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1. INTRODUCTION

These notes are fromAn Invitation to Modern Number Theory, by Steven J. Miller and
Ramin Takloo-Bighash (Princeton University Press, 2006). PLEASE DO NOT DISTRIBUTE
THESE NOTES FURTHER. As this is an excerpt from the book, there are many references
to other parts of the book; these appear as ?? in the text below.

We have the following inclusions: the natural numbersN = {0, 1, 2, 3, . . . } are a subset of the
integersZ = {. . . ,−1, 0, 1, . . . } are a subset of the rationalsQ = {p

q
: p, q ∈ Z, q 6= 0} are a

subset of the real numbersR are a subset of the complex numbersC. The notationZ comes from
the German zahl (number) andQ comes from quotient. Are most real numbers rational? We show
that, not only are rational numbers “scarce,” but irrational numbers like

√
n or m

√
n are also scarce.
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Definition 1.1 (Algebraic Number). Anα ∈ C is an algebraic number if it is a root of a polynomial
with finite degree and integer coefficients.

Definition 1.2 (Transcendental Number). An α ∈ C is a transcendental number if it is not alge-
braic.

Later (Chapters??, ?? and??) we see many properties of numbers depend on whether or not a
number is algebraic or transcendental. We prove in this chapter that most real numbers are transcen-
dentalwithout ever constructing a transcendental number!We then show thate is transcendental
but only later in §7.2 will we explicitly construct infinitely many transcendental numbers.

The main theme of this chapter is to describe a way to compare sets with infinitely many el-
ements. In Chapter?? we compared subsets of the natural numbers. For any setA, let AN =
A ∩ {1, 2, . . . , N}, and considerlimN→∞

AN

N
. Such comparisons allowed us to show that in the

limit zero percent of all integers are prime (see Chebyshev’s Theorem, Theorem??), but there are
far more primes than perfect squares. While such limiting arguments work well for subsets of the
integers, they completely fail for other infinite sets and we need a new notion of size.

For example, consider the closed intervals[0, 1] and[0, 2]. In one sense the second set is larger
as the first is a proper subset. In another sense they are the same size as each elementx ∈ [0, 2]
can be paired with a unique elementy = x

2
∈ [0, 1]. The idea of defining size through such

correspondences has interesting consequences. While there are as many perfect squares as primes
as integers as algebraic numbers, such numbers are rare and in fact essentially all numbers are
transcendental.

2. RUSSELL’ S PARADOX AND THE BANACH-TARSKI PARADOX

The previous example, where in some sense the sets[0, 1] and[0, 2] have the same number of el-
ements, shows that we must be careful with our definition of counting. To motivate our definitions
we give some examples of paradoxes in set theory, which emphasize why we must be so careful to
put our arguments on solid mathematical ground.

Russell’s Paradox:Assume for any propertyP the collection of all elements having propertyP
is a set. ConsiderR = {x : x 6∈ x}; thusx ∈ R if and only if x 6∈ x. Most objects are not elements
of themselves; for example,N 6∈ N because the set of natural numbers is not a natural number. If
R exists, it is natural to ask whether or notR ∈ R. Unwinding the definition, we seeR ∈ R
if and only ifR 6∈ R! Thus the collection of all objects satisfying a given property is not always
a set. This strange situation led mathematicians to reformulate set theory. See, for example, [HJ, Je].

Banach-Tarski Paradox: Consider a solid unit sphere inR3. It is possible to divide the sphere
into 5 disjoint pieces such that, by simply translating and rotating the 5 pieces, we can assemble 3
into a solid unit sphere and the other 2 into a disjoint solid unit sphere. But translating and rotating
should not change volumes, yet we have doubled the volume of our sphere! This construction de-
pends on the (Uncountable) Axiom of Choice (see §4.4). See, for example, [Be, Str].

Again, the point of these paradoxes is to remind ourselves that plausible statements need not be
true, and one must be careful to build on firm foundations.

3. DEFINITIONS

We now define the terms we will use in our counting investigations. We assume some familiarity
with set theory; we will not prove all the technical details (see [HJ] for complete details).

A function f : A → B is one-to-one(or injective) if f(x) = f(y) impliesx = y; f is onto (or
surjective) if given anyb ∈ B there existsa ∈ A with f(a) = b. A bijection is a one-to-one and
onto function.
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Exercise 3.1.Showf : R→ R given byf(x) = x2 is not a bijection, butg : [0,∞) → R given by
g(x) = x2 is. If f : A → B is a bijection, prove there exists a bijectionh : B → A. We usually
write f−1 for h.

We say two setsA andB have the same cardinality(i.e., are the same size) if there is a bijection
f : A → B. We denote the common cardinality by|A| = |B|. If A has finitely many elements (say
n elements), then there is a bijection fromA to {1, . . . , n}. We sayA is finite and|A| = n < ∞.

Exercise 3.2.Show two finite sets have the same cardinality if and only if they have the same
number of elements.

Exercise 3.3.SupposeA and B are two sets such that there are onto mapsf : A → B and
g : B → A. Prove|A| = |B|.
Exercise 3.4.A setA is said to be infinite if there is a one-to-one mapf : A → A which is not
onto. Using this definition, show that the setsN andZ are infinite sets. In other words, prove that
an infinite set has infinitely many elements.

Exercise 3.5.Show that the cardinality of the positive even integers is the same as the cardinality
of the positive integers is the same as the cardinality of the perfect squares is the same as the
cardinality of the primes.

Remark 3.6. Exercise 3.5 is surprising. LetEN be all positive even integers at mostN . The
fraction of positive integers less than2M and even isM

2M
= 1

2
, yet the even numbers have the same

cardinality asN. If SN is all perfect squares up toN , one can similarly show the fraction of perfect
squares up toN is approximately 1√

N
, which goes to zero asN → ∞. Hence in one sense there

are a lot more even numbers or integers than perfect squares, but in another sense these sets are the
same size.

A is countable if there is a bijection betweenA and the integersZ. A is at most countableif A
is either finite or countable.A is uncountable if A is not at most countable

Definition 3.7 (Equivalence Relation). LetR be a binary relation (taking values true and false) on
a setS. We sayR is an equivalence relation if the following properties hold:

(1) Reflexive:∀x ∈ S, R(x, x) is true;
(2) Symmetric:∀x, y ∈ S, R(x, y) is true if and only ifR(y, x) is true;
(3) Transitive:∀x, y, z ∈ S, R(x, y) andR(y, z) are true implyR(x, z) is true.

Exercise 3.8.

(1) LetS be any set, and letR(x, y) bex = y. Prove thatR is an equivalence relation.
(2) LetS = Z and letR(x, y) bex ≡ y mod n. ProveR is an equivalence relation.
(3) LetS = (Z/mZ)∗ and letR(x, y) bexy is a quadratic residue modulom. Is R an equiva-

lence relation?

If A andB are sets, theCartesian product A×B is {(a, b) : a ∈ A, b ∈ B}.
Exercise 3.9.Let S = N × (N − {0}). For (a, b), (c, d) ∈ S, we defineR((a, b), (c, d)) to be true
if ad = bc and false otherwise. Prove thatR is an equivalence relation. What type of number does
a pair (a, b) represent?

Exercise 3.10.Let x, y, z be subsets ofX (for example,X = Q,R,C,Rn, et cetera). Define
R(x, y) to be true if|x| = |y| (the two sets have the same cardinality), and false otherwise. Prove
R is an equivalence relation.
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4. COUNTABLE AND UNCOUNTABLE SETS

We show that several common sets are countable. Consider the set of whole numbersW =
{1, 2, 3, . . . }. Definef : W→ Z by f(2n) = n− 1, f(2n + 1) = −n− 1. By inspection, we seef
gives the desired bijection betweenW andZ. Similarly, we can construct a bijection fromN to Z,
whereN = {0, 1, 2, . . . }. Thus, we have proved

Lemma 4.1. To show a setS is countable, it is sufficient to find a bijection fromS to eitherW or
N or Z.

We need the intuitively plausible

Lemma 4.2. If A ⊂ B, then|A| ≤ |B|.
Lemma 4.3. If f : A → C is a one-to-one function (not necessarily onto), then|A| ≤ |C|. Further,
if C ⊂ A then|A| = |C|.
Theorem 4.4(Cantor-Bernstein). If |A| ≤ |B| and|B| ≤ |A|, then|A| = |B|.
Exercise 4.5.Prove Lemmas 4.2 and 4.3 and Theorem 4.4.

Theorem 4.6. If A andB are countable then so isA ∪B andA×B.

Proof. We have bijectionsf : N→ A andg : N→ B. Thus we can label the elements ofA andB
by

A = {a0, a1, a2, a3, . . . }
B = {b0, b1, b2, b3, . . . }. (1)

AssumeA ∩ B is empty. Defineh : N → A ∪ B by h(2n) = an andh(2n + 1) = bn. As h is a
bijection fromN to A ∪ B, this provesA ∪ B is countable. We leave to the reader the case when
A ∩B is not empty. To proveA×B is countable, consider the following functionh : N→ A×B
(see Figure 1):

h(1) = (a0, b0)

h(2) = (a1, b0), h(3) = (a1, b1), h(4) = (a0, b1)

h(5) = (a2, b0), h(6) = (a2, b1), h(7) = (a2, b2), h(8) = (a1, b2), h(9) = (a0, b2)

and so on. For example, at thenth stage we have

h(n2 + 1) = (an, b0), h(n2 + 2) = (an, bn−1), . . .

h(n2 + n + 1) = (an, bn), h(n2 + n + 2) = (an−1, bn), . . .

. . . , h((n + 1)2) = (a0, bn).

We are looking at all pairs of integers(ax, by) in the first quadrant (including those on the axes).
The above functionh starts at(0, 0), and then moves through the first quadrant, hitting each pair
once and only once, by going up and over and then restarting on thex-axis. ¤

Corollary 4.7. Let (Ai)i∈N be a collection of sets such thatAi is countable for alli ∈ N. Then for
anyn, A1∪· · ·∪An andA1×· · ·×An are countable, where the last set is alln-tuples(a1, . . . , an),
ai ∈ Ai. Further ∪∞i=0Ai is countable. If eachAi is at most countable, then∪∞i=0Ai is at most
countable.

Exercise(h) 4.8. Prove Corollary 4.7.

As the natural numbers, integers and rationals are countable, by taking eachAi = N, Z orQ we
immediately obtain

Corollary 4.9. Nn, Zn andQn are countable.
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FIGURE 1. A×B is countable

Proof. Proceed by induction; for example writeQn+1 asQn ×Q. ¤
Exercise 4.10.Prove that there are countably many rationals in the interval[0, 1].

Exercise(hr) 4.11. ConsiderN points in the plane. For each point, color every point an irrational
distance from that point blue. What is the smallestN needed such that, if the points are properly
chosen, every point in the plane is colored blue? If possible, give a constructive solution (i.e., give
the coordinates of the points).

4.1. Irrational Numbers. If α 6∈ Q, we sayα is irrational . Clearly, not all numbers are rational
(for example,

√−1). Are there any real irrational numbers? The following example disturbed the
ancient Greeks:

Theorem 4.12.The square root of two is irrational.

Proof. Assume not. Then we have
√

2 = p
q
, and we may assumep andq are relatively prime. Then

2q2 = p2. We claim that2|p2. While this appears obvious, this must be proved. Ifp is even, this
is clear. Ifp is odd, we may writep = 2m + 1. Thenp2 = 4m2 + 4m + 1 = 2(2m2 + 2m) + 1,
which is clearly not divisible by 2. Thusp is even, sayp = 2p1. Then2q2 = p2 becomes2q2 = 4p2

1,
and a similar argument yieldsq is even. Hencep andq have a common factor, contradicting our
assumption. ¤

This construction was disturbing for the following reason: consider an isosceles right triangle
with bases of length 1. By the Pythagorean theorem, the hypotenuse has length

√
2. Thus, using

a straight edge and compass, one easily constructs a non-rational length from rational sides and a
right angle.

The above proof would be faster if we appealed to unique factorization: any positive integer can
be written uniquely as a product of powers of primes. If one does not use unique factorization, then
for

√
3 one must checkp of the form3m, 3m + 1 and3m + 2.

Exercise 4.13.If n is a non-square positive integer, prove
√

n is irrational.

Exercise 4.14.Using a straight edge and compass, given two segments (one of unit length, one of
lengthr with r ∈ Q), construct a segment of length

√
r.

Exercise(h) 4.15. Prove the Pythagorean theorem: if a right triangle has bases of lengtha and b
and hypotenusec thena2 + b2 = c2.

4.2. Algebraic Numbers. Let f(x) be a polynomial with rational coefficients. By multiplying by
the least common multiple of the denominators, we can clear the fractions. Thus without loss of
generality it suffices to consider polynomials with integer coefficients.
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The set ofalgebraic numbersA is the set of allx ∈ C such that there is a polynomial of finite
degree and integer coefficients (depending onx, of course) such thatf(x) = 0. The remaining
complex numbers are thetranscendentals. The set ofalgebraic numbers of degreen, An, is the
set of allx ∈ A such that

(1) there exists a polynomial with integer coefficients of degreen such thatf(x) = 0;
(2) there is no polynomialg with integer coefficients and degree less thann with g(x) = 0.

ThusAn is the subset of algebraic numbersx where for eachx ∈ An the degree of the smallest
polynomialf with integer coefficients andf(x) = 0 is n.

Exercise 4.16.Show the following are algebraic: any rational number, the square root of any
rational number, the cube root of any rational number,r

p
q wherer, p, q ∈ Q, i =

√−1,
√

3
√

2− 5.

Theorem 4.17.The algebraic numbers are countable.

Proof. If we show eachAn is at most countable, then asA = ∪∞n=1An by Corollary 4.7A is at
most countable. The proof proceeds by finding a bijection from the set of all roots of polynomials
of degreen with a subset of the countable setZn.

Recall theFundamental Theorem of Algebra: Let f(x) be a polynomial of degreen with
complex coefficients. Thenf(x) hasn (not necessarily distinct) roots. Actually, we only need a
weaker version, namely that a polynomials with integer coefficients has at most countably many
roots.

Fix ann ∈ N. We showAn is at most countable. We can represent every integral polynomial
f(x) = anxn + · · · + a0 by an(n + 1)-tuple(a0, . . . , an). By Corollary 4.9, the set of all(n + 1)-
tuples with integer coefficients (Zn+1) is countable. Thus there is a bijection fromN to Zn+1 and
we can index each(n + 1)-tuplea ∈ Zn+1

{a : a ∈ Zn+1} =
∞⋃
i=1

{αi}, (2)

where eachαi ∈ Zn+1. For each tupleαi (or a ∈ Zn+1), there aren roots to the corresponding
polynomial. LetRαi

be the set of roots of the integer polynomial associated toαi. The roots inRαi

need not be distinct, and the roots may solve an integer polynomial of smaller degree. For example,
f(x) = (x2 − 1)4 is a degree8 polynomial. It has two roots,x = 1 with multiplicity 4 andx = −1
with multiplicity 4, and each root is a root of a degree1 polynomial.

Let Pn = {x ∈ C : x is a root of a degreen polynomial}. One can show that

Pn =
∞⋃
i=1

Rαi
⊃ An. (3)

By Lemma 4.7,Pn is at most countable. Thus by Lemma 4.2, asPn is at most countable,An is
at most countable. By Corollary 4.7,A is at most countable. AsA1 ⊃ Q (given p

q
∈ Q consider

qx− p = 0),A1 is countable. AsA is at most countable, this impliesA is countable. ¤
Exercise 4.18.Show the full force of the Fundamental Theorem of Algebra is not needed in the
above proof; namely, it is enough that every polynomial have finitely many (or even countably
many!) roots.

Exercise 4.19.ProveRn ⊃ An.

Exercise 4.20.Prove any real polynomial of odd degree has a real root.

Remark 4.21. The following argument allows us to avoid using the Fundamental Theorem of Al-
gebra. Letf(x) be a polynomial of degreen with real coefficients. Ifα ∈ C is such thatf(α) = 0,
provef(α) = 0, whereα is the complex conjugate ofα (α = x+iy, α = x−iy). Using polynomial
long division, dividef(x) by h(x) = (x− α) if α ∈ R andh(x) = (x− α)(x− α) otherwise. As
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both of these polynomials are real,f(x)
h(x)

= g(x) + r(x)
h(x)

has all real coefficients, and the degree of
r(x) is less than the degree ofh(x). As f(x) andh(x) are zero forx = α andα, r(x) is identically
zero. We now have a polynomial of degreen − 1 (or n − 2). Proceeding by induction, we seef
has at mostn roots. Note we have not provedf hasn roots. Note also the use of the Euclidean
algorithm (see §??) in the proof.

Exercise 4.22(Divide and Conquer). For f(x) continuous, iff(xl) < 0 < f(xr) then there must
be a root betweenxl and xr (Intermediate Value Theorem, Theorem??); look at the midpoint
xm = xl+xr

2
. If f(xm) = 0 we have found the root; iff(xm) < 0 (> 0) the root is betweenxm and

xr (xm andxl). Continue subdividing the interval. Prove the division points converge to a root.

Remark 4.23. By completing the square, one can show that the roots ofax2 + bx+ c = 0 are given
by x = −b±√b2−4ac

2a
. More complicated formulas exist for the general cubic and quartic; however,

there is no such formula which gives the roots of a general degree 5 (or higher) polynomial in terms
of its coefficients (see [Art]). While we can use Newton’s Method (see §??) or Divide and Conquer
to approximate a root, we do not have a procedure in general to give an exact answer involving
radicals and the coefficients of the polynomial.

Exercise 4.24(Rational Root Test). Let f(x) = anx
n + · · · + a0 be a polynomial with integer

coefficients,an, a0 6= 0 and coprime. Letp, q ∈ Z, q 6= 0. If f(p/q) = 0, showq|an andp|a0. Thus
given a polynomial one can determine all the rational roots in a finite amount of time. Generalize
this by finding a criterion for numbers of the form

√
p/q to be a root. Does this work for higher

powers, such asm
√

p/q? Does this contradict the claim in Remark 4.23 about degree 5 and higher
polynomials?

4.3. Transcendental Numbers.A set is uncountable if it is infinite and there is no bijection
between it and the rationals (or the integers, or any countable set). We prove

Theorem 4.25(Cantor). The set of all real numbers is uncountable.

Cantor’s Theorem is an immediate consequence of

Lemma 4.26.LetS be the set of all sequences(yi)i∈N with yi ∈ {0, 1}. ThenS is uncountable.

Proof. We proceed by contradiction. Suppose there is a bijectionf : S → N. It is clear that this is
equivalent to listing of the elements ofS:

x1 = .x11x12x13x14 · · ·
x2 = .x21x22x23x24 · · ·
x3 = .x31x32x33x34 · · ·

...

xn = .xn1xn2xn3xn4 · · · xnn · · ·
... (4)

Define an elementθ = (θi)i∈N ∈ S by θi = 1−xii. Noteθ cannot be in the list; it is notxN because
1− xNN 6= xNN . But our list was supposed to be a complete enumeration ofS, contradiction. ¤

Proof[Proof of Cantor’s Theorem] Consider all numbers in the interval[0, 1] whose decimal
expansion (see §?? or §??) consists entirely of0’s and1’s. There is a bijection between this subset
of R and the setS. We have established thatS is uncountable. ConsequentlyR has an uncountable
subset, and is uncountable.

Exercise 4.27.Instead of using decimal expansions one could use binary expansions. Unfortu-
nately there is the problem that some rationals have two expansions, a finite terminating and
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an infinite non-terminating expansion. For example,.001 = .0001111111 . . . in base two, or
.1 = .0999 · · · in base ten. Using binary expansions, prove there are uncountably many reals.
Prove.001 = .0001111111 . . . in base two.

Exercise 4.28.Prove|[0, 1]| = |R| = |Rn| = |Cn|. Find a set with strictly larger cardinality than
R.

The above proof is due to Cantor (1873–1874), and is known asCantor’s Diagonalization Ar-
gument. Note Cantor’s proof shows thatmostnumbers are transcendental, though it does not tell us
whichnumbers are transcendental. We can easily show many numbers (such as

√
3 +

5
√

23 11
√

5 +√
7) are algebraic. What of other numbers, such asπ ande?
Lambert (1761), Legendre (1794), Hermite (1873) and others provedπ irrational and Lindemann

(1882) provedπ transcendental (see [HW, NZM]); in Exercise??, we showed thatπ2 6∈ Q implies
there are infinitely many primes! What aboute? Euler (1737) proved thate ande2 are irrational,
Liouville (1844) provede is not an algebraic number of degree2, and Hermite (1873) provede is
transcendental. Liouville (1851) gave a construction for an infinite (in fact, uncountable) family of
transcendental numbers; see Theorem 7.1 as well as Exercise 7.9.

4.4. Axiom of Choice and the Continuum Hypothesis.Let ℵ0 = |Q|. Cantor’s diagonalization
argument can be interpreted as saying that2ℵ0 = |R|. As there are more reals than rationals,
ℵ0 < 2ℵ0. Does there exist a subset ofR with strictly larger cardinality than the rationals, yet
strictly smaller cardinality than the reals? Cantor’sContinuum Hypothesissays that there are no
subsets of intermediate size, or, equivalently, thatℵ1 = 2ℵ0 (the reals are often called the continuum,
and theℵi are called cardinal numbers).

The standard axioms of set theory are known as the Zermelo-Fraenkel axioms. A more contro-
versial axiom is theAxiom of Choice, which states given any collection of sets(Ax)x∈J indexed by
some setJ , then there is a functionf from J to the disjoint union of theAx with f(x) ∈ Ax for all
x. Equivalently, this means we can form a new set by choosing an elementax from eachAx; f is
our choice function. If we have a countable collection of sets this is quite reasonable: a countable
set is in a one-to-one correspondence withN, and “walking through” the sets we know exactly when
we will reach a given set to choose a representative. If we have an uncountable collection of sets,
however, it is not clear “when” we would reach a given set to choose an element.

Exercise 4.29.The construction of the sets in the Banach-Tarski Paradox uses the Axiom of Choice;
we sketch the setR that arises. Forx, y ∈ [0, 1] we sayx andy are equivalent ifx − y ∈ Q. Let
[x] denote all elements equivalent tox. We form a set of representativesR by choosing one element
from each equivalence class. Prove there are uncountably many distinct equivalence classes.

Kurt Gödel [Gö] showed that if the standard axioms of set theory are consistent, so too are the
resulting axioms where the Continuum Hypothesis is assumed true; Paul Cohen [Coh] showed that
the same is true if the negation of the Continuum Hypothesis is assumed. These two results imply
that the Continuum Hypothesis is independent of the other standard axioms of set theory! See [HJ]
for more details.

Exercise 4.30.The cardinal numbers have strange multiplication properties. Proveℵℵ0
0 = 2ℵ0 by

interpreting the two sides in terms of operations on sets.

5. PROPERTIES OFe

In this section we study some of the basic properties of the numbere (see [Rud] for more prop-
erties and proofs). One of the many ways to define the numbere, the base of the natural logarithm,
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is to write it as the sum of the following infinite series:

e =
∞∑

n=0

1

n!
. (5)

Denote the partial sums of the above series by

sm =
m∑

n=0

1

n!
. (6)

Hencee is the limit of the convergent sequencesm. This representation is one of the main tool in
analyzing the nature ofe.

Exercise(h) 5.1. Define

ex =
∞∑

n=0

xn

n!
. (7)

Proveex+y = exey. Show this series converges for allx ∈ R; in fact, it makes sense forx ∈ C as
well. One can defineab by eb ln a.

Exercise(h) 5.2. An alternate definition ofex is

ex = lim
n→∞

(
1 +

x

n

)n

. (8)

Show this definition agrees with the series expansion, and proveex+y = exey. This formulation
is useful for growth problems such as compound interest or radioactive decay; see for example
[BoDi] .

Exercise 5.3.Prove d
dx

ex = ex. Aseln x = x, the chain rule impliesd
dx

ln x = 1
x

(ln x is the inverse
function toex).

From the functionsex andln x, we can interpretab for anya > 0 andb ∈ R: ab = eb ln a. Note
the series expansion forex makes sense for allx, thus we have a well defined process to determine
numbers such as3

√
2. We cannot compute3

√
2 directly because we do not know what it means to

raise3 to the
√

2-power; we can only raise numbers torational powers.

Exercise(hr) 5.4. Split 100 into smaller integers such that each integer is two or more and the
product of all these integers is as large as possible.

Suppose nowN is a large number and we wish to splitN into smaller pieces, but all we require
is that each piece be positive. How should we break up a largeN?

Exercise(hr) 5.5. Without using a calculator or computer, determine which is larger:eπ or πe.

5.1. Irrationality of e.

Theorem 5.6(Euler, 1737). The numbere is irrational.

Proof. Assumee ∈ Q. Then we can writee = p
q
, wherep, q are relatively prime positive integers.

Now

e− sm =
∞∑

n=m+1

1

n!

=
1

(m + 1)!

(
1 +

1

m + 2
+

1

(m + 2)(m + 3)
+ · · ·

)

<
1

(m + 1)!

(
1 +

1

m + 1
+

1

(m + 1)2
+

1

(m + 1)3
+ · · ·

)

=
1

(m + 1)!

1

1− 1
m+1

=
1

m!m
. (9)
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Hence we obtain

0 < e− sm <
1

m!m
. (10)

In particular, takingm = q we and multiplying (10) byq! yields

0 < q!e− q!sq <
1

q
, (11)

which is clearly impossible sinceq!e − q!sq would have to be an integer between 0 and 1. This
contradicts our assumption thate was rational. ¤

The key idea in the above proof is the simple fact that there are no integers between0 and1. We
use a variant of this argument to provee is transcendental.

5.2. Transcendence ofe. We know there are more transcendental numbers than algebraic num-
bers. We finally show a specific number is transcendental; see [?] for an alternate proof of the
transcendence ofe, π and many other numbers.

Theorem 5.7(Hermite, 1873). The numbere is transcendental.

Proof. The proof is again by contradiction. Assumee is algebraic. Then it must satisfy a polynomial
equation

anXn + · · ·+ a1X + a0 = 0, (12)

wherea0, a1, . . . , an are integers. The existence of such a polynomial leads to an integer greater
than zero but less than one; and this contradiction proves the theorem. This is a common technique
for proving such results; see also Remark??.

Exercise 5.8.Prove one may assume without loss of generality thata0, an 6= 0.

Consider a polynomialf(X) of degreer, and associate to it the following linear combination of its
derivatives:

F (X) = f(X) + f ′(X) + · · ·+ f (r)(X). (13)

Exercise 5.9.Prove the polynomialF (X) has the property that

d

dx

[
e−xF (x)

]
= −e−xf(x). (14)

As F (X) is differentiable, applying the Mean Value Theorem (Theorem??) to e−xF (X) on the
interval[0, k] for k any integer gives

e−kF (k)− F (0) = −ke−ckf(ck) for someck ∈ (0, k), (15)

or equivalently
F (k)− ekF (0) = −kek−ckf(ck) = εk. (16)

Substitutingk = 0, 1, . . . , n into (16), we obtain the following system of equations:

F (0) − F (0) = 0 = ε0

F (1) − eF (0) = −e1−c1f(c1) = ε1

F (2) − e2F (0) = −2e2−c2f(c2) = ε2
...

F (n) − enF (0) = −nen−cnf(cn) = εn.

(17)

We multiply the first equation bya0, the second bya1, . . . , the(n+1)st by an. Adding the resulting
equations gives

n∑

k=0

akF (k)−
(

n∑

k=0

ake
k

)
F (0) =

n∑

k=0

akεk. (18)
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Notice that on the left hand side we have exactly the polynomial that we assumee satisfies:
n∑

k=0

ake
k = 0; (19)

this is the key step: we have now incorporated the (fictitious) polynomial. Hence (18) reduces to
n∑

k=0

akF (k) =
n∑

k=0

akεk. (20)

We have used the hypothetical algebraicity ofe to prove a certain integral combination of its powers
vanish.

So far we had complete freedom in our choice off , and (20) always holds for its associateF . In
what follows we choose a special polynomialf in order to reach a contradiction. Choose a primep
large enough so thatp > |a0| andp > n. Let f equal

f(X) =
1

(p− 1)!
Xp−1(1−X)p(2−X)p · · · (n−X)p

=
1

(p− 1)!

(
(n!)pXp−1 + higher order terms

)

=
bp−1X

p−1 + bpX
p + · · ·+ brX

r

(p− 1)!
. (21)

Though it plays no role in the proof, we note that the degree off is r = (n + 1)p− 1. We prove a
number of results which help us finish the proof. Recall thatpZ denotes the set of integer multiples
of p.

Claim 5.10. Let p be a prime number andm any positive integer. Then(p − 1)(p − 2) · · · 2 · 1
divides(p− 1 + m)(p− 2 + m) · · · (2 + m)(1 + m).

Warning: It is clearly not true that any consecutive set ofp − 1 numbers divides any larger
consecutive set ofp− 1 numbers. For example,7 · 6 · 5 · 4 does not divide9 · 8 · 7 · 6, and8 · 7 · 6 · 5
does not divide14 · 13 · 12 · 11. In the first example we have5 divides the smaller term but not the
larger; in the second we have24 divides the smaller term but only23 divides the larger.

Proof[Proof of Claim 5.10] Letx = (p − 1)! andy = (p − 1 + m) · · · (1 + m). The claim
follows by showing for each primeq < p that if qa|x thenqa|y. Let k be the largest integer such
thatqk ≤ p− 1 andbzc be the greatest integer at mostz. Then there arebp−1

q
c factors ofx divisible

by q once,bp−1
q2 c factors ofx divisible byq twice, and so on up tobp−1

qk c factors ofx divisible by

q a total ofk times. Thus the exponent ofq dividing x is
∑k

`=1bp−1
q` c. The proof is completed by

showing that for each̀ ∈ {1, . . . , k} we have as many terms iny divisible byq` as we do inx; it
is possible to have more of course (letq = 5, x = 6 · · · 1 andy = 10 · · · 5). Clearly it is enough
to prove this form < (p − 1)!; we leave the remaining details to the reader in Exercise 5.17; see
Exercise 5.18 for an alternate proof.

Claim 5.11. For i ≥ p and for all j ∈ N, we havef (i)(j) ∈ pZ.

Proof. Differentiate (21)i ≥ p times. Consider any term which survives, saybkXk

(p−1)!
with k ≥ i.

After differentiating this term becomesk(k−1)···(k−(i−1))bkXk−1

(p−1)!
. By Claim 5.10 we have(p−1)!|k(k−

1) · · · (k − (i − 1)). Further,p|k(k − 1) · · · (k − (i − 1)) as we differentiated at leastp times and
any product ofp consecutive numbers is divisible byp. As p does not divide(p − 1)!, we see that
all surviving terms are multiplied byp. ¤
Claim 5.12. For 0 ≤ i < p andj ∈ {1, . . . , n}, we havef (i)(j) = 0.
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Proof. The multiplicity of a root of a polynomial gives the order of vanishing of the polynomial at
that particular root. Asj = 1, 2, . . . , n are roots off(X) of multiplicity p, differentiatingf(x) less
thanp times yields a polynomial which still vanishes at thesej. ¤
Claim 5.13. LetF be the polynomial associated tof . ThenF (1), F (2), . . . , F (n) ∈ pZ.

Proof. Recall thatF (j) = f(j) + f ′(j) + · · · + f (r)(j). By Claim 5.11,f (i)(j) is a multiple ofp
for i ≥ p and any integerj. By Claim 5.12,f (i)(j) = 0 for 0 ≤ i < p andj = 1, 2, . . . , n. Thus
F (j) is a multiple ofp for thesej. ¤
Claim 5.14. For 0 ≤ i ≤ p− 2, we havef (i)(0) = 0.

Proof. Similar to Claim 5.12, we note thatf (i)(0) = 0 for 0 ≤ i < p − 2, because0 is a root of
f(x) of multiplicity p− 1. ¤
Claim 5.15. F (0) is not a multiple ofp.

Proof. By Claim 5.11,f (i)(0) is a multiple ofp for i ≥ p; by Claim 5.14,f (i)(0) = 0 for 0 ≤ i ≤
p− 2. Since

F (0) = f(0) + f ′(0) + · · ·+ f (p−2)(0) + f (p−1)(0) + f (p)(0) + · · ·+ f (r)(0), (22)

to proveF (0) is a not multiple ofp it is sufficient to provef (p−1)(0) is not multiple ofp because
all the other termsare multiples ofp. However, from the Taylor series expansion (see §??) of f in
(21), we see that

f (p−1)(0) = (n!)p + terms that are multiples ofp. (23)
Since we chosep > n, n! is not divisible byp, proving the claim. ¤

We resume the proof of the transcendence ofe. Remember we also chosep such thata0 is not
divisible byp. This fact plus the above claims imply first that

∑
k akF (k) is an integer, and second

that
n∑

k=0

akF (k) ≡ a0F (0) 6≡ 0 mod p. (24)

Thus
∑

k akF (k) is a non-zero integer. Recall (20):
n∑

k=0

akF (k) = a1ε1 + · · ·+ anεn. (25)

We have already proved that the left hand side is a non-zero integer. We analyze the sum on the
right hand side. We have

εk = −kek−ckf(ck) =
−kek−ckcp−1

k (1− ck)
p · · · (n− ck)

p

(p− 1)!
. (26)

As 0 ≤ ck ≤ k ≤ n we obtain

|εk| ≤ ekkp(1 · 2 · · ·n)p

(p− 1)!
≤ en(n!n)p

(p− 1)!
−→ 0 as p → ∞. (27)

Exercise 5.16.For fixedn, prove that asp →∞, (n!n)p

(p−1)!
→ 0. See Lemma??.

Recall thatn is fixed, as are the constantsa0, . . . , an (they define the polynomial equation sup-
posedly satisfied bye); in our argument only the prime numberp varies. Hence, by choosingp
sufficiently large, we can make sure that allεk’s are uniformly small. In particular, we can make
them small enough such that the following holds:∣∣∣∣∣

n∑

k=1

akεk

∣∣∣∣∣ < 1. (28)
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To be more precise, we only have to choose a primep such thatp > n, |a0| and

en(n!n)p

(p− 1)!
<

1∑n
k=0 |ak| . (29)

In this way we reach a contradiction in the identity (20) where the left hand side is a non-zero
integer, while the right hand side is a real number of absolute value less than1. ¤

This proof illustrates two of the key features of these types of arguments: considering properties
of the “fictitious” polynomial, and finding an integer between 0 and 1. It is very hard to prove a
given number is transcendental. Note this proof heavily uses special properties ofe, in particular the
derivative ofex is ex. The reader is invited to see Theorem 205 of [HW] where the transcendence
of π is proved. It is known thatζ(k) =

∑∞
n=1

1
nk is transcendental fork even (in fact, it is a rational

multiple of πk); very little is known if k is odd. If k = 3, Apery [Ap] provedζ(3) is irrational
(see also [Mill]), though it is not known if it is transcendental. For infinitely many oddk, ζ(k) is
irrational ([BR]), and at least one ofζ(5), ζ(7), ζ(9) or ζ(11) is irrational [Zu]. See also §??.

In field theory, one shows that ifα, β are algebraic then so areα + β andαβ; if both are tran-
scendental, at least one ofα + β andαβ is transcendental. Hence, while we expect bothe + π
andeπ to be transcendental, all we know is at least one is! In §7.2 we construct uncountably many
transcendentals. In §?? we show the Cantor set is uncountable, hence “most” of its elements are
transcendental.

Exercise 5.17.Complete the proof of Claim 5.10.

Exercise(hr) 5.18. Alternatively, prove Claim 5.10 by considering the binomial coefficient
(

p−1+m
p−1

)
,

which is an integer.

Arguing similarly as in the proof of the transcendence ofe, we can showπ is transcendental. We
content ourselves with provingπ2 is irrational, which we have seen (Exercises?? and??) implies
there are infinitely many primes. For more on such proofs, see Chapter11 of [BB] (specifically
pages352 to 356, where the following exercise is drawn from).

Exercise 5.19(Irrationality of π2). Fix a largen (how largen must be will be determined later).
Let f(x) = xn(1−x)n

n!
. Showf attains its maximum atx = 1

2
, for x ∈ (0, 1), 0 < f(x) < 1

n!
, and

all the derivatives off evaluated at0 or 1 are integers. Assumeπ2 is rational; thus we may write
π2 = a

b
for integersa, b. Consider

G(x) = bn

n∑

k=0

(−1)kf (2k)(x)π2n−2k. (30)

ShowG(0) andG(1) are integers and

d

dx
[G′(x) sin(πx)− πG(x) cos(πx)] = π2anf(x) sin(πx). (31)

Deduce a contradiction (to the rationality ofπ2) by showing that

π

∫ 1

0

anf(x) sin(πx)dx = G(0) + G(1), (32)

which cannot hold forn sufficiently large. The contradiction is the usual one, namely the integral
on the left is in(0, 1) and the right hand side is an integer.
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6. EXPONENT (OR ORDER) OF APPROXIMATION

Let α be a real number. We desire a rational numberp
q

such that
∣∣∣α− p

q

∣∣∣ is small. Some ex-

planation is needed. In some sense, the size of the denominatorq measures the “cost” of approx-
imating α, and we want an error that is small relative toq. For example, we could approximate
π by 314159/100000, which is accurate to 5 decimal places (about the size ofq), or we could use
103993/33102, which uses a smaller denominator and is accurate to 9 decimal places (about twice
the size ofq)! This ratio comes from the continued fraction expansion ofπ (see Chapter??). We
will see later (present chapter and Chapters??and??) that many properties of numbers are related
to how well they can be approximated by rationals. We start with a definition.

Definition 6.1 (Approximation Exponent). The real numberξ has approximation order (or expo-
nent)τ(ξ) if τ(ξ) is the smallest number such that for alle > τ(ξ) the inequality

∣∣∣∣ξ −
p

q

∣∣∣∣ <
1

qe
(33)

has only finitely many solutions.

In Theorem??we shall see how the approximation exponent yields information about the distrib-
ution of the fractional parts ofnkα for fixedk andα. In particular, ifα has approximation exponent
greater than4 then the sequencenkα mod 1 comes arbitrarily close to all numbers in[0, 1].

The following exercise gives an alternate definition for the approximation exponent. The defini-
tion below is more convenient for constructing transcendental numbers (Theorem 7.1).

Exercise(h) 6.2 (Approximation Exponent). Showξ has approximation exponentτ(ξ) if and only if
for any fixedC > 0 ande > τ(ξ) the inequality

∣∣∣∣ξ −
p

q

∣∣∣∣ <
C

qe
(34)

has only finitely many solutions withp, q relatively prime.

6.1. Bounds on the Order of Real Numbers.

Lemma 6.3. A rational number has approximation exponent1.

Proof. If ξ = a
b

andr = s
t
6= a

b
, thensb−at 6= 0. Thus|sb−at| ≥ 1 (as it is integral). This implies

∣∣∣ξ − s

t

∣∣∣ =
∣∣∣a
b
− s

t

∣∣∣ =
|sb− at|

bt
≥ 1

bt
. (35)

If the rationalξ had approximation exponente > 1 we would find
∣∣∣ξ − s

t

∣∣∣ <
1

te
, which implies

1

te
>

1

bt
. (36)

Thereforete−1 < b. Sinceb is fixed, there are only finitely many sucht. ¤

Theorem 6.4(Dirichlet). An irrational number has approximation exponent at least2.

Proof. It is enough to prove this forξ ∈ (0, 1). Let Q > 1 be an integer. Divide the interval(0, 1)
into Q equal intervals, say[ k

Q
, k+1

Q
). Consider theQ + 1 numbers inside the interval(0, 1):

{ξ}, {2ξ}, . . . , {(Q + 1)ξ}, (37)

where{x} denotes the fractional part ofx. Letting [x] denote the greatest integer less than or equal
to x, we havex = [x] + {x}. As ξ 6∈ Q, theQ + 1 fractional parts are all different.
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By Dirichlet’s Pigeon-Hole Principle (§??), at least two of these numbers, say{q1ξ} and{q2ξ},
belong to a common interval of length1

Q
. Without loss of generality we may take1 ≤ q1 < q2 ≤

Q + 1. Hence

|{q2ξ} − {q1ξ}| ≤ 1

Q
(38)

and

|(q2ξ − n2)− (q1ξ − n1)| ≤ 1

Q
, ni = [qiξ]. (39)

Now let q = q1 − q2 ∈ Z andp = n1 − n2 ∈ Z. Note1 ≤ q ≤ Q and

|qξ − p| ≤ 1

Q
(40)

and hence ∣∣∣∣ξ −
p

q

∣∣∣∣ ≤
1

qQ
≤ 1

q2
. (41)

We leave the rest of the proof to the reader (Exercise 6.5). ¤
Exercise(h) 6.5. Show the above argument leads to an infinite sequence ofq with q →∞; thus there

are infinitely many solutions to
∣∣∣ξ − p

q

∣∣∣ ≤ 1
q2 . Further, asp

q
∈ Q andξ 6∈ Q, we may replace the≤

with <, andξ has approximation exponent at least 2.

Exercise(h) 6.6. Use Exercises 6.5 and 5.19 (where we proveπ is irrational) to show that
∑∞

n=1(cos n)n

diverges; the argument of the cosine function is in radians. Harder: what about
∑∞

n=1(sin n)n?

Exercise 6.7.In Theorem 6.4, what goes wrong ifξ ∈ Q? Is the theorem true forξ ∈ Q?

Later we give various improvements to Dirichlet’s theorem. For example, we use continued frac-
tions to give constructions for the rational numbersp

q
(see the proof of Theorem??). Further, we

show that any numberp
q

that satisfies Dirichlet’s theorem for an irrationalξ has to be a continued
fraction convergent ofξ (§??). We also ask whether the exponent two can be improved. Our first
answer to this question is Liouville’s theorem (Theorem 7.1), which states that a real algebraic
number of degreen cannotbe approximated to order larger thann. In other words, ifξ satisfies
a polynomial equation with integer coefficients of degreen, thenτ(ξ) ≤ n. Liouville’s theorem
provides us with a simple method to construct transcendental numbers: if a number can be approx-
imated by rational numbers too well, it will have to be transcendental. We work out a classical
example in 7.2.

Liouville’s theorem combined with Dirichlet’s theorem implies the interesting fact that a qua-
dratic irrational numberξ has approximation exponent exactly2. Roth’s spectacular theorem (The-
orem 8.1) asserts that this is in fact the case for all algebraic numbers: the approximation exponent
of any real algebraic number is equal to two, regardless of the degree! We will see that the order of
approximation of numbers has many applications, for example in digit bias of sequences (Chapter
??) and Poissonian behavior of the fractional parts ofnkα (Chapter??).

Exercise 6.8.Letα (respectivelyβ) be approximated to ordern (respectivelym). What is the order
of approximation ofα + a

b
(a

b
∈ Q), α + β, α · β, and α

β
.

6.2. Measure of Well Approximated Numbers. We assume the reader is familiar with the notions
of lengths or measures of sets; see §??. In loose terms, the following theorem states that almost all
numbers have approximation exponent equal to two.

Theorem 6.9.LetC, ε be positive constants. LetS be the set of all pointsx ∈ [0, 1] such that there
are infinitely many relatively prime integersp, q with∣∣∣∣x−

p

q

∣∣∣∣ ≤
C

q2+ε
. (42)
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Then the length (or measure) ofS, denoted|S|, equals0.

Proof. Let N > 0. Let SN be the set of all pointsx ∈ [0, 1] such that there arep, q ∈ Z, q > N for
which ∣∣∣∣x−

p

q

∣∣∣∣ ≤
C

q2+ε
. (43)

If x ∈ S thenx ∈ SN for everyN . Thus if we can show that the measure of the setsSN becomes
arbitrarily small asN → ∞, then the measure ofS must be zero. How large canSN be? For a
givenq there are at mostq choices forp. Given a pair(p, q), we investigate how manyx’s are within

C
q2+ε of p

q
. Clearly the set of such points is the interval

Ip,q =

(
p

q
− C

q2+ε
,

p

q
+

C

q2+ε

)
. (44)

Note that the length ofIp,q is 2C
q2+ε . Let Iq be the set of allx in [0, 1] that are within C

q2+ε of a rational
number with denominatorq. Then

Iq ⊂
q⋃

p=0

Ip,q (45)

and therefore

|Iq| ≤
q∑

p=0

|Ip,q| = (q + 1) · 2C

q2+ε
=

q + 1

q

2C

q1+ε
<

4C

q1+ε
. (46)

Hence

|SN | ≤
∑
q>N

|Iq| =
∑
q>N

4C

q1+ε
<

4C

1 + ε
N−ε. (47)

Thus, asN goes to infinity,|SN | goes to zero. AsS ⊂ SN , |S| = 0. ¤

Remark 6.10. It follows from Roth’s Theorem (Theorem 8.1) that the setS consists entirely of
transcendental numbers; however, in terms of length, it is a small set of transcendentals.

Exercise 6.11.Instead of working with
∣∣∣x− p

q

∣∣∣ ≤ C
q2+ε , show the same argument works for

∣∣∣x− p
q

∣∣∣ ≤
C

f(q)
, where

∑ q
f(q)

< ∞.

Exercise 6.12.Another natural question to ask is what is the measure of allx ∈ [0, 1] such that
each digit of its continued fraction is at mostK? In Theorem?? we show this set also has length
zero. This should be contrasted with Theorem??, where we show if

∑∞
n=1

1
kn

converges, then the
set{x ∈ [0, 1] : ai(x) ≤ ki} has positive measure. What is the length ofx ∈ [0, 1] such that there
are no9’s in x’s decimal expansion?

Exercise 6.13(Hard). For a givenC, what is the measure of the set ofξ ∈ (0, 1) such that
∣∣∣∣ξ −

p

q

∣∣∣∣ <
C

q2
(48)

holds only finitely often? What ifC < 1? More generally, instead ofC
q2 we could have 1

q2 log q
or any

such expression.Warning: The authors are not aware of a solution to this problem!
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7. L IOUVILLE ’ S THEOREM

7.1. Proof of Lioville’s Theorem.

Theorem 7.1 (Liouville’s Theorem). Let α be a real algebraic number of degreed. Thenα is
approximated by rationals to order at mostd.

Proof. Let
f(x) = adx

d + · · ·+ a1x + a0 (49)

be the polynomial with relatively prime integer coefficients of smallest degree (called theminimal
polynomial) such thatf(α) = 0. The condition of minimality implies thatf(x) is irreducible over
Z.

Exercise(h) 7.2. Show that a polynomial irreducible overZ is irreducible overQ.

In particular, asf(x) is irreducible overQ, f(x) does not have any rational roots. If it did then
f(x) would be divisible by a linear polynomial(x − a

b
). Thereforef is non-zero at every rational.

Our plan is to show the existence of a rational numberp
q

such thatf(p
q
) = 0. Let p

q
be such a

candidate. Substituting gives

f

(
p

q

)
=

N

qd
, N ∈ Z. (50)

Note the integerN depends onp, q and theai’s. To emphasize this dependence we writeN(p, q; α).
As usual, the proof proceeds by showing|N(p, q; α)| < 1, which then forcesN(p, q; α) to be zero;
this contradictsf is irreducible overQ.

We find an upper bound forN(p, q; α) by considering the Taylor expansion off aboutx = α. As
f(α) = 0, there is no constant term in the Taylor expansion. We may assumep

q
satisfies|α− p

q
| < 1.

Then

f(x) =
d∑

i=1

1

i!

dif

dxi (α) · (x− α)i. (51)

Consequently
∣∣∣∣f

(
p

q

)∣∣∣∣ =

∣∣∣∣
N(p, q; α)

qd

∣∣∣∣ ≤
∣∣∣∣
p

q
− α

∣∣∣∣ ·
d∑

i=1

∣∣∣∣
1

i!

dif

dxi (α)

∣∣∣∣ ·
∣∣∣∣
p

q
− α

∣∣∣∣
i−1

≤
∣∣∣∣
p

q
− α

∣∣∣∣ · d ·max
i

∣∣∣∣
1

i!

dif

dxi (α) · 1i−1

∣∣∣∣

≤
∣∣∣∣
p

q
− α

∣∣∣∣ · A(α), (52)

whereA(α) = d ·maxi

∣∣∣ 1
i!

dif
dxi (α)

∣∣∣. If α were approximated by rationals to order greater thand, then

(Exercise 6.2) for someε > 0 there would exist a constantB(α) and infinitely manyp
q

such that
∣∣∣∣
p

q
− α

∣∣∣∣ ≤
B(α)

qd+ε
. (53)

Combining yields ∣∣∣∣f
(

p

q

)∣∣∣∣ ≤
A(α)B(α)

qd+ε
. (54)

Therefore

|N(p, q; α)| ≤ A(α)B(α)

qε
. (55)
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For q sufficiently large,A(α)B(α) < qε. As we may takeq arbitrarily large, for sufficiently largeq
we have|N(p, q; α)| < 1. As the only non-negative integer less than 1 is 0, we find forq large that

f
(

p
q

)
= 0, contradictingf is irreducible overQ. ¤

Exercise 7.3.Justify the fact that if{pi

qi
}i≥1 is a sequence of rational approximations to ordern ≥ 1

of x thenqi →∞.

7.2. Constructing Transcendental Numbers.We have seen that the order to which an algebraic
number can be approximated by rationals is bounded by its degree. Hence if a real, irrational num-
berα can be approximated by rationals to an arbitrarily large order, thenα must be transcendental!
This provides us with a recipe for constructing transcendental numbers. Note the reverse need not
be true: if a numberx can be approximated to order at mostn, it does not follow thatx is algebraic
of degree at mostn (see Theorem 8.1); for example, Hata [Hata] showed the approximation expo-
nent ofπ is at most8.02; see Chapter11 of [BB] for bounds on the approximation exponent fore,
π, ζ(3) andlog 2. We use the definition of approximation exponent from Exercise 6.2.

Theorem 7.4(Liouville). The number

α =
∞∑

m=1

1

10m!
(56)

is transcendental.

Proof. The series definingα is convergent, since it is dominated by the geometric series
∑

1
10m . In

fact the series converges very rapidly, and it is this high rate of convergence that makesα transcen-
dental. FixN large and choosen > N . Write

pn

qn

=
n∑

m=1

1

10m!
(57)

with pn, qn > 0 and(pn, qn) = 1. Then{pn

qn
}n≥1 is a monotone increasing sequence converging to

α. In particular, all these rational numbers are distinct. Note also thatqn must divide10n!, which
implies thatqn ≤ 10n!. Using this, and the fact that10−(n+1+k)! < 10−(n+1)!10−k, we obtain

0 < α− pn

qn

=
∑
m>n

1

10m!

<
1

10(n+1)!

(
1 +

1

10
+

1

102
+ · · ·

)

=
1

10(n+1)!
· 10

9

<
2

(10n!)n+1

<
2

qn+1
n

≤ 2

qN
n

. (58)

This gives an approximation by rationals of orderN of α, in fact infinitely many such approxima-
tions (one for eachn > N ). SinceN can be chosen arbitrarily large, this implies thatα can be
approximated by rationals to arbitrary order. By Theorem 7.1, ifα were algebraic of degreem it
could be approximated by rationals to order at mostm; thus,α is transcendental. ¤

Numbers defined as in (56) are called Liouville numbers. The following exercise shows there are
uncountably many Liouville numbers.
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Exercise 7.5.Consider the binary expansion forx ∈ [0, 1), namely

x =
∞∑

n=1

bn(x)

2n
, bn(x) ∈ {0, 1}. (59)

For irrational x this expansion is unique. Consider the function

M(x) =
∞∑

n=1

10−(bn(x)+1)n!. (60)

Prove for irrationalx that M(x) is transcendental. Thus the above is an explicit construction for
uncountably many transcendentals! Investigate the properties of this function. Is it continuous or
differentiable (everywhere or at some points)? What is the measure of these numbers? These are
“special” transcendental numbers (compare these numbers to Theorem 6.9). See also Remark??.

The following example uses some results concerning continued fraction studied in Chapter??.
The reader should return to this theorem after studying Chapter??.

Theorem 7.6.The number
β = [101!, 102!, . . . ] (61)

is transcendental.

Proof. Let pn

qn
be the continued fraction of[101!, . . . , 10n!]. Then
∣∣∣∣β −

pn

qn

∣∣∣∣ =
1

qnq′n+1

=
1

qn(a′n+1qn + qn−1)
<

1

an+1

=
1

10(n+1)!
. (62)

Sinceqk = akqk−1 + qk−2, we haveqk > qk−1 Also qk+1 = ak+1qk + qk−1, so we obtain
qk+1

qk

= ak+1 +
qk−1

qk

< ak+1 + 1. (63)

Writing this inequality fork = 1, . . . , n− 1 and multiplying yields

qn = q1
q2

q1

q3

q2

· · · qn

qn−1

< (a1 + 1) (a2 + 1) · · · (an + 1)

=

(
1 +

1

a1

)
· · ·

(
1 +

1

an

)
a1 · · · an

< 2na1 · · · an = 2n101!+···+n!

< 102·n! = a2
n. (64)

Combining (62) and (64) gives
∣∣∣∣β −

pn

qn

∣∣∣∣ <
1

an+1

=
1

an+1
n

<

(
1

a2
n

)n
2

<

(
1

q2
n

)n
2

=
1

qn
n

. (65)

In this way we get, just as in Liouville’s Theorem, an approximation ofβ by rationals to arbitrary
order. This proves thatβ is transcendental. ¤

Exercise 7.7.Without using the factorial function, construct transcendental numbers (either by
series expansion or by continued fractions). Can you do this using a functionf(n) which grows
slower thann!?

The following exercises construct transcendental numbers by investigating infinite products of
rational numbers; see Exercise?? for a review of infinite products. algebraic and which are tran-
scendental.



20 STEVEN J. MILLER AND RAMIN TAKLOO-BIGHASH

Exercise 7.8.Letan be a sequence of positive numbers such that
∑∞

n=1 an converges. Assume also
for all N > 1 thataN >

∑∞
n=N+1 an. Let(n1, n2, . . . ) and(m1,m2, . . . ) be any two distinct infinite

sequences of increasing positive integers; this means that there is at least onek such thatnk 6= mk.
Prove ∞∑

k=1

ank
6=

∞∑

k=1

amk
, (66)

and find three different sequences{an}∞n=1 satisfying the conditions of this problem.

Exercise(h) 7.9. Prove ∞∏
n=2

n2 − 1

n2
=

∞∏
n=2

(
1− 1

n2

)
=

1

2
. (67)

For eachα ∈ [0, 1], let α(n) be thenth of α’s binary expansion; ifα has two expansions take the
finite one. Consider the function

f(α) =
∞∏

n=2

(
1− α(n)

n2

)
. (68)

Provef(α) takes on countably many distinct rational values and uncountably many distinct tran-
scendental values.Hint: one approach is to use the previous exercise. For a genericα ∈ [0, 1], do
you expectf(α) to be algebraic or transcendental? Note ifα(n) = 1 for n prime and0 otherwise
we get 6

π2 ; see Exercise??and??.

8. ROTH’ S THEOREM

As we saw earlier, Liouville’s Theorem asserts that there is a limit to the accuracy with which
algebraic numbers can be approximated by rational numbers. There is a long list of improvements
associated with Liouville’s Theorem. More precise and more profound results were proved by Thue
in 1908, Siegel in 1921, Dyson in 1947 and Roth in 1955, to mention but a few of the improvements.
Thue proved that the exponentn can be replaced byn

2
+ 1; Siegel proved

min
1≤s≤n−1

(
s +

n

s + 1

)
(69)

works, and Dyson showed that
√

2n is sufficient. It was, however, conjectured by Siegel that for
any ε > 0, 2 + ε is enough! Proving Siegel’s conjecture was Roth’s remarkable achievement that
earned him a Fields medal in 1958. For an enlightening historical analysis of the work that led to
Roth’s Theorem see [Gel], Chapter I.

Theorem 8.1(Roth’s Theorem). Letα be a real algebraic number (a root of a polynomial equation
with integer coefficients). Given anyε > 0 there are only finitely many relatively prime pairs of
integers(p, q) such that ∣∣∣∣α−

p

q

∣∣∣∣ <
1

q2+ε
. (70)

Remark 8.2. We have seen forα 6∈ Q that there are infinitely many pairs of relatively prime
integers(p, q) such that ∣∣∣∣α−

p

q

∣∣∣∣ <
1

q2
. (71)

Therefore any non-rational algebraic number has approximation exponent exactly 2.

Roth’s Theorem has been generalized to more general settings. For a generalization due to Lang,
and other historical remarks, see [HS]. For another generalization due to Schmidt see [B].

The remainder of this chapter is devoted to various applications of this fundamental theorem. For
a proof, see Chapter??.
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8.1. Applications of Roth’s Theorem to Transcendental Numbers.In this section we indicate,
without proof, some miscellaneous applications of Roth’s Theorem to constructing transcendental
numbers. From this theorem follows a sufficient, but not necessary, condition for transcendency:
let ξ andτ > 2 be real numbers. If there exists an infinite sequence of distinct rational numbers
p1

q1
, p2

q2
, p3

q3
, . . . satisfying

0 <

∣∣∣∣ξ −
pr

qr

∣∣∣∣ ≤
1

qτ
r

(72)

for r = 1, 2, 3, . . . , thenξ is transcendental.

Exercise 8.3.Verify that the collection of all suchξ is an uncountable set of measure zero.

The first application is a theorem due to Mahler which was originally proved by an improvement
of Thue’s result mentioned above. One can of course prove the same result using Roth’s Theorem;
the proof is easier, but still non-trivial. LetP (x) be a polynomial with integral coefficients with the
property thatP (n) > 0 if n > 0. Let q > 1 be a positive integer. For any numbern we letlq(n) be
the string of numbers obtained from writingn in baseq. Then Mahler’s theorem [Mah] asserts that
the number

α(P ; q) = 0.lq(P (1))lq(P (2))lq(P (3)) · · ·

=
∞∑

n=1

P (n)∏n
k=1 qdlogq P (k)e

(73)

is transcendental (see [Gel], page 6). For example, whenP (x) = x andq = 10, we obtain Cham-
pernowne’s constant

0.123456789101112131415161718 . . . . (74)

Exercise 8.4.Prove, using elementary methods, that the above number is irrational. Can you prove
this particular number is transcendental?

Another application is the transcendence of various continued fractions expansions (see Chapter
?? for properties of continued fractions). As an illustration we state the following theorem due to
Okano [Ok]: letγ > 16 and supposeA = [a1, a2, a3, . . . ] andB = [b1, b2, b3, . . . ] are two simple
continued fractions withan > bn > a

γ(n−1)
n−1 for n sufficiently large. ThenA,B,A ± B andAB±1

are transcendental. The transcendence ofA,B easily follows from Liouville’s theorem, but the
remaining assertions rely on Roth’s Theorem.

8.2. Applications of Roth’s Theorem to Diophantine Equations. Here we collect a few appli-
cations of Roth’s Theorem to Diophantine equations (mostly following [Hua], Chapter 17); see
also Remark??. Before stating any hard theorems, however, we illustrate the general idea with an
example (see pages 244–245 of [Sil1]).

Example 8.5.There are only finitely many integer solutions(x, y) ∈ Z2 to

x3 − 2y3 = a. (75)

In order to see this, we proceed as follows. Letρ = e2πi/3 = (−1)1/3 = −1
2

+ i
√

3
2

. Then

x3 − 2y3 = (x− 21/3y)(x− ρ21/3y)(x− ρ221/3y), (76)
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and therefore ∣∣∣∣
a

y3

∣∣∣∣ =

∣∣∣∣
x

y
− 21/3

∣∣∣∣
∣∣∣∣
x

y
− ρ21/3

∣∣∣∣
∣∣∣∣
x

y
− ρ221/3

∣∣∣∣

≥
∣∣∣∣
x

y
− 21/3

∣∣∣∣
∣∣=(ρ21/3)

∣∣ ∣∣=(ρ221/3)
∣∣

=
3

24/3

∣∣∣∣
x

y
− 21/3

∣∣∣∣ . (77)

Hence every integer solution(x, y) to x3 − 2y3 = a is a solution to
∣∣∣∣21/3 − x

y

∣∣∣∣ ≤
3 · 2−4/3

|y|3 . (78)

By Roth’s Theorem there are only finitely many such solutions.
Note Liouville’s Theorem isnotstrong enough to allow us to conclude there are only finitely many

integer solutions. As21/3 is an algebraic number of degree3, Liouville’s Theorem says21/3 can be
approximated by rationals to order at most3. Thus the possibility that21/3 canbe approximated by
rationals to order3 is not ruled out by Liouville’s Theorem.

Remark 8.6. The reader should keep in mind that “finite” does not mean “a small number”;10456

is still a finite number! In general, Roth’s Theorem and other finiteness results of the same nature
do not provide effective bounds. In some sense this is similar to the special value proofs of the
infinitude of primes:π2 6∈ Q implies there are infinitely many primes, but gives no information on
how many primes there are at mostx (see Exercise??).

Building on the above example, we state the following important theorem.

Theorem 8.7. Let n ≥ 3 and letf(x, y) be an irreducible homogeneous polynomial of degreen
with integer coefficients. Suppose thatg(x, y) is a polynomial with rational coefficients of degree at
mostn− 3. Then the equation

f(x, y) = g(x, y) (79)

has only finitely many solutions in integers(x, y).

Proof. Let us assumea0 6= 0. Without loss of generality we may also assume|x| ≤ |y|. Suppose
y > 0, the other cases being similar or trivial. Letα1, . . . , αn be the roots of the equationf(x, 1) =
0, and letG be the maximum of the absolute values of the coefficients ofg(x, y). Then (79) implies

|a0(x− α1y) . . . (x− αny)| ≤ G(1 + 2|y|+ · · ·+ (n− 2)|y|n−3)

< n2G|y|n−3.
(80)

Exercise 8.8.Prove the above inequalities.

Consequently

|(x− α1y) . . . (x− αny)| <
n2G

|a0| |y|
n−3. (81)

As on the left hand side there aren factors, at least one the factors must be strictly less than the
right hand side raised to the power1

n
; there exist an indexν such that

|x− ανy| <

(
n2G

|a0|
) 1

n

|y|1− 3
n . (82)

Since there are infinitely many solutions(x, y), it is a consequence of the Pigeon-hole Principle that
infinitely many of the pairs of solutions correspond to the same indexν. We fix one such index and
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denote it again byν. Next letµ 6= ν and|y| > N , N a large positive number whose size we will
determine in a moment. Then

|x− αµy| = |(αν − αµ)y + (x− ανy)|

> |(αν − αµ)| · |y| −
(

n2G

|a0|
) 1

n

· |y|1− 3
n

>
1

2
|(αν − αµ)| · |y| (83)

for N sufficiently large. Next, 80 and 81 imply that for|y| > N we have

n2G

|a0| |y|
n−3 >

[∏

µ6=ν

1

2
|αν − αµ|

]
· |y|n−1 |x− ανy| . (84)

Hence ∣∣∣∣
x

y
− αν

∣∣∣∣ <
K

|y|3 (85)

for infinitely many pairs of integers(x, y) for a fixed explicitly computable constantK. By Roth’s
Theorem, this contradicts the algebraicity ofαν . ¤

Exercise 8.9.In the proof of Theorem 8.7, handle the cases where|x| > |y|.
Remark 8.10. In the proof of the above theorem, and also the example preceding it, we used the
following simple, but extremely useful, observation: Ifa1, . . . , an, B are positive quantities subject
to a1 . . . an < B, then for somei, we haveai < B

1
n .

An immediate corollary is the following:

Corollary 8.11 (Thue). Letn ≥ 3 and letf be as above. Then for any integera the equation

f(x, y) = a (86)

has only finitely many solutions.

Exercise 8.12(Thue). Show that ifa 6= 0 andf(x, y) is not thenth power of a linear form or the
n
2

th power of a quadratic form, then the conclusion of the corollary still holds.

Example 8.13.Consider Pell’s Equationx2 − dy2 = 1 whered is not a perfect square. We know
that if d > 0 this equation has infinitely many solutions in integers(x, y). Given integersd andn,
we can consider the generalized Pell’s Equationxn − dyn = 1. Exercise 8.12 shows that ifn ≥ 3
the generalized Pell’s Equation can have at most finitely many solutions. See §?? for more on Pell’s
Equation.

Example 8.14.We can apply the same idea to Fermat’s equationxn + yn = zn. Again, Exercise
8.12 shows that ifn ≥ 3 there are at most a finite number of solutions(x, y, z), provided that we
require one of the variables to be a fixed integer. For example, the equationxn+yn = 1 cannot have
an infinite number of integer solutions(x, y). This is of course not hard to prove directly (exercise!).
Fermat’s Last Theorem states that there are no rational solutions to the equationxn + yn = 1 for n
larger than two except whenxy = 0 (if x or y is zero, we say the solution is trivial). A deep result
of Faltings, originally conjectured by Mordell, implies that for any givenn ≥ 3 there are at most a
finite number of rational solutions to the equation. Incidently, the proof of Faltings’ theorem uses a
generalization of Roth’s Theorem. Unfortunately, Faltings’ theorem does not rule out the possibility
of the existence of non-trivial solutions as conjectured by Fermat. This was finally proved by Wiles
in 1995; see[Acz, Maz3, Wi].
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Exercise 8.15(Hua). Letn ≥ 3, b2−4ac 6= 0, a 6= 0, d 6= 0. Then a theorem of Landau, Ostrowski,
and Thue states that the equation

ay2 + by + c = dxn (87)

has only finitely many solutions. Assuming this statement, prove the following two assertions:

(1) Let n be an odd integer greater than1. Arrange the integers which are either a square or
annth power into an increasing sequence(zr). Prove thatzr+1 − zr →∞ asr →∞.

(2) Let 〈ξ〉 = min(ξ − [ξ], [ξ] + 1− ξ). Prove that

lim
x→∞,x6=k2

x
n
2 〈xn

2 〉 = ∞, (88)

where the conditions on the limit meanx →∞ andx is never a perfect square.
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