MATH 341: PROBABILITY: FALL 2009
THE POWER OF EXPECTATION

STEVEN J. MILLER (SIM1@WILLIAMS.EDU)

ABSTRACT. The purpose of these notes is to show the power of expeatatis phe-
nomenal how many problems can be solved by appealing tatbarity of expectation.
Amazingly, it doesn’t matter if the random variables areetegent or independeitft
we only care about the expected (ie, the average) valuejttiaisn is very different
if we care about the size of the fluctuations about the averalge.

1. TERMINOLOGY

We began today'’s lecture by reviewing the definition of motagim particular that
the variance is the second centered moment;oe= E[(X — u)?], with u = E[X].
The standard deviation is the square-root of the variatonl, has the same units as
the random variable we are studying. For exampleX ifs the average height in the
class, then the variance has units meters-squared whitgghdard deviation has units
of meters. Thus, when studying fluctuations about the agevalye, it is the standard
deviation (and not the variance) that gives the right scale.

If X andY are independent random variables, tiX'Y| = E[X]E[Y]. This is
a very useful relationship, and allows us to reduce comigccaandom variables to
simpler ones. It is possible for this relation to hold withéiandY” being independent
(it is a nice exercise to come up with such an example); indhge we sayX andY
are uncorrelated.

We proved (or discussed how one would do the algebra to pthae)

Var (ZX’) = ZVar(Xi)jL Z CoVar(X;, X;),
i=1 i=1 1<i<j<n
with CoVar(X;, X;) = E[(X — ux)(Y — puy)]. If two random variables are inde-
pendent than their covariances is zero. Thus in the speasa that all theX;’s are
independent we have the variance of a sum is the sum of theneas. (Note, however,
thatVar(aX + 0Y) = a*Var(X) + b*Var(Y'), so variance isot linear.)
One application of our formulas for variances is portfolh@ary from economics.
If we have two stocks with the same expected return- 0 and same variance?,
then imagine we allocate our funds as follows: if we have $$gend, we spend
dollars on the first and — p on the second. Thus iX;, i € {1,2} are the random
variables indicating our return for stoek our investment may be denoted By =
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pX1 + (1 — p)Xo. Note
E[X] = pE[Xi]+ (1 = p)E[Xy] = pp+ (1 —plu = p
by linearity. Further
Var(X) = p*Var(Xi) + (1 — p)*Var(Xy) = (p* + (1 —p)?) o™

It is a nice calculus exercise to show that the minimum vasughenp = 1/2, which
gives a variance oK of 2/2. In other words, we have found an investment with the
same expected return &§ and X, but with less risk / uncertainty. Of course, like
much of economics, there are many assumptions with this htbdemay not hold

in the real world (the severest being that we have two indégeinstocks). (As a nice
exercise, how should you allocate your resources if insteadtocks have two different
variances, say? ando3?)

2. DOUBLE INTEGRALS

/ / xy fxy (@, y)dedy.

What we actually mean by such an integral (returning to Q#éllesl the following: we
divide thezy-plane into small rectangles, and compute the volume of pgpeuand
lower boxes, and then take the limit as the partition becdmes and finer. This is the
natural generalization of the Riemann sum definition frorfcCar |l.

We do not want to evaluate the integral by working with this definit{éor those who
have taken analysis, by using the product measure). We waatltice this to iterated
integrals. The Fubini/ Fubini-Tonelli theorems tell us wivee can so evaluate multiple
integrals; the Wikipedia entry

We needed to compute

http://en.w ki pedi a. org/ wi ki / Fubi ni %27s_t heorem
is a good source.

Theorem 2.1 (Fubini’s Theorem) Assume f is continuous and

b d
| [ 1wy < . 2.1)

/ab Ucdf(:c,y)dy} de = /Cd [/abf(x,y)dx} dy. (2.2)

Smilar statements hold if we instead have

Ny d N My
S [ fwwds S S S (2.3)
n=Ng ¥ ¢ n=No m=Mj

For a proof in special cases, see
e P. Baxandall and H. Liebeckfctor Calculus, Clarendon Press, Oxford, 1986.
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e W. Voxman and R. Goetschel, JAdvanced Calculus, Mercer Dekker, New
York, 1981.

An advanced, complete proof is given in

e G. Folland,Real Analysis: Modern Techniques and Their Applications, 2nd
edition, Pure and Applied Mathematics, Wiley-Interscegidew York, 1999.

The exercise below gives an example where we cannot chaagedbr of summa-
tion (by smoothing things out, we could make this a countemge for integrals).

Exercise 2.2. One cannot always interchange orders of integration. For simplicity, we
give a sequence a,,, suchthat )" (> ann) # >, (O, Amn). FOrm,n > 0 let
1 fn=m
Uy = §—1 fn=m+1 (2.4)
0 otherwise.

Show that the two different orders of summation yield different answers (the reason for
thisisthat the sum of the absolute val ue of the terms diverges).

We will prove later that itX andY” are independent random variables with marginals
fx and fy and joint distributionfx y that fx y (z,y) = fx(x)fy(y). Let’s recall what
all this means:

Pla<X <bc<Y <d) = /b/de,Y(fay)dfdy
(lb C
Pla< X <bh) = / fx(z)dx
d
Pe<y<d) = [ fwd.

Assuming this fact for now, we analyzed the double integaaid provedE[XY] =
E[X]E[Y] if they are independent.

While we will prove the claim later, we give the key insightss\ime not, so there is
some point such thatx y (zo, v0) # fx (o) fv (v0). Without loss of generality assume
Ixy(xo,90) — fx(xo) fy(yo) > 0; lete = |fxy(zo,40) — fx(20)fy(y0)|/2009. By
continuity, we can find a small square centerefkaty,) such thatfx y (x, y) is within
e of fxy(xo,y0), and similar statements hold fgk and fy-. This violates

Pla<X <bc<Y<d =Pa<X<bec<Y<dP(c<Y <d).

3. MODELING DETERMINISTIC SYSTEMS RANDOMLY

As we've stated numerous times, a given integer is eithasitie by 7 or it is not;
what does it mean to say it has a 1 in 7 chance of being divibipl&? What we mean
is that if we consider a large number of consecutive intedlees roughly 1 in 7 will be
multiples of 7.

We discuss a model for counting the number of prime divisbrs d.et p be a prime.
For each prime at most, we flip a coin with probabilityl /p of heads. If a head comes
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up, we sayn is p-good; elsen is notp-good. For a givem, on average how many
primes will it be considereg-good?

Clearly this models how many distinct prime divisors a nunties. There are, of
course, some differences. Firstcannot be divisible by a prime betweey2 andn —1,
while this is not the case in our random model (though we il hat the contribution
from such terms is small).

Fix n. Let X, be the random variable that equalsith probability 1/p and0 other-

wise. Then
1 1
E[X,] = 1-—+0-<1——) = —.

p p

—_

Similarly we find

1\? 1 1\? 1 1 1
vt = (1-5) 5+ (0-3) - (1-5) = -

where the last equality follows from elementary algebra. Xd&e the random variable
equalling the number of primes for whiehis p-good; thusX = " _ X,. By linearity

of expectation, we have
1
EX] = ) E[X,] = Zz_f

p<n p<n

There are many ways to evaluate this sum, some of which aces$isd in the ad-
ditional comments from Tuesday, October 6th’s lecture. @ag is to use the Prime
Number Theorem and partial summation. Another is to use tm&n zeta function
((s) and some truncation. Fte(s) > 1, set

p<n

e}

©-$i-13)

n=1 p prime

We argue informally to give the general flavor (one needsgutfjuthat the two cutoffs
can be chosen as we do below):

Sh o~ 105)

n<x p<zx
1 1
n<x p<lx
1 1 1 1
log — o~ <— + + + - ) ;
; ns I; ps 2p25 3p3s

where the last follows from the Taylor series expansioibgfl — ). Takings = 1
and noting the left hand side is the harmonic sjn),(, - ~ log z), and the sum over
the prime squares and higher is bounded, we find

1
loglogx ~ Z—.
p

p<z

Thus the expected number of prime divisorsroShould be abouloglogn. Forn
enormous, the bounded constant doesn't really mattergthéar ‘small’ n it will be
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FIGURE 1. Distribution of the number of prime

factors for n (1000 consecutive values starting at
54875252524623756343523645132980436213456879898982811).

noticeable. What is its size? Remember thgtgrows slowly, andog log even slower!
For examplelog log(10'%) is about 5.4, whildog log(101°%) is only 7.7 (if we go up
to the astronomically largen'?° it only increases to about 10).

What is the scale of the fluctuations? To understand this wed teeknow the vari-
ance ofX. Fortunately theX;’s are independent. This is clear in our model, as they
are chosen independently from each other. For the actuakprithis is a reasonable
assumption — whether or not a generic number is divisiblengymime is independent
of whether or not it is divisible by another. For example, -timied of all integers are
divisible by 3, one-fifth by 5, and one-fifteenth by 3 and 5.

Thus all the covariance terms are zero, and

Var(X) = ) Var(X,) = ) <1 —i)

2
p<n p<z p p

The sum ofl /p? converges (it is a-series in the lingo of Calc II, though herg refers
to the exponent 2), and we've discussed that the suivifs of sizeloglogn. As the
standard deviation is the square-root of the variance, welsd the fluctuations about
the mean ofoglog n are quite small in the limit, typically of siz¢/log log n.

We plot the distribution of the actual number of distinctnpei divisors for 1000 val-
ues ofn starting at 54875252524623756343523645132980436283986991218989811.
The Erdos-Kac theorem, which is linked in the additional owments, describes a true
gem of number theory, namely that the number of prime digisonormally distributed.

4. DIFFERENTIATING IDENTITIES

| have written a handout on this when | was at Brown; you shéad#t at pages 2
through 5 of the handout online at

http://www w | lians. edu/ go/math/sjmller/public_htm
/ 341/ handout s/ Di fferenti ati ngldentities. pdf



