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1. INTRODUCTION

These notes are fromAn Invitation to Modern Number Theory by Steven J. Miller and
Ramin Takloo-Bighash (Princeton University Press, 2006). PLEASE DO NOT DISTRIBUTE
THESE NOTES FURTHER. As this is an excerpt from the book, there are many references
to other parts of the book; these appear as ?? in the text below.

We have the following inclusions: the natural numb&rs= {0,1,2,3, ...} are a subset of the
integersZ = {...,—1,0,1,...} are a subset of the rationaly = {§ :p,q € Z,q # 0} are a
subset of the real numbelsare a subset of the complex numb€érsThe notatiorZ comes from
the German zahl (number) af@lcomes from quotient. Are most real numbers rational? We show

that, not only are rational numbers “scarce,” but irrational numbers,liker 3/n are also scarce.
1
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Definition 1.1 (Algebraic Number) An« € Cis an algebraic number if it is a root of a polynomial
with finite degree and integer coefficients.

Definition 1.2 (Transcendental Numberpn o € C is a transcendental number if it is not alge-
braic.

Later (Chapter®?, ?? and??) we see many properties of numbers depend on whether or not a
number is algebraic or transcendental. We prove in this chapter that most real numbers are transcen-
dentalwithout ever constructing a transcendental numbéf then show that is transcendental
but only later in §7.2 will we explicitly construct infinitely many transcendental numbers.

The main theme of this chapter is to describe a way to compare sets with infinitely many el-
ements. In Chapte?? we compared subsets of the natural numbers. For anfi skt Ay =
An{l,2,...,N}, and considetimy_. ATN. Such comparisons allowed us to show that in the
limit zero percent of all integers are prime (see Chebyshev’'s Theorem, Thé&&@ebut there are
far more primes than perfect squares. While such limiting arguments work well for subsets of the
integers, they completely fail for other infinite sets and we need a new notion of size.

For example, consider the closed intendlsl| and |0, 2]. In one sense the second set is larger
as the first is a proper subset. In another sense they are the same size as eachreteroent
can be paired with a unique element= < [0,1]. The idea of defining size through such
correspondences has interesting consequences. While there are as many perfect squares as primes
as integers as algebraic numbers, such numbers are rare and in fact essentially all numbers are
transcendental.

2. RUSSELL S PARADOX AND THE BANACH-TARSKI PARADOX

The previous example, where in some sense the&dtsand |0, 2] have the same number of el-
ements, shows that we must be careful with our definition of counting. To motivate our definitions
we give some examples of paradoxes in set theory, which emphasize why we must be so careful to
put our arguments on solid mathematical ground.

Russell's Paradox:Assume for any property the collection of all elements having propefy
is aset. ConsideR = {z : z ¢ x}; thusz € R if and only if z ¢ x. Most objects are not elements
of themselves; for exampl®&) ¢ N because the set of natural numbers is not a natural number. If
R exists, it is natural to ask whether or M8t € R. Unwinding the definition, we seR € R
if and only if R ¢ R! Thus the collection of all objects satisfying a given property is not always
a set. This strange situation led mathematicians to reformulate set theory. See, for example, [HJ, Je].

Banach-Tarski Paradox: Consider a solid unit sphere R?. It is possible to divide the sphere
into 5 disjoint pieces such that, by simply translating and rotating the 5 pieces, we can assemble 3
into a solid unit sphere and the other 2 into a disjoint solid unit sphere. But translating and rotating
should not change volumes, yet we have doubled the volume of our sphere! This construction de-
pends on the (Uncountable) Axiom of Choice (see 84.4). See, for example, [Be, Str].

Again, the point of these paradoxes is to remind ourselves that plausible statements need not be
true, and one must be careful to build on firm foundations.

3. DEFINITIONS

We now define the terms we will use in our counting investigations. We assume some familiarity
with set theory; we will not prove all the technical details (see [HJ] for complete details).

A function f : A — B is one-to-one(or injective) if f(z) = f(y) impliesz = y; f is onto (or
surjective) if given anyb € B there existss € A with f(a) = b. A bijection is a one-to-one and
onto function.
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Exercise 3.1.Showf : R — R given byf(z) = z? is not a bijection, buy : [0, 0c0) — R given by
g(r) = 2%is. If f : A — B is a bijection, prove there exists a bijectién: B — A. We usually
write {1 for h.

We say two sets! and B have the same cardinality(i.e., are the same size) if there is a bijection
f:+ A — B. We denote the common cardinality by| = | B|. If A has finitely many elements (say
n elements), then there is a bijection frofrto {1,...,n}. We sayA isfinite and|A| = n < cc.

Exercise 3.2.Show two finite sets have the same cardinality if and only if they have the same
number of elements.

Exercise 3.3.Supposed and B are two sets such that there are onto maps A — B and
g: B — A. Prove|A| = |B|.

Exercise 3.4.A setA is said to be infinite if there is a one-to-one magp A — A which is not
onto. Using this definition, show that the sBt®ndZ are infinite sets. In other words, prove that
an infinite set has infinitely many elements.

Exercise 3.5.Show that the cardinality of the positive even integers is the same as the cardinality
of the positive integers is the same as the cardinality of the perfect squares is the same as the
cardinality of the primes.

Remark 3.6. Exercise 3.5 is surprising. Lety be all positive even integers at mast The

fraction of positive integers less than/ and even i% = 1, yet the even numbers have the same
cardinality asN. If Sy is all perfect squares up ¥, one can similarly show the fraction of perfect
squares up tav is approximately%, which goes to zero a&¥ — oo. Hence in one sense there

are a lot more even numbers or integers than perfect squares, but in another sense these sets are the
same size.

A is countableif there is a bijection betweeA and the integer&. A is at most countableif A
is either finite or countabled is uncountableif A is not at most countable

Definition 3.7 (Equivalence Relation)Let R be a binary relation (taking values true and false) on
a setS. We sayR is an equivalence relation if the following properties hold:

(1) Reflexive:Vx € S, R(z, x) is true;
(2) Symmetric:Vx,y € S, R(x,y) is true if and only ifR(y, =) is true;
(3) Transitive:Vz,y,z € S, R(x,y) andR(y, z) are true implyR(z, z) is true.

Exercise 3.8.

(1) LetS be any set, and leR(x, y) bex = y. Prove thatR is an equivalence relation.

(2) LetS = Z and letR(x, y) bex = y mod n. ProveR is an equivalence relation.

(3) LetS = (Z/mZ)* and letR(z,y) bexy is a quadratic residue modula. Is R an equiva-
lence relation?

If AandB are sets, th€artesian product A x Bis{(a,b) :a € A,b € B}.

Exercise 3.9.LetS = N x (N — {0}). For (a,b), (¢,d) € S, we defineR((a, b), (c,d)) to be true
if ad = be and false otherwise. Prove thatis an equivalence relation. What type of number does
a pair (a, b) represent?

Exercise 3.10.Let z,y, z be subsets ok (for example,X = Q,R,C,R", et cetera). Define
R(x,y) to be true if|z| = |y| (the two sets have the same cardinality), and false otherwise. Prove
R is an equivalence relation.
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4. COUNTABLE AND UNCOUNTABLE SETS

We show that several common sets are countable. Consider the set of whole niithbers
{1,2,3,...}. Definef : W — Z by f(2n) =n—1, f(2n+ 1) = —n — 1. By inspection, we seé
gives the desired bijection betwe®h andZ. Similarly, we can construct a bijection fromto Z,
whereN = {0, 1,2, ... }. Thus, we have proved

Lemma 4.1. To show a seb is countable, it is sufficient to find a bijection frathto eitherW or
NorZ.

We need the intuitively plausible
Lemma 4.2.If A C B, then|A| < |B|.
Lemma4.3.1f f : A — C'is a one-to-one function (not necessarily onto), thép< |C'|. Further,
if C' C Athen|A| = |C].
Theorem 4.4(Cantor-Bernstein)If |A| < |B|and|B| < |A|, then|A| = | B|.
Exercise 4.5.Prove Lemmas 4.2 and 4.3 and Theorem 4.4.
Theorem 4.6.If A and B are countable thensoid U Band A x B.
Proof. We have bijectiong : N — A andg : N — B. Thus we can label the elements4find B
by
A = Hag,a1,as,a3,...}
B = {bg,b1,ba,bs,...}. ()

AssumeA N B is empty. Defingh : N — AU B by h(2n) = a, andh(2n+ 1) = b,. Ashis a
bijection fromN to A U B, this provesA U B is countable. We leave to the reader the case when
AN Bis notempty. To provel x B is countable, consider the following functian N — A x B
(see Figure 1):

h(1) = (ag, bo)

h(2) = (a1, bo), h(3) = (a1, b1), h(4) = (ao, b1)

h(5) = (a2,bo), h(6) = (a2, b1), h(T) = (az, b2), h(8) = (a1, b2), h(9) = (ao, b2)
and so on. For example, at th® stage we have

h(n® +1) = (an, by), h(n* +2) = (an, bp_1), - .
h(n® 4+n+1) = (an, bp), (> + 1 +2) = (an_1,b,), . ..
k(4 1)) = (ag, by).

We are looking at all pairs of intege(s,,, b,) in the first quadrant (including those on the axes).

The above functiort starts at(0,0), and then moves through the first quadrant, hitting each pair
once and only once, by going up and over and then restarting anakes. O

Corollary 4.7. Let(A;);cn be a collection of sets such that is countable for alk € N. Then for
anyn, A;U---UA, andA; x --- x A, are countable, where the last setisaltuples(a, ..., a,),
a; € A;. Furtheru A; is countable. If eachd; is at most countable, then,A; is at most
countable.

Exercis€™ 4.8. Prove Corollary 4.7.

As the natural numbers, integers and rationals are countable, by takingleachi, Z or Q we
immediately obtain

Corollary 4.9. N*, Z" andQ™ are countable.
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FIGURE1l. A x B is countable

Proof. Proceed by induction; for example wrig* ™! asQ" x Q. O
Exercise 4.10.Prove that there are countably many rationals in the interfal |.

Exercisé™ 4.11. ConsiderN points in the plane. For each point, color every point an irrational
distance from that point blue. What is the smalldsheeded such that, if the points are properly
chosen, every point in the plane is colored blue? If possible, give a constructive solution (i.e., give
the coordinates of the points).

4.1. Irrational Numbers. If a € Q, we saya is irrational . Clearly, not all numbers are rational
(for example,,/—1). Are there any real irrational numbers? The following example disturbed the
ancient Greeks:

Theorem 4.12.The square root of two is irrational.

Proof. Assume not. Then we havg2 = =, and we may assumeandg are relatively prime. Then
2¢> = p?. We claim that2|p?. While this appears obvious, this must be provedy i even, this
is clear. Ifp is odd, we may writey = 2m + 1. Thenp? = 4m? + 4m + 1 = 2(2m? + 2m) + 1,
which is clearly not divisible by 2. Thysis even, say = 2p;. Then2¢? = p? becomeQq? = 4p?,
and a similar argument yieldsis even. Hence andq have a common factor, contradicting our
assumption. O

This construction was disturbing for the following reason: consider an isosceles right triangle
with bases of length 1. By the Pythagorean theorem, the hypotenuse has\éngiihus, using
a straight edge and compass, one easily constructs a non-rational length from rational sides and a
right angle.

The above proof would be faster if we appealed to unique factorization: any positive integer can
be written uniquely as a product of powers of primes. If one does not use unique factorization, then
for v/3 one must check of the form3m, 3m + 1 and3m + 2.

Exercise 4.13.1f n is a non-square positive integer, proyé: is irrational.

Exercise 4.14.Using a straight edge and compass, given two segments (one of unit length, one of
lengthr with » € Q), construct a segment of length-.

Exercis€" 4.15. Prove the Pythagorean theorem: if a right triangle has bases of leagthd b
and hypotenusethena? + b* = 2.

4.2. Algebraic Numbers. Let f(z) be a polynomial with rational coefficients. By multiplying by
the least common multiple of the denominators, we can clear the fractions. Thus without loss of
generality it suffices to consider polynomials with integer coefficients.
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The set ofalgebraic numbers A is the set of alle € C such that there is a polynomial of finite
degree and integer coefficients (dependingrof course) such thatf(z) = 0. The remaining
complex numbers are theanscendentals The set ofalgebraic numbers of degreen, A, is the
set of allz € A such that

(1) there exists a polynomial with integer coefficients of degreseich thatf (z) = 0;
(2) there is no polynomigj with integer coefficients and degree less thanith g(x) = 0.

Thus A, is the subset of algebraic numbersvhere for eachx € A, the degree of the smallest
polynomial f with integer coefficients and(z) = 0 is n.

Exercise 4.16.Show the following are algebraic: any rational number, the square root of any
rational number, the cube root of any rational numbér,wherer,p, ge€Q,i=+v—1,V3vV2-5.

Theorem 4.17.The algebraic numbers are countable.

Proof. If we show eachA,, is at most countable, then a& = U;° | A,, by Corollary 4.7A is at
most countable. The proof proceeds by finding a bijection from the set of all roots of polynomials
of degreen with a subset of the countable $&t.

Recall theFundamental Theorem of Algebra: Let f(z) be a polynomial of degree with
complex coefficients. Thelfi(xz) hasn (not necessarily distinct) roots. Actually, we only need a
weaker version, namely that a polynomials with integer coefficients has at most countably many
roots.

Fix ann € N. We show.A, is at most countable. We can represent every integral polynomial
f(x) = apx™ + -+ ap by an(n + 1)-tuple(ay, . . ., a,). By Corollary 4.9, the set of alln + 1)-
tuples with integer coefficientsZ(™!) is countable. Thus there is a bijection frd¥nto Z"*! and
we can index eactn + 1)-tuplea € Z"**

{a:acZ™) = U{oz,»}, 2

where eachy; € Z""!. For each tupley; (or a € Z"*1), there aren roots to the corresponding
polynomial. LetR,,, be the set of roots of the integer polynomial associated .td he roots inR,,
need not be distinct, and the roots may solve an integer polynomial of smaller degree. For example,
f(x) = (22 — 1)* is a degre& polynomial. It has two roots; = 1 with multiplicity 4 andz = —1
with multiplicity 4, and each root is a root of a degrepolynomial.

Let P, = {x € C: x is aroot of a degree polynomial}. One can show that

Py, = JRa D An (3)

=1
By Lemma 4.7,P, is at most countable. Thus by Lemma 4.2,/3sis at most countable4,, is
at most countable. By Corollary 4.4 is at most countable. Agl; > Q (given% € Q consider
gr — p = 0), A; is countable. As4 is at most countable, this implie4 is countable. O

Exercise 4.18.Show the full force of the Fundamental Theorem of Algebra is not needed in the
above proof; namely, it is enough that every polynomial have finitely many (or even countably
many!) roots.

Exercise 4.19.ProveR,, D A,,.
Exercise 4.20.Prove any real polynomial of odd degree has a real root.

Remark 4.21. The following argument allows us to avoid using the Fundamental Theorem of Al-
gebra. Letf(z) be a polynomial of degree with real coefficients. Itv € C is such thatf (a) = 0,
prove f(a) = 0, wherea is the complex conjugate of (o = z+iy, @ = x —1y). Using polynomial
long division, dividef(z) by h(z) = (z — a) if @ € Randh(z) = (z — a)(x — @) otherwise. As
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both of these polynomials are re%% = g(x) + ;Efc)) has all real coefficients, and the degree of
r(z) is less than the degree bfz). As f(x) andh(x) are zero forr = a anda, r(z) is identically
zero. We now have a polynomial of degree- 1 (or n — 2). Proceeding by induction, we sg¢e
has at most roots. Note we have not provefdhasn roots. Note also the use of the Euclidean

algorithm (see 8?) in the proof.

Exercise 4.22(Divide and Conquer)For f(z) continuous, iff(x;) < 0 < f(z,) then there must
be a root between; and =, (Intermediate Value Theorem, Theor&®); look at the midpoint
Ty = 252 If f(2,,) = 0 we have found the root; if(z,,,) < 0 (> 0) the root is betweenm,,, and

x, (z,, andz;). Continue subdividing the interval. Prove the division points converge to a root.

Remark 4.23. By completing the square, one can show that the rootsdf- b« + ¢ = 0 are given

by @ = =bEvbi—dac VQf“"“C More complicated formulas exist for the general cubic and quartic; however,
there is no such formula which gives the roots of a general degree 5 (or higher) polynomial in terms
of its coefficients (see [Art]). While we can use Newton’s Method (s¥® &r Divide and Conquer

to approximate a root, we do not have a procedure in general to give an exact answer involving
radicals and the coefficients of the polynomial.

Exercise 4.24(Rational Root Test)Let f(z) = a,z™ + --- + ao be a polynomial with integer
coefficientsg,,, ag # 0 and coprime. Lep,q € Z, ¢ # 0. If f(p/q) = 0, showg|a,, andp|ay. Thus
given a polynomial one can determine all the rational roots in a finite amount of time. Generalize
this by finding a criterion for numbers of the forgip/q to be a root. Does this work for higher
powers, such as{/p/q? Does this contradict the claim in Remark 4.23 about degree 5 and higher
polynomials?

4.3. Transcendental Numbers. A set isuncountable if it is infinite and there is no bijection
between it and the rationals (or the integers, or any countable set). We prove

Theorem 4.25(Cantor) The set of all real numbers is uncountable.
Cantor’s Theorem is an immediate consequence of
Lemma 4.26. LetS be the set of all sequencgg);cn with y; € {0,1}. ThenS is uncountable.

Proof. We proceed by contradiction. Suppose there is a bijegtiots — N. Itis clear that this is
equivalent to listing of the elements &t

Ty = T11712013%14 " " -
To =  T21T22X23T24 " **
xr3 = .T31T32X33T34 """
LTn =  Tp1Tn2Tn3Tpg " Tpp "

: (4)
Define an elemertt = (0;);en € S by 0; = 1 —x;;. Noted cannot be in the list; it is naty because
1 —xyn # zyn. Butour list was supposed to be a complete enumeratidh obntradiction. [

Proof[Proof of Cantor’s Theorem] Consider all numbers in the intejval] whose decimal
expansion (see® or §8?7) consists entirely of’'s and1’s. There is a bijection between this subset
of R and the sef. We have established th&tis uncountable. Consequeniyhas an uncountable
subset, and is uncountable.

Exercise 4.27.Instead of using decimal expansions one could use binary expansions. Unfortu-
nately there is the problem that some rationals have two expansions, a finite terminating and
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an infinite non-terminating expansion. For exampl&)1 = .0001111111... in base two, or
.1 = .0999--- in base ten. Using binary expansions, prove there are uncountably many reals.
Prove.001 = .0001111111... in base two.

Exercise 4.28.Prove|[0, 1]| = |[R| = |R"| = |C"|. Find a set with strictly larger cardinality than
R.

The above proof is due to Cantor (1873-1874), and is knowRaador's Diagonalization Ar-
gument Note Cantor’s proof shows thatostnumbers are transcendental, though it does not tell us

whichnumbers are transcendental. We can easily show many numbers (sychdas/23 /5
\/7) are algebraic. What of other numbers, such aside?

Lambert (761), Legendre {794), Hermite (1873) and others proved irrational and Lindemann
(1882) provedr transcendental (see [HW, NZM]); in Exerci8@, we showed that® ¢ Q implies
there are infinitely many primes! What abatt Euler ((737) proved that ande? are irrational,
Liouville (1844) provede is not an algebraic number of degrgeand Hermite [873) provede is
transcendental. Liouvillelg§51) gave a construction for an infinite (in fact, uncountable) family of
transcendental numbers; see Theorem 7.1 as well as Exercise 7.9.

4.4. Axiom of Choice and the Continuum Hypothesis.Let X, = |Q|. Cantor’s diagonalization
argument can be interpreted as saying that = |R|. As there are more reals than rationals,
N, < 2%, Does there exist a subset Bfwith strictly larger cardinality than the rationals, yet
strictly smaller cardinality than the reals? Cantd&@sntinuum Hypothesissays that there are no
subsets of intermediate size, or, equivalently, that- 2% (the reals are often called the continuum,
and theX; are called cardinal numbers).

The standard axioms of set theory are known as the Zermelo-Fraenkel axioms. A more contro-
versial axiom is thé\xiom of Choice, which states given any collection of séts, ). ; indexed by
some set/, then there is a functioi from J to the disjoint union of thel, with f(x) € A, for all
x. Equivalently, this means we can form a new set by choosing an elemémmm eachA,; f is
our choice function. If we have a countable collection of sets this is quite reasonable: a countable
setis in a one-to-one correspondence Witfand “walking through” the sets we know exactly when
we will reach a given set to choose a representative. If we have an uncountable collection of sets,
however, it is not clear “when” we would reach a given set to choose an element.

Exercise 4.29.The construction of the sets in the Banach-Tarski Paradox uses the Axiom of Choice;
we sketch the s&k that arises. Forz,y € [0, 1] we sayr andy are equivalent it — y € Q. Let

[z] denote all elements equivalenttoWe form a set of representativRsby choosing one element
from each equivalence class. Prove there are uncountably many distinct equivalence classes.

Kurt Godel [GO] showed that if the standard axioms of set theory are consistent, so too are the
resulting axioms where the Continuum Hypothesis is assumed true; Paul Cohen [Coh] showed that
the same is true if the negation of the Continuum Hypothesis is assumed. These two results imply
that the Continuum Hypothesis is independent of the other standard axioms of set theory! See [HJ]
for more details.

Exercise 4.30.The cardinal numbers have strange multiplication properties. Pl'q\)ve: 2% py
interpreting the two sides in terms of operations on sets.

5. PROPERTIES OFe

In this section we study some of the basic properties of the num{sare [Rud] for more prop-
erties and proofs). One of the many ways to define the numlike base of the natural logarithm,
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is to write it as the sum of the following infinite series:

e = Z%. (5)
n=0

Denote the partial sums of the above series by

N |
Hencee is the limit of the convergent sequengg. This representation is one of the main tool in
analyzing the nature of.

Exercisd 5.1. Define

[e.e] n

e’ = Z% (7)

n=0
Provee®™¥ = e*e¥. Show this series converges for alke R; in fact, it makes sense far € C as
well. One can define® by e,

Exercisd" 5.2. An alternate definition of* is
e’ = lim (1 + £>n (8)
n

n—oo

Show this definition agrees with the series expansion, and prfove= c*e¥. This formulation
is useful for growth problems such as compound interest or radioactive decay; see for example
[BoDi].

Exercise 5.3.ProveLe” = ¢*. Ase™™® = g, the chain rule impliest Inz = 2 (Inz is the inverse
function toe?).

From the functiong® andIn z, we can interpret’ for anya > 0 andb € R: a® = ¢*™¢. Note
the series expansion fef makes sense for all, thus we have a well defined process to determine
numbers such a$2. We cannot computg”? directly because we do not know what it means to
raise3 to the/2-power; we can only raise numbersragional powers.

Exercisé™ 5.4. Split 100 into smaller integers such that each integer is two or more and the
product of all these integers is as large as possible.

Suppose nowv is a large number and we wish to spht into smaller pieces, but all we require
is that each piece be positive. How should we break up a |af@e

Exercis€"™ 5.5. Without using a calculator or computer, determine which is largéror 7.

5.1. Irrationality of e.

Theorem 5.6(Euler, 1737) The numbet is irrational.

Proof. Assumee € Q. Then we can write = §, wherep, g are relatively prime positive integers.

Now
(%s)
1
e— S = —
m >
n=m-+1

1 1 1
- m<1+m+2+(m+2)(m+3)+”.)

1 1 1 1
—— (1
< (m+1)!< +m—|—1+(m+1)2+(m+1)3+ )
1 1 1
= = _ 9
(m+1)1— -1 mlm ©

m—+1
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Hence we obtain
1
0 < e—s, < ——. (10)
mlm

In particular, takingn = ¢ we and multiplying (10) by;! yields
0 < de—gqls, < 2, (11)

which is clearly impossible sincgle — ¢!s, would have to be an integer between 0 and 1. This
contradicts our assumption thatvas rational. O

The key idea in the above proof is the simple fact that there are no integers bétaeeh. \We
use a variant of this argument to praves transcendental.

5.2. Transcendence ofe. We know there are more transcendental numbers than algebraic num-
bers. We finally show a specific number is transcendental; efeif an alternate proof of the
transcendence ef 7 and many other numbers.

Theorem 5.7(Hermite, 1873) The numbee is transcendental.

Proof. The proofis again by contradiction. Assumis algebraic. Then it must satisfy a polynomial
equation

apn X"+ +a X +ay = 0, (12)
whereag, a4, ..., a, are integers. The existence of such a polynomial leads to an integer greater
than zero but less than one; and this contradiction proves the theorem. This is a common technique
for proving such results; see also Remafk

Exercise 5.8.Prove one may assume without loss of generality édhai,, # 0.

Consider a polynomiaf (.X') of degree, and associate to it the following linear combination of its
derivatives:

F(X) = f(X)+ f(X) + -+ f(X). (13)
Exercise 5.9.Prove the polynomial'(X) has the property that
d —x _ T
T [TP@)] = e (). (14)

As F(X) is differentiable, applying the Mean Value Theorem (Theof&Mto e *F(X) on the
interval[0, k] for k any integer gives

e *F(k) — F(0) = —ke  f(c;) for somec;, € (0, k), (15)
or equivalently
F(k) —e"F(0) = —ke" % f(c) = e (16)
Substitutingk = 0,1, ..., n into (16), we obtain the following system of equations:
F) — F) = 0 = ¢
F(1) — eF(0) = —el™f(c)) = g
F(2) — e2F(0) = —=2¢22f(c) = & (17)
F(n) — €"F(0) _ —ne"" " f(c,) = é€p.

We multiply the first equation by,, the second by, . . ., the(n +1)* by a,,. Adding the resulting

equations gives
Z apF (k) — (Z akek> F(0) = Z AK€ (18)

k=0 k=0 k=0
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Notice that on the left hand side we have exactly the polynomial that we asssatisfies:

Z are® = 0; (19)
k=0
this is the key step: we have now incorporated the (fictitious) polynomial. Hence (18) reduces to
k=0 k=0

We have used the hypothetical algebraicity ¢ prove a certain integral combination of its powers
vanish.

So far we had complete freedom in our choicef pnd (20) always holds for its associdteln
what follows we choose a special polynomjah order to reach a contradiction. Choose a prpme
large enough so that> |ao| andp > n. Let f equal

1
f(X) = (p — 1)!Xp—1(1 _ X)p(g — X)p . (n — X)p
= (p_l ] ((n!)?XP~' + higher order terms
bp_lprl + prp 4+ 4 bTXr

21
-1 @D
Though it plays no role in the proof, we note that the degregisfr = (n + 1)p — 1. We prove a
number of results which help us finish the proof. Recall ffzatenotes the set of integer multiples
of p.

Claim 5.10. Let p be a prime number an¢h any positive integer. Thefp — 1)(p —2)---2-1
divides(p —14+m)(p—2+m)--- (24+m)(1 +m).

Warning: It is clearly not true that any consecutive setpof- 1 numbers divides any larger
consecutive set gf — 1 numbers. For exampl&, 6 - 5 - 4 does not divid®) - 8-7-6,and8-7-6 -5
does not dividd4 - 13 - 12 - 11. In the first example we havedivides the smaller term but not the
larger; in the second we hagé divides the smaller term but onf# divides the larger.

Proof[Proof of Claim 5.10] Letzr = (p — 1)!andy = (p — 1 +m)---(1 + m). The claim
follows by showing for each prime < p that if ¢®|= theng®|y. Let k be the largest integer such
thatq* < p—1and|z| be the greatest integer at mastThen there ar@p%lj factors ofz divisible

by ¢ once, qu;QlJ factors ofx divisible by ¢ twice, and so on up t@pq;klj factors ofx divisible by

q a total ofk times. Thus the exponent gfdividing x is z’gzl L”q;élj. The proof is completed by

showing that for each € {1, ..., k} we have as many terms indivisible by ¢* as we do inz; it

is possible to have more of course (let= 5, z = 6---1 andy = 10---5). Clearly it is enough

to prove this form < (p — 1)!; we leave the remaining details to the reader in Exercise 5.17; see
Exercise 5.18 for an alternate proof.

Claim 5.11. For i > p and for all j € N, we havef®(j) € pZ.

k

Proof. Differentiate (21); > p times. Consider any term which survives, Sy with k£ > 4.

After differentiating this term becomé:‘f“)”'(’“(;flf)!l))b’leH . By Claim 5.10 we havép—1)!|k(k—
1)---(k— (i —1)). Furtherp|k(k —1)---(k — (i — 1)) as we differentiated at leasttimes and
any product ofy consecutive numbers is divisible by As p does not dividdp — 1)!, we see that

all surviving terms are multiplied by. O

Claim5.12. For0 <i < pandj € {1,...,n}, we havef®(j) = 0.
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Proof. The multiplicity of a root of a polynomial gives the order of vanishing of the polynomial at
that particular root. Ag = 1, 2,...,n are roots off (X) of multiplicity p, differentiatingf (x) less
thanp times yields a polynomial which still vanishes at thgse O

Claim 5.13. Let F' be the polynomial associated fo ThenF'(1), F(2), ..., F(n) € pZ.

Proof. Recall thatF'(j) = f(j) + f'(j) + --- + f@(j). By Claim 5.11,f% () is a multiple ofp
for i > p and any integej. By Claim 5.12,f%)(j) = 0for0 <i < pandj = 1,2,...,n. Thus
F(j) is a multiple ofp for these;. O
Claim 5.14. For 0 < i < p — 2, we havef®(0) = 0.
Proof. Similar to Claim 5.12, we note that”) (0) = 0 for 0 < i < p — 2, becausd is a root of
f(z) of multiplicity p — 1. O
Claim 5.15. F(0) is not a multiple of.
Proof. By Claim 5.11,f*(0) is a multiple ofp for i > p; by Claim 5.14,f®(0) = 0 for 0 < i <
p — 2. Since

F(0) = f(0)+ f'(0) +---+ f"72(0) + f*V(0) + fP(0) +---+ f(0),  (22)

to prove F'(0) is a not multiple ofp it is sufficient to provef*~(0) is not multiple ofp because
all the other termsare multiples ofp. However, from the Taylor series expansion (s@& ®f f in
(21), we see that

f*1(0) = (n!)? + terms that are multiples of (23)
Since we chosg > n, n! is not divisible byp, proving the claim. O

We resume the proof of the transcendence.oRemember we also chogesuch thaty, is not
divisible byp. This fact plus the above claims imply first tha}, a, F'(k) is an integer, and second
that

> aF(k) = agF(0) #0 mod p. (24)
k=0
Thus) ", a;F' (k) is a non-zero integer. Recall (20):
Z arF (k) = aje1 + -+ + apép,. (25)
k=0

We have already proved that the left hand side is a non-zero integer. We analyze the sum on the
right hand side. We have

—keE e (1= )P - (n— )

e = —ke" % f(c) = (26)

(p—1)!
As0 < ¢, < k < n we obtain
ekkP(1-2---n)P e™(nln)P
€kl = < — 0 asp — oo. (27)
! (=1 1)
Exercise 5.16.For fixedn, prove that ap — oo, EZ'_"I); — 0. See Lemma?.

Recall thatn is fixed, as are the constantg . .., a, (they define the polynomial equation sup-
posedly satisfied by); in our argument only the prime numbgrvaries. Hence, by choosing
sufficiently large, we can make sure that@fk are uniformly small. In particular, we can make
them small enough such that the following holds:

n

E Qg€

k=1

< 1. (28)
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To be more precise, we only have to choose a prirsech thap > n, |ag| and

e"(nln)P _ 1
(p=D8 Do lal

In this way we reach a contradiction in the identity (20) where the left hand side is a non-zero
integer, while the right hand side is a real number of absolute value les$.than O

(29)

This proof illustrates two of the key features of these types of arguments: considering properties
of the “fictitious” polynomial, and finding an integer between 0 and 1. It is very hard to prove a
given number is transcendental. Note this proof heavily uses special propettj@s jpérticular the
derivative ofe” is e*. The reader is invited to see Theorem 205 of [HW] where the transcendence
of m is proved. It is known thag(k) = > 7, n—l,c is transcendental fdr even (in fact, it is a rational
multiple of 7*); very little is known if & is odd. Ifk = 3, Apery [Ap] proved((3) is irrational
(see also [Mill]), though it is not known if it is transcendental. For infinitely many bdd(k) is
irrational ([BR]), and at least one @f5), ((7), ((9) or (11) is irrational [Zu]. See also®.

In field theory, one shows that if, 5 are algebraic then so are+ 5 andag; if both are tran-
scendental, at least one af+ 3 anda( is transcendental. Hence, while we expect both 7
ander to be transcendental, all we know is at least one is! In 87.2 we construct uncountably many
transcendentals. In?® we show the Cantor set is uncountable, hence “most” of its elements are
transcendental.

Exercise 5.17.Complete the proof of Claim 5.10.

Exercisé™ 5.18. Alternatively, prove Claim 5.10 by considering the binomial coeffioﬁé;nﬁm),
which is an integer.

Arguing similarly as in the proof of the transcendence,affe can showr is transcendental. We
content ourselves with proving’ is irrational, which we have seen (Exerci&%and??) implies
there are infinitely many primes. For more on such proofs, see Chaptar[BB] (specifically
pages352 to 356, where the following exercise is drawn from).

Exercise 5.19(Irrationality of 72). Fix a largen (how largen must be will be determined later).
Let f(x) = xn“n—*,’“")n Show attains its maximum at = £, forz € (0,1), 0 < f(z) < &, and
all the derivatives off evaluated ab or 1 are integers. Assume’ is rational; thus we may write
m* = ¢ for integersa, b. Consider

n

Glx) = 0" Y (=1)" R ()m2", (30)

k=0
ShowG(0) andG(1) are integers and

% [G'(z) sin(rx) — G (z) cos(rx)] = w2a™f(x)sin(7z). (31)

Deduce a contradiction (to the rationality ef) by showing that

7T/0 a" f(z)sin(rz)de = G(0) + G(1), (32)

which cannot hold for: sufficiently large. The contradiction is the usual one, namely the integral
on the leftis in(0, 1) and the right hand side is an integer.
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6. EXPONENT (OR ORDER) OF APPROXIMATION

Let « be a real number. We desire a rational numg)esruch that‘a — g‘ is small. Some ex-

planation is needed. In some sense, the size of the denominateasures the “cost” of approx-
imating «, and we want an error that is small relative¢to For example, we could approximate

7 by 314159/100000, which is accurate to 5 decimal places (about the sizg,afr we could use
103993/33102, which uses a smaller denominator and is accurate to 9 decimal places (about twice
the size ofg)! This ratio comes from the continued fraction expansion ¢éee Chapte??). We

will see later (present chapter and Chap®?and??) that many properties of numbers are related

to how well they can be approximated by rationals. We start with a definition.

Definition 6.1 (Approximation Exponent) The real numbet has approximation order (or expo-
nent)7 (&) if 7(¢) is the smallest number such that for ali> 7(¢) the inequality
1
‘f - ]3' <= (33)
q q
has only finitely many solutions.

In Theoren??we shall see how the approximation exponent yields information about the distrib-
ution of the fractional parts of*« for fixed £ anda. In particular, ifa has approximation exponent
greater thar then the sequencéa mod 1 comes arbitrarily close to all numbers|in 1].

The following exercise gives an alternate definition for the approximation exponent. The defini-
tion below is more convenient for constructing transcendental numbers (Theorem 7.1).

Exercise€" 6.2 (Approximation Exponent)Show¢ has approximation exponent¢) if and only if
for any fixedC' > 0 ande > 7(&) the inequality

e Pl o = (34)
q q°

has only finitely many solutions wigh g relatively prime.

' C

6.1. Bounds on the Order of Real Numbers.
Lemma 6.3. A rational number has approximation exponént

Proof. If { = ¢ andr =  # §,thensb—at # 0. Thus|sb —at| > 1 (as itis integral). This implies

s a s |sb — at]| 1
_ll =22 = 22 s 2
- =155 =" = 5 @)
If the rational¢ had approximation exponeat> 1 we would find
S 1 1 1
- - — hich implies — —. 36
’5 " < vt which implies o > n (36)
Thereforet*~! < b. Sinceb is fixed, there are only finitely many su¢h O

Theorem 6.4(Dirichlet). An irrational number has approximation exponent at least

Proof. It is enough to prove this fof € (0,1). Let@ > 1 be an integer. Divide the intervéd, 1)
into @ equal intervals, saﬁg, %). Consider th&) + 1 numbers inside the intervéd, 1):

{&} {263, .. {(@Q+ 1)¢}, (37)

where{x} denotes the fractional part of Letting[z] denote the greatest integer less than or equal
to z, we haver = [z] + {z}. As¢ € Q, the@ + 1 fractional parts are all different.
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By Dirichlet’s Pigeon-Hole Principle (&), at least two of these numbers, say¢} and{¢.¢},
belong to a common interval of Ieng@. Without loss of generality we may take< ¢; < ¢» <
Q@ + 1. Hence

1
{a2€} —{aé}| < 0 (38)
and )
(@26 — n2) — (1§ —m)| < o T [4:€]. (39)
Now letq = ¢ — ¢» € Z andp = n; — ny € Z. Notel < ¢ < () and
1
—pl < = 40
g€ —p| < 0 (40)
and hence . .
p
S < = < = 41
¢ q — qQ T ¢ “1)
We leave the rest of the proof to the reader (Exercise 6.5). O

Exercis€" 6.5. Show the above argument leads to an infinite sequengwith ¢ — oo; thus there
are infinitely many solutions th — § < q% Further, as§ € Qand¢ ¢ QQ, we may replace the
with <, and¢ has approximation exponent at least 2.

Exercis€" 6.6. Use Exercises 6.5 and 5.19 (where we provirrational) to show thad >

L (cosn)™
diverges; the argument of the cosine function is in radians. Harder: what apgut, (sinn)"

?
Exercise 6.7.In Theorem 6.4, what goes wrong i Q? Is the theorem true fof € Q?

Later we give various improvements to Dirichlet’'s theorem. For example, we use continued frac-
tions to give constructions for the rational numb?resee the proof of Theorer??). Further, we
show that any numbeg( that satisfies Dirichlet’s theorem for an irratiorgahas to be a continued
fraction convergent of (877). We also ask whether the exponent two can be improved. Our first
answer to this question is Liouville’s theorem (Theorem 7.1), which states that a real algebraic
number of degre@e cannotbe approximated to order larger than In other words, if¢ satisfies
a polynomial equation with integer coefficients of degreehenr({) < n. Liouville’s theorem
provides us with a simple method to construct transcendental numbers: if a number can be approx-
imated by rational numbers too well, it will have to be transcendental. We work out a classical
example in 7.2.

Liouville’s theorem combined with Dirichlet’s theorem implies the interesting fact that a qua-
dratic irrational numbef has approximation exponent exactlyRoth’s spectacular theorem (The-
orem 8.1) asserts that this is in fact the case for all algebraic numbers: the approximation exponent
of any real algebraic number is equal to two, regardless of the degree! We will see that the order of
approximation of numbers has many applications, for example in digit bias of sequences (Chapter
?7?) and Poissonian behavior of the fractional parta'af (Chapter??).

Exercise 6.8.Leta (respectivelys) be approximated to order (respectivelyn). What is the order
of approximation ofv + § (3 € Q), a + 4, a - 5, and .

6.2. Measure of Well Approximated Numbers. We assume the reader is familiar with the notions
of lengths or measures of sets; s&2.9n loose terms, the following theorem states that almost all
numbers have approximation exponent equal to two.

Theorem 6.9.LetC, € be positive constants. L&tbe the set of all points € [0, 1] such that there
are infinitely many relatively prime integeps ¢ with

xr — —

(42)
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Then the length (or measure) 8f denoted S|, equals.

Proof. Let N > 0. Let Sy be the set of all points € [0, 1] such that there ang ¢ € Z, ¢ > N for
which

(43)

T — P < ¢ .

q - q2+e
If z € Sthenxz € Sy for every N. Thus if we can show that the measure of the sgtdecomes
arbitrarily small asN" — oo, then the measure ¢f must be zero. How large ca$y be? For a

giveng there are at mostchoices fop. Given a pair(p, ¢), we investigate how manys are within
qﬁs of § Clearly the set of such points is the interval

D cC p C
Ly = <5 - g2 re’ §+ q2+e) : (44)

Note that the length of, , is 5+ 2+€- Let ], be the setof alk in [0, 1] that are Wlthln2—+€ of a rational
number with denominatay. Then

q
I, C U[pyq (45)
p=0
and therefore
2C q+12C 4C'
Z| pal = (¢ +1) e - q gt < gite (46)
Hence
¢
Svl < DLl = qu <N (47)
q>N q>N
S| = 0. O

Remark 6.10. It follows from Roth’s Theorem (Theorem 8.1) that the Setonsists entirely of
transcendental numbers; however, in terms of length, it is a small set of transcendentals.

ExerC|se 6.11.Instead of working Wltﬂ\z -2 <

’fmr— £

Wherez Tl < o©.

Exercise 6.12.Another natural question to ask is what is the measure of: all [0, 1] such that
each digit of its continued fraction is at mo&t? In Theoren?? we show this set also has length
zero. This should be contrasted with TheorgPwhere we show i§-° | - converges, then the
set{z € [0,1] : a;(z) < k;} has positive measure. What is the lengthxaf [0, 1] such that there
are no9’s in z’s decimal expansion?

Exercise 6.13Hard). For a givenC', what is the measure of the setéof (0, 1) such that

< g (48)

P
'5 q q

holds only finitely often? Whatd < 1? More generally, instead (éﬁ we could havem or any

such expressionVarning: The authors are not aware of a solution to this problem!
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7. LIOUVILLE’S THEOREM

7.1. Proof of Lioville’s Theorem.

Theorem 7.1 (Liouville’s Theorem) Let o be a real algebraic number of degree Thena is
approximated by rationals to order at mast

Proof. Let
flz) = agz®+ -+ ax +ag (49)
be the polynomial with relatively prime integer coefficients of smallest degree (calleditial

polynomial) such thatf(«) = 0. The condition of minimality implies thaf(z) is irreducible over
Z.

Exercisé" 7.2. Show that a polynomial irreducible ovéris irreducible overQ.

In particular, asf(x) is irreducible overQ, f(z) does not have any rational roots. If it did then
f(z) would be divisible by a linear polynomigk — 7). Thereforef is non-zero at every rational.
Our plan is to show the existence of a rational numbeuch thatf(%) = 0. Let £ be such a

candidate. Substituting gives
N
f (73> = 5 Nez (50)

q
Note the integeN depends o, ¢ and theu;’s. To emphasize this dependence we wiNt@, g; o).
As usual, the proof proceeds by showiig(p, ¢; a)| < 1, which then forcesV(p, ¢; «) to be zero;
this contradictyf is irreducible over.
We find an upper bound fa¥ (p, ¢; o) by considering the Taylor expansion paboutr = a. As
f(@) = 0, there is no constant term in the Taylor expansion. We may asSsagsfiedo— 2| < 1.
Then

. 1d
Z —' (z — ). (51)
Consequently
d i i—1
p N(p, g a) p 1d'f p
£ - | < g . £
‘f(q)‘ ‘ q ¢ ;Z'dx(&) q
< E—oz-d-max 1df(a) 1t
q i il dx
< | ol A, (52)

il dx

(Exercise 6.2) for some > 0 there would exist a constam(«) and infinitely many§ such that

whereA(a) = d-max; ‘.lif(a) ‘ If o were approximated by rationals to order greater thahen

o s 52
Combining yields
((2)] = A
Therefore
IN(p,q:a)| < A() Bla) (55)
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For ¢ sufficiently large,A(«) B(«) < ¢¢. As we may take arbitrarily large, for sufficiently large
we have|N (p, ¢; a)| < 1. As the only non-negative integer less than 1 is 0, we find farge that

f <§> = 0, contradictingf is irreducible over). O

Exercise 7.3.Justify the fact that i{%}@ is a sequence of rational approximations to order 1
of x theng; — oo.

7.2. Constructing Transcendental Numbers. We have seen that the order to which an algebraic
number can be approximated by rationals is bounded by its degree. Hence if a real, irrational num-
bera can be approximated by rationals to an arbitrarily large order, dh@mist be transcendental!

This provides us with a recipe for constructing transcendental numbers. Note the reverse need not
be true: if a number: can be approximated to order at masit does not follow that: is algebraic

of degree at most (see Theorem 8.1); for example, Hata [Hata] showed the approximation expo-
nent ofr is at most8.02; see Chaptet1 of [BB] for bounds on the approximation exponent &r

7, ((3) andlog 2. We use the definition of approximation exponent from Exercise 6.2.

Theorem 7.4(Liouville). The number

= 1
m=1

is transcendental.

Proof. The series defining is convergent, since it is dominated by the geometric s@qﬁl— In
fact the series converges very rapidly, and it is this high rate of convergence thatanaescen-
dental. FixV large and choose > N. Write

n

By (57)

an —t

with p,,, ¢, > 0 and(p,,¢,) = 1. Then{g—”}nzl iS @ monotone increasing sequence converging to

«. In particular, all these rational numbers are distinct. Note alsogthatust divide10™, which
implies thatg,, < 10™. Using this, and the fact thap—("+1+*! < 10~-(+1'10~% we obtain

Pn 1
0<a—-—" = —
" T LT
1 1 1 1
DT G TR TIER
B 1 10
ST
- 2
(10n!)n+1
2 2
< o S @. (58)

This gives an approximation by rationals of ordérof «, in fact infinitely many such approxima-
tions (one for eacln > N). SinceN can be chosen arbitrarily large, this implies thatan be
approximated by rationals to arbitrary order. By Theorem 7.&,\Were algebraic of degree it
could be approximated by rationals to order at masthus,« is transcendental. O

Numbers defined as in (56) are called Liouville numbers. The following exercise shows there are
uncountably many Liouville numbers.
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Exercise 7.5.Consider the binary expansion fore [0, 1), namely

— Z 2n : ) € {0,1}. (59)
For irrational x this expansion is unique. Consider the function

= Z 10~ (bn(@)+1)n! (60)

Prove for irrational z that M (z) is transcendental. Thus the above is an explicit construction for
uncountably many transcendentals! Investigate the properties of this function. Is it continuous or
differentiable (everywhere or at some points)? What is the measure of these numbers? These are
“special” transcendental numbers (compare these numbers to Theorem 6.9). See also Re@mark

The following example uses some results concerning continued fraction studied in Chapter
The reader should return to this theorem after studying Ch&pter

Theorem 7.6. The number

g = [10",10%,.. ] (61)
is transcendental.
Proof. Let 2= be the continued fraction 60", ..., 10™]. Then
) 1 1 1 1
g——| = = < = : (62)
' q Iny i1 qn(a;1+IQ7l + Gn-1) An+1 10(m+1)!
Sinceq, = apqr_1 + qr_2, We haveyg, > qx_1 AlSO gr.11 = agr1qx + qr—1, SO We obtain
Bl — g+ 8L < g+ 1 (63)
4k dk
Writing this inequality fork = 1, ..., n — 1 and multiplying yields
q2 g3 dn

< (a1 +1)(aa+1)---(a,+1)

1 1
= 1+_ ]__l__ aj -+ - Qap
3] Qp,

< My ---a, = 210Vt

1
q1 g2 Gn-1

< 102" = &’ (64)
Combining (62) and (64) gives
Dn 1 1 12 1)\ 2 1
- = = — — = —. 65
'ﬁ gl = ano apt! = (ai) = (qg) n ©9
In this way we get, just as in Liouville’s Theorem, an approximatiom afy rationals to arbitrary
order. This proves that is transcendental. O

Exercise 7.7.Without using the factorial function, construct transcendental numbers (either by
series expansion or by continued fractions). Can you do this using a fungtionwhich grows
slower thann!?

The following exercises construct transcendental numbers by investigating infinite products of
rational numbers; see Exerci8@ for a review of infinite products. algebraic and which are tran-
scendental.



20 STEVEN J. MILLER AND RAMIN TAKLOO-BIGHASH

Exercise 7.8.Leta, be a sequence of positive numbers such ¥idt , a,, converges. Assume also
forall N > 1thatay > ZZ‘;NH a,. Let(ny,ny,...)and(my, ms,...) be any two distinct infinite
sequences of increasing positive integers; this means that there is at ledssaok that, # m,,.
Prove

> an, # Dt (66)
k=1 k=1
and find three different sequencgs, }°° , satisfying the conditions of this problem.

Exercis€" 7.9. Prove

rn?—1 -~ 1 1

n=2 n=2
For eacha € [0, 1], let a(n) be then™ of a’s binary expansion; itx has two expansions take the
finite one. Consider the function

fla) = ﬁ (1 - %) . (68)

n=2

Prove f(«) takes on countably many distinct rational values and uncountably many distinct tran-
scendental valueddint: one approach is to use the previous exercise. For a genetc|0, 1], do

you expecif(«) to be algebraic or transcendental? Notenifn) = 1 for n prime and0 otherwise

we get%; see Exercis@?and??.

8. ROTH'S THEOREM

As we saw earlier, Liouville’'s Theorem asserts that there is a limit to the accuracy with which
algebraic numbers can be approximated by rational numbers. There is a long list of improvements
associated with Liouville’s Theorem. More precise and more profound results were proved by Thue
in 1908, Siegelin 1921, Dyson in 1947 and Roth in 1955, to mention but a few of the improvements.
Thue proved that the exponentan be replaced by + 1; Siegel proved

. n
1501 (S * 5+ 1) (69)
works, and Dyson showed thgf2n is sufficient. It was, however, conjectured by Siegel that for
anye > 0, 2 + ¢ is enough! Proving Siegel’s conjecture was Roth’s remarkable achievement that

earned him a Fields medal in 1958. For an enlightening historical analysis of the work that led to
Roth’'s Theorem see [Gel], Chapter I.

Theorem 8.1(Roth’s Theorem)Leta be a real algebraic number (a root of a polynomial equation
with integer coefficients). Given amy> 0 there are only finitely many relatively prime pairs of
integers(p, ¢) such that

1
q2+e :

o — E‘ <
q
Remark 8.2. We have seen forr ¢ Q that there are infinitely many pairs of relatively prime

integers(p, ¢) such that

(70)

P 1

a—= < —. (71)
q q
Therefore any non-rational algebraic number has approximation exponent exactly 2.

Roth’s Theorem has been generalized to more general settings. For a generalization due to Lang,
and other historical remarks, see [HS]. For another generalization due to Schmidt see [B].

The remainder of this chapter is devoted to various applications of this fundamental theorem. For
a proof, see Chaptér?.
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8.1. Applications of Roth’'s Theorem to Transcendental Numbers.In this section we indicate,
without proof, some miscellaneous applications of Roth’s Theorem to constructing transcendental
numbers. From this theorem follows a sufficient, but not necessary, condition for transcendency:
let ¢ andT > 2 be real numbers. If there exists an infinite sequence of distinct rational numbers
pL P2 Pp3 isfvi
e ey satisfying

1
< = (72)

Pr
o
a

dr

forr =1,2,3,..., then{ is transcendental.
Exercise 8.3.Verify that the collection of all suchis an uncountable set of measure zero.

The first application is a theorem due to Mahler which was originally proved by an improvement
of Thue’s result mentioned above. One can of course prove the same result using Roth’s Theorem;
the proof is easier, but still non-trivial. Lét(x) be a polynomial with integral coefficients with the
property that?(n) > 0if n > 0. Letq > 1 be a positive integer. For any numbewe let/,(n) be
the string of numbers obtained from writingn base;. Then Mahler’s theorem [Mah] asserts that
the number

a(P;q) = 0.0 (P(l))lq(P(2))lq(P(3)) .

z 79
- ” qﬂogq P(k)]

is transcendental (see [Gel], page 6). For example, when = = andqg = 10, we obtain Cham-
pernowne’s constant

0.123456789101112131415161718 . . .. (74)

Exercise 8.4.Prove, using elementary methods, that the above number is irrational. Can you prove
this particular number is transcendental?

Another application is the transcendence of various continued fractions expansions (see Chapter
?7? for properties of continued fractions). As an illustration we state the following theorem due to
Okano [OK]: lety > 16 and supposel = [ay, as,as,...] andB = [by, by, bs, ... ] are two simple
continued fractions with,, > b, > a)" " for n sufficiently large. Them, B, A + B and AB*!
are transcendental. The transcendenceloi? easily follows from Llouwlles theorem, but the
remaining assertions rely on Roth’s Theorem.

8.2. Applications of Roth’s Theorem to Diophantine Equations. Here we collect a few appli-
cations of Roth’s Theorem to Diophantine equations (mostly following [Hua], Chapter 17); see
also Remark??. Before stating any hard theorems, however, we illustrate the general idea with an
example (see pages 244-245 of [Sill]).

Example 8.5. There are only finitely many integer solutiops y) € Z* to
3 — 23 = a. (75)
In order to see this, we proceed as follows. pet ¢2™/3 = (~1)1/3 = —L1 1 i¥3 Then

2? =2y = (x —2'3y)(x — p2'Py)(x — p*2'3y), (76)
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and therefore

L — T st _ pol/3 T p21/3
y? y y y
> T 91/3 ‘g(p21/3>‘ ‘g(p221/3)‘
3 |z 1/3
Hence every integer solutigur, y) to z° — 2y* = a is a solution to
.9—4/3
1/3 _ Tl < % (78)
Y ||

By Roth’s Theorem there are only finitely many such solutions.

Note Liouville’s Theorem isotstrong enough to allow us to conclude there are only finitely many
integer solutions. A8'/3 is an algebraic number of degrée Liouville’s Theorem say3'/? can be
approximated by rationals to order at mastThus the possibility that'/? canbe approximated by
rationals to order3 is notruled out by Liouville’s Theorem.

Remark 8.6. The reader should keep in mind that “finite” does not mean “a small numb@

is still a finite number! In general, Roth’'s Theorem and other finiteness results of the same nature
do not provide effective bounds. In some sense this is similar to the special value proofs of the
infinitude of primes:t? ¢ Q implies there are infinitely many primes, but gives no information on
how many primes there are at mas{see Exercis@?).

Building on the above example, we state the following important theorem.

Theorem 8.7.Letn > 3 and let f(x,y) be an irreducible homogeneous polynomial of degree
with integer coefficients. Suppose thét, y) is a polynomial with rational coefficients of degree at
mostn — 3. Then the equation

flzy) = g(z,y) (79)
has only finitely many solutions in integétrs v ).
Proof. Let us assume, # 0. Without loss of generality we may also assume< |y|. Suppose
y > 0, the other cases being similar or trivial. Let, . . ., «,, be the roots of the equatiogf{z, 1) =
0, and letG be the maximum of the absolute values of the coefficientg.ofy). Then (79) implies

lao(x — ary) ... (z — ay)] < G(L+2Jy[+ -+ (n = 2)|y["™)

80
< n*Gly|" . (80)

Exercise 8.8.Prove the above inequalities.

Consequently
TLQG n—3
I@—aw%~@—awﬂ<-ﬁﬁw : (81)
As on the left hand side there amefactors, at least one the factors must be strictly less than the
right hand side raised to the pom%*;rthere exist an index such that

QG %
o=yl < (—) [yl r (82)
’@0!

Since there are infinitely many solutioqs y), it is a consequence of the Pigeon-hole Principle that
infinitely many of the pairs of solutions correspond to the same ind&¥e fix one such index and
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denote it again by. Nextlety # v and|y| > N, N a large positive number whose size we will
determine in a moment. Then

-yl = [l —au)y+ (- ay)
n2G % _ 3
> o=l = ()bl
|ao|
1
> gla—au)l-Jyl (83)
for N sufficiently large. Next, 80 and 81 imply that fpr| > NV we have
n*G, 1 .
—y"? > ] 5lew = aul | - 1w |z — awl - (84)
|CLO| 2
wFV
Hence
K
Lo < = (85)
y ||
for infinitely many pairs of integerg&r, y) for a fixed explicitly computable constahit. By Roth’s
Theorem, this contradicts the algebraicityogf O

Exercise 8.9.In the proof of Theorem 8.7, handle the cases where- |y|.

Remark 8.10. In the proof of the above theorem, and also the example preceding it, we used the
following simple, but extremely useful, observationulf . . . , a,,, B are positive quantities subject
toa,...a, < B, then for some, we haves; < B .

An immediate corollary is the following:
Corollary 8.11 (Thue) Letn > 3 and letf be as above. Then for any integethe equation

flzy) = a (86)
has only finitely many solutions.

Exercise 8.12(Thue) Show that ifa # 0 and f(z,y) is not then™ power of a linear form or the
gth power of a quadratic form, then the conclusion of the corollary still holds.

Example 8.13.Consider Pell's Equation:? — dy? = 1 whered is not a perfect square. We know
that if > 0 this equation has infinitely many solutions in integersy). Given integergl andn,
we can consider the generalized Pell's Equatién— dy™ = 1. Exercise 8.12 shows thatsif > 3
the generalized Pell's Equation can have at most finitely many solutions.?3éer §nore on Pell’'s
Equation.

Example 8.14.We can apply the same idea to Fermat’s equatidn+ y* = z". Again, Exercise

8.12 shows that i > 3 there are at most a finite number of solutiqnsy, =), provided that we
require one of the variables to be a fixed integer. For example, the equétiep™ = 1 cannot have

an infinite number of integer solutiofis, ). This is of course not hard to prove directly (exercise!).
Fermat’'s Last Theorem states that there are no rational solutions to the equétieny™ = 1 for n

larger than two except whery = 0 (if z or y is zero, we say the solution is trivial). A deep result

of Faltings, originally conjectured by Mordell, implies that for any givex 3 there are at most a
finite number of rational solutions to the equation. Incidently, the proof of Faltings’ theorem uses a
generalization of Roth’s Theorem. Unfortunately, Faltings’ theorem does not rule out the possibility
of the existence of non-trivial solutions as conjectured by Fermat. This was finally proved by Wiles
in 1995; sedAcz, Maz3, Wi].
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Exercise 8.15Hua). Letn > 3,b% —4ac # 0,a # 0, d # 0. Then a theorem of Landau, Ostrowski,
and Thue states that the equation

ay® +by +c = da" (87)
has only finitely many solutions. Assuming this statement, prove the following two assertions:

(1) Letn be an odd integer greater than Arrange the integers which are either a square or
ann'™ power into an increasing sequengg). Prove thatz,,; — z, — oo asr — oo.
(2) Let(¢) = min(§ — [¢], [£] + 1 — &). Prove that

lim 2 (z2) = oo, (88)

x—00,r#£k?

where the conditions on the limit mean— oo andx is never a perfect square.
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