```
(* loads in packages we need *)

| Needs["MultivariateStatistics`"]
| Needs["Histograms`"]
| Needs["BarCharts`"]

| Needs["BarCharts`"]

| Random [Normal distribution *)
| Random [NormalDistribution [0, 1]]
| NormalDistribution
```

Out[662]= 0.00317267

NormalDistribution[μ , σ] represents a normal (Gaussian) distribution with mean μ and standard deviation σ .

NormalDistribution[] represents a normal distribution with zero mean and unit standard deviation.

```
In[786]:= (* this is the main program. the first
     part generates a random matrix A where
     it is one of three possible matrices;
   the second generates a random matrix
     B where the various key entries are
     taken from normal distributions;
   Bexact is the same as B but with 0 variance. *)
   f[x_{-}] := If[x < .1, 1/6, If[x < .9, 2/6, 3/6]];
   A[x_] := \{\{0, f[x], 2.005/3, 0\},
       \{1, 0, 0, 0\}, \{0, 1, 0, 0\}, \{0, 0, 1, 0\}\};
   B[x] := \{\{0, Abs[Random[
          NormalDistribution[2/5.11,.06]]],
        Abs[Random[NormalDistribution[x 2.005/3, .1]]],
        0}, {.95 + Random[] * .05, 0, 0, 0},
       \{0, .9 + Random[] * .1, 0, 0\},
       \{0, 0, .8 + Random[] * .2, 0\}\};
   Bexact = \{\{0, 2/5.11, 2.005/3, 0\},
       \{.975, 0, 0, 0\}, \{0, .95, 0, 0\}, \{0, 0, .9, 0\}\};
   Bexactvar[x] := \{\{0, 2/5.11, x2.005/3, 0\},
       \{.975, 0, 0, 0\}, \{0, .95, 0, 0\}, \{0, 0, .9, 0\}\};
   MatrixForm[B[1]]
   MatrixForm[Bexact]
   Eigenvalues[Bexact]
   Eigenvalues[Bexactvar[1.1]]
   Eigenvalues[Bexactvar[1.2]]
   Eigenvalues[Bexactvar[1.3]]
    (*A[.08]
    A[.8]
     A[.93]*)
```

SetDelayed::write:

Tag List in
$$\{\{0, 2, -1\}, \{-1, 0, 2\}, \{1, -1, 0\}\}[x_]$$
 is Protected. \gg

Out[791]//MatrixForm=

$$\begin{pmatrix} 0 & 0.438811 & 0.719657 & 0.0 \\ 0.973081 & 0 & 0 & 0.999673 & 0 & 0.801641 & 0.0 \\ 0 & 0 & 0.801641 & 0.0 \\ \end{pmatrix}$$

Out[792]//MatrixForm=

$$\begin{pmatrix} 0 & 0.391389 & 0.668333 & 0 \\ 0.975 & 0 & 0 & 0 \\ 0 & 0.95 & 0 & 0 \\ 0 & 0 & 0.9 & 0 \end{pmatrix}$$

Out[793]=
$$\{1.00025, -0.500124 + 0.607262 i, -0.500124 - 0.607262 i, 0.\}$$

Out[794]=
$$\{1.02326, -0.511632 + 0.635373 i, -0.511632 - 0.635373 i, 0.\}$$

Out[795]=
$$\{1.04516, -0.52258 + 0.661562 i, -0.52258 - 0.661562 i, 0.\}$$

out[796]=
$$\{1.06606, -0.533032 + 0.686122 i, -0.533032 - 0.686122 i, 0.\}$$

```
||n|671|:= (* testing how to take entries of a vector *)
   v0 = \{\{1\}, \{0\}, \{0\}, \{0\}\}\};
   v0[[1, 1]] + v0[[2, 1]]
Out[672]= 1
(* if doB = 1 then we use the random B matrices,
   else use the A matrices *)
    (* saveevery tells how many steps
    we take before saving to file *)
    (* growth = 1 is the test case where the largest
     eigenvalue is 1.00025, just slightly above 1;
   if we use larger growth values then we can have
    a better chance of the population surviving. *)
   evolve[years_, iterations_, doB_,
       saveevery_, growth_] := Module[{},
      allresults = {};
       allratios = {};
      exact = {};
       (* initial population *)
      v0 = \{\{1\}, \{0\}, \{0\}, \{0\}\}\};
       initialpop =
        v0[[1, 1]] + v0[[2, 1]] + v0[[3, 1]] + v0[[4, 1]];
       exact = AppendTo[exact, {0, initialpop}];
       Print[
```

```
"Largest eigenvalue of the constant matrix is ",
 N[Eigenvalues[Bexactvar[growth]][[1]]];
For [i = 1, i \le iterations, i++,
 {
  (* saves in exact, results and ratios *)
  results = {{0, initialpop}};
  ratio = {{0, 1}};
  vcurr = v0;
  vexactcurr = v0;
  (*Print[vcurr];*)
  For [n = 1, n \le years, n++,
    If(doB == 1, vcurr = B[growth].vcurr,
     vcurr = A[Random[]].vcurr];
    If[Mod[n, saveevery] == 0,
     results = AppendTo[results,
       {n, vcurr[[1, 1]] + vcurr[[2, 1]] +
         vcurr[[3, 1]] + vcurr[[4, 1]]}];
    If[i = 1,
     {
      If[doB = 1,
       vexactcurr = Bexactvar[growth].vexactcurr,
       vexactcurr = A[.5] . vexactcurr];
      If[Mod[n, saveevery] == 0,
       exact = AppendTo[exact, {n, vexactcurr[[1,
```

```
1]] + vexactcurr[[2, 1]] + vexactcurr[[
                    3, 1]] + vexactcurr[[4, 1]]}]];
            } ];
           If [Mod[n, saveevery] = 0,
            ratio = AppendTo[ratio,
               {n, results[[n/saveevery, 2]] /
                  exact[[n / saveevery, 2]] 1.0}]];
          }]; (* end of n years loop *)
         allresults = AppendTo[allresults, results];
         allratios = AppendTo[allratios, ratio];
         Print["At time ",
          n, " we have a population of ",
          results[[Length[results], 2]],
          " giving a ratio to the current exact
            population of ",
          ratio[[Length[ratio], 2]]];
        }]; (* end i iterations loop *)
       allresults = AppendTo[allresults, exact];
       Print[ListPlot[allresults]];
       Print(ListPlot(allratios));
      ];
In[833]:= evolve[500, 5, 1, 1, 1]
   evolve[500, 5, 1, 1, 1.001]
   evolve[500, 5, 1, 1, 1.01]
Largest eigenvalue of the constant matrix is 1.00025
At time 501 we have a population of 1.41354
  giving a ratio to the current exact population of
 0.832617
At time 501 we have a population of 1.77595
  giving a ratio to the current exact population of
 1.11041
```

At time 501 we have a population of 2.18135 giving a ratio to the current exact population of 1.37479

At time 501 we have a population of 0.899479 giving a ratio to the current exact population of 0.577833

At time 501 we have a population of 1.32787 giving a ratio to the current exact population of 0.917932

Largest eigenvalue of the constant matrix is 1.00048 At time 501 we have a population of 2.78597 giving a ratio to the current exact population of 1.58283

At time 501 we have a population of 0.458955 giving a ratio to the current exact population of 0.251292

At time 501 we have a population of 3.27572 giving a ratio to the current exact population of 1.86363

At time 501 we have a population of 0.338633 giving a ratio to the current exact population of 0.194733

At time 501 we have a population of 1.10138 giving a ratio to the current exact population of 0.643344

Largest eigenvalue of the constant matrix is 1.0026
At time 501 we have a population of 2.81678
giving a ratio to the current exact population of 0.550506

At time 501 we have a population of 13.7303 giving a ratio to the current exact population of 2.79092

At time 501 we have a population of 14.5783 giving a ratio to the current exact population of 2.94247

At time 501 we have a population of 4.40286 giving a ratio to the current exact population of 0.822122

At time 501 we have a population of 1.0975 giving a ratio to the current exact population of 0.190139

In[830]:= evolve[5000, 5, 1, 20, 1] evolve[5000, 5, 1, 20, 1.001] evolve[5000, 5, 1, 20, 1.01]

Largest eigenvalue of the constant matrix is 1.00025

At time 5001 we have a population of 0.0261422 giving a ratio to the current exact population of 0.00625655

At time 5001 we have a population of 0.0172636 giving a ratio to the current exact population of 0.00375957

At time 5001 we have a population of 0.146734 giving a ratio to the current exact population of 0.0316139

At time 5001 we have a population of 0.0000820645 giving a ratio to the current exact population of 0.0000211209

At time 5001 we have a population of 0.00330274 giving a ratio to the current exact population of 0.000546533

Largest eigenvalue of the constant matrix is 1.00048

At time 5001 we have a population of 0.159159 giving a ratio to the current exact population of 0.0104628

At time 5001 we have a population of 0.688041 giving a ratio to the current exact population of 0.0353092

At time 5001 we have a population of 0.110283 giving a ratio to the current exact population of 0.00782502

At time 5001 we have a population of 0.00390076 giving a ratio to the current exact population of 0.000233547

At time 5001 we have a population of 1.95082 giving a ratio to the current exact population of 0.135617

Largest eigenvalue of the constant matrix is 1.0026

At time 5001 we have a population of 58105.4 giving a ratio to the current exact population of 0.0811533

At time 5001 we have a population of 15271.8 giving a ratio to the current exact population of 0.0306358

At time 5001 we have a population of 490.392 giving a ratio to the current exact population of 0.000925266

At time 5001 we have a population of 6864.5 giving a ratio to the current exact population of 0.0103799

At time 5001 we have a population of 1844.29 giving a ratio to the current exact population of 0.00393978

In[814]:= evolve[50000, 5, 1, 200, 1] evolve[50000, 5, 1, 200, 1.001] evolve[50000, 5, 1, 200, 1.01]

Largest eigenvalue of the constant matrix is 1.00025 At time 50001 we have a population of 2.08979×10^{-11} giving a ratio to the current exact population of 2.13842×10^{-16}

At time 50 001 we have a population of 1.91589×10^{-7} giving a ratio to the current exact population of 4.91374×10^{-13}

At time 50 001 we have a population of 1.94422×10^{-16} giving a ratio to the current exact population of 1.93882×10^{-21}

At time 50 001 we have a population of 1.33926×10^{-11} giving a ratio to the current exact population of 3.834×10^{-17}

At time 50001 we have a population of 2.32932×10^{-9} giving a ratio to the current exact population of 8.14522×10^{-15}

Largest eigenvalue of the constant matrix is 1.00048 At time 50001 we have a population of 5.1677×10^{-6} giving a ratio to the current exact population of 9.50332×10^{-17}

At time 50001 we have a population of 6.99024×10^{-13} giving a ratio to the current exact population of 1.44636×10^{-23}

At time 50001 we have a population of 2.55295×10^{-8} giving a ratio to the current exact population of 9.1124×10^{-19}

At time 50001 we have a population of 8.65278×10^{-16} giving a ratio to the current exact population of 1.78179×10^{-26}

At time 50001 we have a population of 3.64078×10^{-15} giving a ratio to the current exact population of 1.51683×10^{-25}

Largest eigenvalue of the constant matrix is 1.0026 At time 50001 we have a population of 8.47934×10^{33} giving a ratio to the current exact population of 3.90712×10^{-23}

At time 50001 we have a population of 1.33622×10^{41} giving a ratio to the current exact population of 2.98391×10^{-16}

At time 50001 we have a population of 1.97846×10^{40} giving a ratio to the current exact population of 1.21851×10^{-16}

At time 50001 we have a population of 6.88594×10^{26} giving a ratio to the current exact population of 1.76042×10^{-30}

At time 50001 we have a population of 5.86688×10^{39} giving a ratio to the current exact population of 3.19551×10^{-17}

In[822]:= evolve[5000, 5, 1, 1, 1]

Largest eigenvalue of the constant matrix is 1.00025 At time 5001 we have a population of 0.00305858 giving a ratio to the current exact population of 0.000708953

At time 5001 we have a population of 0.00158931 giving a ratio to the current exact population of 0.00031694

At time 5001 we have a population of 0.139462 giving a ratio to the current exact population of 0.0272917

At time 5001 we have a population of 0.00243459 giving a ratio to the current exact population of 0.000513014

At time 5001 we have a population of 0.247656 giving a ratio to the current exact population of 0.0514645

In[823]:= evolve[5000, 5, 1, 1, 1.3]

Largest eigenvalue of the constant matrix is 1.06606 At time 5001 we have a population of 1.4923×10^{136} giving a ratio to the current exact population of 0.00143177

At time 5001 we have a population of 1.79864×10^{137} giving a ratio to the current exact population of 0.0167185

At time 5001 we have a population of 2.29037×10^{137} giving a ratio to the current exact population of 0.0230612

At time 5001 we have a population of 8.30768×10^{136} giving a ratio to the current exact population of 0.0078477

At time 5001 we have a population of 6.6036×10^{137} giving a ratio to the current exact population of 0.0646244

evolve[10000, 3, 1, 1, 1]

At time 10001 we have a population of 3.25221×10^{-6} giving a ratio to the current exact population of 1.82356×10^{-7}

At time 10001 we have a population of 1.11556 giving a ratio to the current exact population of 0.0676171

At time 10001 we have a population of 2.38721×10^{-6} giving a ratio to the current exact population of 1.30222×10^{-7}

In[824]:= evolve[2000, 4, 1, 1, 1]

Largest eigenvalue of the constant matrix is 1.00025 At time 2001 we have a population of 0.0854212 giving a ratio to the current exact population of 0.0374684

At time 2001 we have a population of 0.15409 giving a ratio to the current exact population of 0.0682715

At time 2001 we have a population of 1.3914 giving a ratio to the current exact population of 0.611692

At time 2001 we have a population of 76.1452 giving a ratio to the current exact population of 33.0045

In[828]:= evolve[5000, 4, 1, 20, 1] evolve[5000, 4, 1, 20, 1.01]

Largest eigenvalue of the constant matrix is 1.00025 At time 5001 we have a population of 0.0950236 giving a ratio to the current exact population of 0.0163902

At time 5001 we have a population of 0.0000438789 giving a ratio to the current exact population of 0.0000125465

At time 5001 we have a population of 0.00571591 giving a ratio to the current exact population of 0.00108537

At time 5001 we have a population of 0.0294447 giving a ratio to the current exact population of 0.00437125

Largest eigenvalue of the constant matrix is 1.0026

At time 5001 we have a population of 32924.2 giving a ratio to the current exact population of 0.0555459

At time 5001 we have a population of 100.864 giving a ratio to the current exact population of 0.000128061

At time 5001 we have a population of 4898.48 giving a ratio to the current exact population of 0.00744516

At time 5001 we have a population of 52032.9 giving a ratio to the current exact population of 0.111651

