, we argue as follows:

φ(t) = lim
n→∞

φn(t)

= lim
n→∞

∫ t

0

f(s, φn−1(s))ds. (16)

We want to move the limit inside the integral; this can be done be-
cause the conditions of Lebesgue’s Dominated Convergence Theorem
(Theorem 2.12) are met (all functions are continuous, and we may take
g(x) = Mh to be the bounding function required by the theorem).
Thus

φ(t) =

∫ t

0

lim
n→∞

f(s, φn−1(s))ds

=

∫ t

0

f(s, lim
n→∞

φn−1(s))ds, (17)

where the last step (moving the limit inside the function) follows from
the fact that f is continuous in each variable. Thus we have shown

φ(t) =

∫ t

0

f(s, φ(s))ds, (18)

and all functions are continuous. Therefore the Fundamental Theorem
of Calculus now yields φ′(t) = f(s, φ(t)).
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6. Step 4 in the Proof of Theorem 1.1

The last result to be shown is that the solution is unique. The proof
of this is similar to Step 2. We assume there is another solution ψ(t)
and we find

φ(t)− ψ(t) =

∫ t

0

(f(s, φ(t))− f(s, ψ(t))) ds. (19)

If the two functions are not the same, then there is an ε > 0 such that,
for some t, |φ(t)− ψ(t)| > ε.

Let

m = max
0≤t≤h

|φ(x)− ψ(x)| (20)

and let M be a bound for ∂f/∂y. Using the Mean Value Theorem we
find

|φ(t)− ψ(t)| ≤
∫ t

0

M |φ(s)− ψ(s)| ds ≤ M |t|m ≤ Mhm. (21)

If we choose h < ε/2mM , this implies that for all t < h, |φ(t) −
ψ(t)| < ε/2, which contradicts the fact that there was some t where
the difference was at least ε.

Appendix A. Proof of the Mean Value Theorem

We will use the Intermediate Value Theorem to prove the Mean Value
Theorem.

Theorem A.1 (Intermediate Value Theorem (IVT)). Let f be a con-
tinuous function on [a, b]. For all C between f(a) and f(b), there exists
a c ∈ [a, b] such that f(c) = C. In other words, all intermediate values
of a continuous function are obtained.

Proof. Here is a sketch of a proof using the method of Divide and
Conquer. Without loss of generality, assume f(a) < C < f(b). Let x1

be the midpoint of [a, b]. If f(x1) = C we are done. If f(x1) < C, we
look at the interval [x1, b]. If f(x1) > C we look at the interval [a, x1].

In either case, we have a new interval, call it [a1, b1], such that
f(a1) < C < f(b1), and the interval has size half that of [a, b]. Con-
tinuing in this manner, constantly taking the midpoint and looking at
the appropriate half-interval, we see one of two things may happen.

First, we may be lucky and one of the midpoints may satisfy f(xn) =
C. In this case, we have found the desired point c.
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Second, no midpoint works. Thus, we divide infinitely often, getting
a sequence of points xn. This is where rigorous mathematical analysis
is required.

We claim the sequence of points xn converge to some number X ∈
(a, b). We have an infinite sequence of intervals {In}∞n=1 such that
In+1 ⊂ In and the length of In+1 is half that of In. Clearly there
cannot be two points in the intersection of all the In’s. (If there were
two points, say α and β, then all points between α and β would also be
in the intersection of all these intervals; this is impossible as In just isn’t
big enough once n is so large that the length of In is less than |β−α|.)
Thus we are reduced to showing there is one point in the intersection of
all these intervals, or equivalently that the xn’s converge to some point
X. This is where some rigorous mathematical analysis is required.

Clearly the limit X can’t be an endpoint. We keep getting smaller
and smaller intervals (of half the size of the previous and contained in
the previous) where f(x) < C at the left endpoint, and f(x) > C at
the right endpoint. By continuity at the point X, eventually f(x) must
be close to f(X) for x close to X.

If f(X) < C, then eventually the right endpoint cannot be greater
than C; if f(X) > C, eventually the left endpoint cannot be less than
C. Thus, f(X) = C. ¤
Exercise A.2. Prove that the sequence of points xn converges to an
X ∈ (a, b).

Proof of the Mean Value Theorem. To prove the Mean Value Theorem,
it suffices to prove a special case known as Rolle’s Theorem, namely
that if f is differentiable on [a, b] and f(a) = f(b) = 0, then there exists
a c ∈ [a, b] such that f ′(c) = 0.

To see why it suffices to show Rolle’s theorem is true, consider the
function

h(x) = f(x)− f(b)− f(a)

b− a
(x− a)− f(a). (22)

Note h(a) = f(a)−f(a) = 0 and h(b) = f(b)−(f(b)−f(a))−f(a) = 0.
Thus, the conditions of Rolle’s Theorem are satisfied for h(x), and there
is some c ∈ [a, b] such that h′(c) = 0. But

h′(c) = f ′(c)− f(b)− f(a)

b− a
. (23)

Rewriting yields f(b) − f(a) = f ′(c) · (b − a). Thus, it is sufficient to
prove Rolle’s Theorem to prove the MVT.

We now prove Rolle’s theorem. Without loss of generality, assume
f ′(a) and f ′(b) are non-zero (if either were zero, we would be done).
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Multiplying f(x) by −1 if needed, we may assume f ′(a) > 0.

Case 1: f ′(b) < 0: As f ′(a) > 0 and f ′(b) < 0, the Intermediate
Value Theorem, applied to f ′(x), asserts that all intermediate values
are attained. As f ′(b) < 0 < f ′(a), this implies the existence of a
c ∈ (a, b) such that f ′(c) = 0.

Case 2: f ′(b) > 0: f(a) = f(b) = 0, and the function f is increasing
at a and b. If x is real close to a, then f(x) > 0 because f ′(a) > 0.
This follows from the fact that

f ′(0) = lim
x→0

f(x)− f(0)

x
. (24)

As f ′(0) > 0, the limit is positive. As the denominator is positive for
x > 0, the numerator must be positive. Thus, f(x) must be greater
than f(0) for small x.

Similarly, f ′(b) > 0 implies f(x) < f(b) = 0 for x near b.
Therefore, the function f(x) is positive for x slightly greater than a

and negative for x slightly less than b. If the first derivative were always
positive, then f(x) could never be negative as it starts at 0 at a. This
can be seen by again using the limit definition of the first derivative to
show that if f ′(x) > 0, then the function is increasing near x. See the
next section for more details.

Thus, the first derivative cannot always be positive. Either there
must be some point y ∈ (a, b) such that f ′(y) = 0 (and we are then
done!) or f ′(y) < 0. By the Intermediate Value Theorem, as 0 is
between f ′(a) (which is positive) and f ′(y) (which is negative), there
is some c ∈ (a, y) ⊂ [a, b] such that f ′(c) = 0. ¤

Appendix B. Proofs by Induction

Assume for each positive integer n we have a statement P (n) which
we desire to show is true. P (n) is true for all positive integers n if the
following two statements hold:

• Basis Step: P (1) is true;
• Inductive Step: whenever P (n) is true, P (n + 1) is true.

This technique is called Proof by Induction, and is a very useful
method for proving results. The reason the method works follows from
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basic logic. We assume the following two sentences are true:

P (1) is true

∀n ≥ 1, P (n) is true implies P (n + 1) is true. (25)

Set n = 1 in the second statement. As P (1) is true, and P (1) implies
P (2), P (2) must be true. Now set n = 2 in the second statement. As
P (2) is true, and P (2) implies P (3), P (3) must be true. And so on,
completing the proof. Verifying the first statement the basis step and
the second the inductive step. In verifying the inductive step, note
we assume P (n) is true; this is called the inductive assumption.
Sometimes instead of starting at n = 1 we start at n = 0, although in
general we could start at any n0 and then prove for all n ≥ n0, P (n) is
true.

We give three of the more standard examples of proofs by induction,
and one false example; the first example is the most typical.

B.1. Sums of Integers. Let P (n) be the statement
n∑

k=1

k =
n(n + 1)

2
. (26)

Basis Step: P (1) is true, as both sides equal 1.
Inductive Step: Assuming P (n) is true, we must show P (n+1) is true.

By the inductive assumption,
∑n

k=1 k = n(n+1)
2

. Thus

n+1∑

k=1

k = (n + 1) +
n∑

k=1

k

= (n + 1) +
n(n + 1)

2

=
(n + 1)(n + 1 + 1)

2
. (27)

Thus, given P (n) is true, then P (n + 1) is true.

Exercise B.1. Prove
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
. (28)

Find a similar formula for the sum of k3.

Exercise B.2. Show the sum of the first n odd numbers is n2, i.e.,
n∑

k=1

(2k − 1) = n2. (29)
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Remark B.3. We define the empty sum to be 0, and the empty product
to be 1. For example,

∑
n∈N,n<0 1 = 0.

B.2. Divisibility. Let P (n) be the statement 133 divides 11n+1 +
122n−1.

Basis Step: A straightforward calculation shows P (1) is true: 111+1 +
122−1 = 121 + 12 = 133.
Inductive Step: Assume P (n) is true, i.e., 133 divides 11n+1 + 122n−1.
We must show P (n+1) is true, or that 133 divides 11(n+1)+1+122(n+1)−1.
But

11(n+1)+1 + 122(n+1)−1 = 11n+1+1 + 122n−1+2

= 11 · 11n+1 + 122 · 122n−1

= 11 · 11n+1 + (133 + 11)122n−1

= 11
(
11n+1 + 122n−1

)
+ 133 · 122n−1.(30)

By the inductive assumption 133 divides 11n+1 +122n−1; therefore, 133
divides 11(n+1)+1 + 122(n+1)−1, completing the proof.

Exercise B.4. Prove 4 divides 1 + 32n+1.

B.3. The Binomial Theorem. We prove the Binomial Theorem.
First, recall that

Definition B.5 (Binomial Coefficients). Let n and k be integers with
0 ≤ k ≤ n. We set (

n

k

)
=

n!

k!(n− k)!
. (31)

Note that 0! = 1 and
(

n
k

)
is the number of ways to choose k objects

from n (with order not counting).

Lemma B.6. We have(
n

k

)
=

(
n

n− k

)
,

(
n

k

)
+

(
n

k − 1

)
=

(
n + 1

k

)
(32)

Exercise B.7. Prove Lemma B.6.

Theorem B.8 (The Binomial Theorem). For all positive integers n
we have

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (33)
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Proof. We proceed by induction.
Basis Step: For n = 1 we have

1∑

k=0

(
1

k

)
x1−kyk =

(
1

0

)
x +

(
1

1

)
y = (x + y)1. (34)

Inductive Step: Suppose

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (35)

Then using Lemma B.6 we find that

(x + y)n+1 = (x + y)(x + y)n

= (x + y)
n∑

k=0

(
n

k

)
xn−kyk

=
n∑

k=0

(
n

k

)
xn+1−kyk +

(
n

k

)
xn−kyk+1

= xn+1 +
n∑

k=1

{(
n

k

)
+

(
n

k − 1

)}
xn+1−kyk + yn+1

=
n+1∑

k=0

(
n + 1

k

)
xn+1−kyk.

(36)

This establishes the induction step, and hence the theorem. ¤

B.4. False Proofs by Induction. Consider the following: let P (n)
be the statement that in any group of n people, everyone has the same
name. We give a (false!) proof by induction that P (n) is true for all n!

Basis Step: Clearly, in any group with just 1 person, every person
in the group has the same name.

Inductive Step: Assume P (n) is true, namely, in any group of n
people, everyone has the same name. We now prove P (n+1). Consider
a group of n + 1 people:

{1, 2, 3, . . . , n− 1, n, n + 1}. (37)

The first n people form a group of n people; by the inductive assump-
tion, they all have the same name. So, the name of 1 is the same as
the name of 2 is the same as the name of 3 . . . is the same as the
name of n.

Similarly, the last n people form a group of n people; by the inductive
assumption they all have the same name. So, the name of 2 is the same
as the name of 3 . . . is the same as the name of n is the same as the
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name of n + 1. Combining yields everyone has the same name! Where
is the error?

If n = 4, we would have the set {1, 2, 3, 4, 5}, and the two sets of 4
people would be {1, 2, 3, 4} and {2, 3, 4, 5}. We see that persons 2, 3
and 4 are in both sets, providing the necessary link.

What about smaller n? What if n = 1? Then our set would be
{1, 2}, and the two sets of 1 person would be {1} and {2}; there is no
overlap! The error was that we assumed n was “large” in our proof of
P (n) ⇒ P (n + 1).

Exercise B.9. Show the above proof that P (n) implies P (n + 1) is
correct for n ≥ 2, but fails for n = 1.

Exercise B.10. Similar to the above, give a false proof that any sum
of k integer squares is an integer square, i.e., x2

1 + · · · + x2
n = x2. In

particular, this would prove all positive integers are squares as m =
12 + · · ·+ 12.

Remark B.11. There is no such thing as Proof By Example. While
it is often useful to check a special case and build intuition on how to
tackle the general case, checking a few examples is not a proof. For
example, because 16

64
= 1

4
and 19

95
= 1

5
, one might think that in dividing

two digit numbers if two numbers on a diagonal are the same one just
cancels them. If that were true, then 12

24
should be 1

4
. Of course this is

not how one divides two digit numbers!


