IMNT_PUP_final March 2, 2007

Chapter Eight

Introduction to Probability

In this chapter we give a quick introduction to the basic elements of Probability
Theory, which we use to describe the limiting behavior of many different systems;
for more details see [Du, Fe, Kel]. Consider all numbers in [0, 1]. Let p1o, (k) be
the probability that the n™ decimal (base 10) digit is k for k € {0,...,9}. Ttis
natural to expect that each digit is equally likely. This leads us to conjecture that
pron(k) = 11—0 for all n. There is nothing special about base 10 — the universe
does not care that we have ten fingers on our hands. Thus if we were to write our
numbers in base b, then k € {0,1,...,b — 1} and it is natural to conjecture that
pon(k) = §. These statements can be easily proved. If we look at the n'™ digit
of 10 million randomly chosen numbers, we expect to see about 1 million ones,
1 million twos, and so on; we will, of course, have to specify what we mean by
randomly. What about the fluctuations about the expected values? Would we be
surprised if we see 1,000,053 ones? If we see 1,093, 127? The answer is given by
the Central Limit Theorem, stated in §8.4 and proved in §11.5.

Instead of choosing numbers randomly in [0, 1], what if we consider special se-
quences? For example, how is the first digit of 2" base 10 distributed? The possible
digit values are 1,...,9. Are all numbers equally likely to be the first digit of 2"?
We see in Chapter 9 that the answer is a resounding no. Another possible experi-
ment is to investigate the n decimal digit of /P as p varies through the primes.
Do we expect as n — oo that each number 0 through 9 occurs equally often? Do
numerical experiments support our conjecture? Building on this chapter, in Chapter
9 we discuss how to analyze such data.

The probability of observing a digit depends on the base we use. What if we
instead write the continued fraction expansion (see Chapter 7) of numbers in [0, 1]?
The advantage of this expansion is that it does not depend on a base as there is no
base! What is the probability that the n™ digit of the continued fraction expansion
equals k, k € {1,2,...}? How likely is it that the n'" digit is large, say more than
a million? Small? We can already answer this question for certain numbers a. If
« is rational then it has a finite continued fraction expansion; if « is a quadratic
irrational, it has a periodic expansion. What is true about the expansions of the
other a € (0, 1)? We answer such questions in Chapter 10.

Let {z} denote the fractional part of z. Thus {x} = z mod 1. Consider an
irrational number o € (0, 1). For each N look at the N numbers {la}, {2a}, ...,
{Na}. Rearrange the above {na} in increasing order, and for definiteness label
them 1, ..., 0N:

0< B <f2 < < B 8.1)
As we have N numbers in [0, 1], the average distance between numbers is about
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%. What does the spacing between adjacent (3;’s look like? How often are two
adjacent 3;’s twice the average spacing apart? Half the average spacing apart? We
prove some results and describe open problems in Chapter 12, and then in Part 5
we investigate the spacings between eigenvalues of matrices, energy levels of heavy
nuclei like Uranium and zeros of L-functions, showing connections between these
very different systems!

8.1 PROBABILITIES OF DISCRETE EVENTS

We begin by studying the probabilities of discrete sets; for example, subsets of the
integers or rationals or any finite set. Many interesting systems are discrete. One
common example is flipping a coin a finite number of times; in this case we are
often interested in the number of heads or tails. Another is to have time discrete;
for example, people waiting in line at a bank, and every minute there is a chance a
teller will serve the next person in line.

In the last example, if instead of measuring time in minutes we measured time
in seconds or tenths of a second, for all practical purposes we would have a con-
tinuous process. While discrete sets are often good approximations to continuous
processes, sometimes we actually need the continuous case; we describe contin-
uous probability distributions in §8.2.3. We assume the reader is familiar with
elementary set operations and countable sets (see §5.2).

8.1.1 Introduction

Definition 8.1.1 (Outcome Space, Outcomes). Let Q) = {w;,ws,ws, ...} be an at
most countable set. We call §) the sample (or outcome) space, and the elements
w € (Q the outcomes.

Thus, the outcome space is the collection of possible outcomes.

Example 8.1.2. Flip a coin 3 times. The possible outcomes are
OW={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}. 8.2)

If we flip a coin three times, how many heads do we expect to see? What is
the probability we observe exactly three heads? Exactly two heads? The answer
depends on the coin. If the coin is fair, for each flip we have a 50% chance of
getting a head and a 50% chance of getting a tail. The coin, however, need not be
fair. It could have some probability p of landing on heads, and then probability 1 —p
of landing on tails. For many investigations, we need more than just a collection of
possible outcomes: we need to know how likely each possible outcome is.

Definition 8.1.3 (Probability Function). We say p(w) is a (discrete) probability
Sfunction or distribution on ) if

1. 0 < p(w;) < 1forallw; € Q.

2 Yp(ws) = L
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The first statement says that each outcome has a non-negative probability of oc-
curring, and nothing can have a probability greater than 1 (a probability of 1 of
happening means the event happens); the second statement quantifies the observa-
tion that something definitely happens.

We call p(w) the probability of the outcome w. Given an outcome space with a
probability function, we can investigate functions of the outcomes.

Definition 8.1.4 (Random Variable). Let X be a function from ) to R. That is, for
each outcome w € Q we attach a real number X (w). We call X a random variable.

A random variable is essentially a function of the outcomes, assigning a number
to each outcome. As there are many functions that could convert outcomes to
numbers, for any outcome space there are many random variables. With the same
outcome space from Example 8.1.2, one possible random variable is X (w) equals
the number of heads in w. Thus, X (HHT) = 2 and X (TTT) = 0. Additionally,
fori € {1,2,3} let

Xiw) = 1 %f the z‘: toss ?s a he.ad 83)
0 if the ¢ toss is a tail.
Note that
X(w) = Xi(w) + Xa(w) + X3(w). (8.4)

Remark 8.1.5 (Important). The following situation occurs frequently. Consider the
case when 2 C R and X is a random variable. We often adjust our notation and
write x for w € (2; thus a capital letter denotes a random variable and a lowercase
letter denotes a value it attains. For example, consider a roll of a fair die. The
outcome space is { = {1,2,3,4,5,6}, and the probability of each w €  is %.
Let X be the number rolled on the die. Then X (1) = 1, X(2) = 2, and so on.
In this example, it is very convenient to call the outcome space the number rolled.
The outcomes are the numbers 1, 2 and so on, rather then “the dice is a 1,” “the
dice is a 2”; X is the random variable that is the number rolled, taking on values
x € {1,...,6}. We shall mostly use X : {2 — R to represent a random variable
and emphasize that the outcome space need not be a subset of R, though the reader
should be aware of both notations.

Example 8.1.6 (Important). Given an outcome space §) with events w with proba-
bility function p, p is a random variable.

The terminology can be confusing, as a given random variable X is clearly not
random — it is what it is! The point is we can attach many different random
variable to a given (2.

8.1.2 Events

Definition 8.1.7 (Events). We call a subset A C §) an event, and we write

Prob(4) = Zp(w)‘ (8.5)

wEA
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Note each outcome is also an event.

Definition 8.1.8 (Range of X). The range of a random variable X is the set of
values it attains, denoted X (Q):

X(Q) = {reR:3we Qwith X(w)=r}. (8.6)

Note X () is the set of values attained by X (w) as we vary w € . Given a
set S C X(Q), welet X 1(S) = {w € Q: X(w) € S}. This is the set of all
outcomes where the random variable assigns a number in S.

Exercise 8.1.9. Let Q) be the space of all tosses of a fair coin where all but the
last toss are tails, and the last is a head. Thus Q! = {H,TH,TTH,TTTH,...}.
One possible random variable is X equals the number of tails; anotheris'Y equals
the number of the flip which is a head. Calculate the probabilities of the following
outcomes in ). What is the probability that X (w) < 3? What is the probability
that Y (w) > 32 What events do these correspond to?

In general, we can associate events to any random variable. Let €2 be an outcome
space with outcomes w, and let X be a random variable. As we are assuming €2 is
countable, the random variable X takes on at most countably many distinct values,
so the range X () is at most countable. Let z; denote a typical value. For each z;,
we can form the event X (w) = x;; let us denote this event by A;:

A = {weQ: X(w) =1} C O (8.7)

Note that the A;’s are disjoint sets; if w € A4; N A, then X (w) = z; as well as z;.
Further, U; A; = €, because given any w € 2, X (w) = x; for some i, hence w is
in some set A;. The sets A; form a partition of 2 (every w € (1 is in one and only
one A;).

Remark 8.1.10 (Important). By the above, given an outcome space {2 with out-
comes w and a probability function p and a random variable X', we can form a new
outcome space {2 with outcomes x; with probability function p given by

ple) = Y pw). (8.8)
X(L:Je)zﬂi

Remark 8.1.11 (Important). In a convenient abuse of notation, we often write
p(z;)) = p(X(w) =x;) = Prob(w € Q: X(w) = z;). (8.9)

We also call the random variable X an event, as the subsets of {2 corresponding
to different values of X are events. Thus we can talk about the event “the value of
the first roll,” as the following example and Example 8.1.14 illustrate.

Example 8.1.12. Ler ) be the set of all possible pairs of rolls of a fair die, and
X (w) equals the number of the first roll. We obtain events Ay, ..., Ag. Let Y (w)
equal the number of the second roll, giving events By, ..., Bg. If we consider the
sum rolled, we have events Cs, . .., Cia. For example, C7 = {(1,6), (2,5), (3,4),
(4,3), (5,2), (6,1)}. See Chapter 9 of [Sc] for a plethora of interesting problems
on dice.
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Exercise 8.1.13. Calculate the probabilities of the events Cs, . . ., C12 for Example
8.1.12.

Example 8.1.14 (Characteristic or Indicator Functions). We continue to reconcile
our two notions of an event, namely a subset A C ) and a random variable X. To
any A C Q we can associate a characteristic or indicator random variable 1 4 as
follows:

1 ifweA
la(w) = {0 o d A (8.10)

Thus A is the set of w where 1 4(w) = 1.

Definition 8.1.15 (Complements). The complement of a set A C ) is the set of all
w ¢ A. We denote this by A°:

A = {w:weQuw¢A} 8.1

Using complements, we can rewrite the definition of the indicator random vari-
able X 4:

1 fweAd
Xa(w) = 8.12
Aw) {0 ifwe A°. (8.12)

Lemma 8.1.16. Consider an outcome space §) with outcomes w and probability
function p. Let A C Q be an event. Then

p(4) = 1—p(A°). (8.13)

This simple observation is extremely useful for calculating many probabilities,
as sometimes p(A°) is significantly easier to determine.

Exercise 8.1.17. Prove Lemma 8.1.16. Consider 100 tosses of a fair coin. What is
the probability that at least three tosses are heads?

Exercise™ 8.1.18. Consider 100 tosses of a fair coin. What is the probability that
at least three consecutive tosses are heads? What about at least five consecutive
tosses?

Given an outcome space {2 with outcomes w and random variable X, we can
define a new random variable Y = aX, a € R, by Y (w) = a - X (w). This implies
pY(w) = az;) = p(X(w) = z;). Thus if X (w) takes on the values x; with
probabilities p(z;), Y (w) = a - X(w) takes on the values ax; with probabilities
p(;).

Exercise 8.1.19. Let X be a random variable on an outcome space ) with prob-

ability function p. Fix a constant a and let Y (w) = X (w) + a. Determine the
probability Y (w) = y;.

Example 8.1.20 (Geometric Series Formula). Alan and Barbara take turns shoot-
ing a basketball; first one to make a basket wins. Assume every time Alan shoots
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he has a probability p € [0,1] of making a basket, and each time Barbara shoots
she has a probability q € [0, 1] of making a basket. For notational convenience let
r = (1—p)(1—q). We assume that at least one of p and q is positive (as otherwise
the game never ends); thus v € [0,1). The probability that Alan wins on his first
shot is p, that he wins on his second shot is rp (he must miss his first shot, Barbara
must miss her first shot, and then he must make his second shot), and in general
that he wins on his n'" shot is ¥ 'p. Letting x equal the probability that Alan
wins, we find

0
T =p+rp+rip+--- = er". (8.14)
n=0

However, we also know that
z=p+(1-p(l-qz =p+raz. (8.15)

This follows from observing that, once Alan and Barbara miss their first shots, it
is as if we started the game all over; thus the probability that Alan wins after they
each miss their first shot is the same as the probability that Alan wins (we must
remember to add on the probability that Alan wins on his first shot, which is p).
Since x = p+ rx we find x = p/(1 — r), so (8.14) becomes

St 1
Dot = (8.16)
n=0 r

the geometric series formula!

Exercise®™ 8.1.21. The above example provides a proof for the geometric series
formula, but only if r € [0,1). If r < 0 show how we may deduce the geometric
series formula from the r > O case.

Exercise™ 8.1.22 (Gambler’s ruin). Alan and Barbara now play the following
game. Alan starts with n dollars and Barbara with m dollars (n and m are positive
integers). They flip a fair coin and every time they get heads Barbara pays Alan a
dollar, while every time they get a tail Alan pays Barbara a dollar. They continue
playing this game until one of them has all the money. Prove the following:

1. If n = m then the probability that Alan wins isn/(n +m) = 1/2.

2. If n +m = 2% for some positive k then the probability that Alan wins is
n/(n + m).

3. If m = 2 then the probability that Alan wins is n/(n + m), and if m = 1
then the probability that Alan wins is n/(n + m).

4. For 1 < m,n the probability that Alan wins is n/(n +m).
Investigate what happens for small m and n if the coin is not fair.

Remark 8.1.23. Exercises 8.1.20 and 8.1.22 provide examples of a useful tech-
nique, namely finding a relation for a probability p of the form p = a + bp with a
and b known.
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Exercise™ 8.1.24. Consider a circle of unit radius and a square of diameter 2.
Assume we paint p percent of the perimeter blue and 1 — p of the perimeter red.
Prove that if p < 1/4 then there must be a way to position the square inside the
circle so that the four vertices are on the perimeter and all four vertices are on the
red parts of the circle. Generalize the problem to an n dimensions.

8.1.3 Conditional Probabilities

Consider two probability spaces 2; and 2y with outcomes w; and ws. We can
define a new outcome space

Q = {w=(w1,ws) :w € Q andwy € o}, 8.17)

with outcomes w = (w1, w2). We need to define a probability function p(w), i.e.,
we need to assign probabilities to these outcomes. One natural way is as follows:
let p; be the probability function for outcomes w; € ;. We define

pw) = p1(wr) - pa(we) ifw = (w1,ws). (8.18)
Exercise 8.1.25. Show the above defines a probability function.

Of course, we could also define a probability function p : ! — R directly. We
again consider two tosses of a fair coin. We have outcomes w = (w1, ws). Let us
— 1

define p(w) = 35, i.e., each of the 36 outcomes is equally likely. Let X (w) = wi,

the roll of the first die; similarly, set Y (w) = ws, the roll of the second die.

Example 8.1.26. What is Prob(X (w) = 2)? There are 6 pairs with first roll 2:
(2,1), (2,2),...,(2,6). Each pair has probability 5. Thus, Prob(X (w) = 2) =
6 _ 1

36 — 6"
More generally we have

Prob (X (w) = ;) = Z p(w). (8.19)
w=(wy,w3)
X(w)=2;
The above is a simple recipe to find Prob (X (w) = a): it is the probability of all
pairs (w1, ws) such that X (w) = x;, wo arbitrary.

Let us consider a third random variable, the sum of the two rolls. Thus let
Z(w) = w1 + wa, each outcome w = (wy,ws) occurs with probability %. We
have just seen that, if we have no information about the second roll, the probability
that the first roll is a 2 is % (what we would expect). What if, however, we know
the sum of the two rolls is 2, or 7 or 10?7 Now what is the probability that the first
roll is a 2?7 We are looking for pairs (wy,ws) such thatwy = 2 and wy +ws = 2, 7,
or 10. A quick inspection shows there are no pairs with sum 2 or 10. For a sum of
7, only one pair works: (2, 5).

This leads us to the concept of conditional probability: what is the probability
of an event A, given an event B has occurred? For an event A we can write

ZweA p(w)

Prob(A) = m
we

(8.20)
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Note the denominator is 1. For conditional probabilities, we restrict to w € B.
Thus, we have

> wea p(w)

Prob(4|B) = —=**2——. (8.21)

>wenPW)
The numerator above may be regarded as the event A N B (as both must happen, w
must be in A and B). Prob(A|B) is read the probability of A, given B occurs (or
as the conditional probability of A given B). Thus,

Lemma 8.1.27. IfProb(B) # 0,

Prob(AN B)

Prob(A|B) = Prob(B)

(8.22)

In the example above, let A be the event that the first roll is a 2 and B the event
that the sum of the rolls is 7. As the die are fair, the probability of any pair (w1, ws)
o 1
is 55. Then

A ={(21),(2,2),(2,3),(2,4),(2,5),(2,6)}
B = {(]-a 6)3 (27 5)3 (374)7 (43 3)3 (57 2)3 (67 1)}

ANB = {(2,5)}
_ Prob(AnB) _ = 1
Prob(A|B) = Prob(B) 6L - 5 (8.23)

Exercise 8.1.28. Let § be the results of two rolls of two dice, where wy is the
number rolled first and wo the number rolled second. For w = (w1,ws2) € ,
define the probabilities of the outcomes by

(8.24)

1.5 - -
=2 if wy is even
plw) = { 2w

2 ifwy is odd.

Show the above is a probability function of ). Let X (w) be the number of the first
roll, Y (w) the number of the second roll. For each k € {1,...,6}, what is the
probability that Y (w) = k given X (w) = 2? Given X (w) = 1?

Exercise 8.1.29. Three players enter a room and a red or blue hat is placed on
each person’s head. The color of each hat is determined by a coin toss, with the
outcome of one coin toss having no effect on the others. Each person can see the
other players’ hats but not their own. No communication of any sort is allowed,
except for an initial strategy session before the game begins. Once they have had
a chance to look at the other hats, the players must simultaneously guess the color
of their own hats or pass. The group shares a $3 million prize if at least one player
guesses correctly and no players guess incorrectly. One can easily find a strategy
which gives them a 50% chance of winning, using conditional probability find one
where they win 75% of the time! More generally find a strategy for a group of n
players that maximizes their chances of winning. See [Ber, LS] for more details, as
well as [CS, LS] for applications to error correcting codes.
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8.1.4 Independent Events

The concept of independence is one of the most important in probability. Simply
put, two events are independent if knowledge of one gives no information about the
other. Explicitly, the probability of A occurring given that B has occurred is the
same as if we knew nothing about whether or not B occurred:

Prob(AN B)
Prob(B)

Knowing event B occurred gives no additional information on the probability that
event A occurred.

Again, consider two rolls of a fair dice with outcome space {2 consisting of pairs
of rolls w = (w1, ws). Let X (w) = wy (the result of the first roll), Y (w) = wa (the
result of the second roll) and Z(w) = X (w) + Y (w) = w; + wa (the sum of the
two rolls). Let A be the event that the first roll is 2 and B the event that the sum of
the two rolls is 7. We have shown

Prob(A|B) = = Prob(A4). (8.25)

1
Prob(A|B) = i Prob(A); (8.26)
thus, A and B are independent events. If, however, we had taken B to be the event
that the sum of the two rolls is 2 (or 10), we would have found
Prob(A|B) = 0 # Prob(A); (8.27)

in this case, the two events are not independent.
We rewrite the definition of independence in a more useful manner. Since for
two independent events A and B,

Prob(A|B) = %A(;)B) = Prob(4), (8.28)
we have
Prob(AN B) = Prob(A)Prob(B). (8.29)
Note the more symmetric form of the above. In general, events A,..., A, are
independent if for any subset {i1,...,it} of {1,...,n} we have

Prob(A;, N 4;,N---NA;) = Prob(4;,)Prob(A;,)---Prob(4;,). (8.30)

If events Ay, ..., A, are pairwise independent, it is possible that the events are not
independent.

Exercise 8.1.30. Consider two tosses of a fair coin, each pair occurs with proba-
bility i. Let A be the event that the first toss is a head, B the event that the second
toss is a tail and C the event that the sum of the number of heads is odd. Prove the
events are pairwise independent, but not independent.

Example 8.1.31. Consider a fair die. Let A be the event that the first roll equals a,
B be the event that the second roll equals b and C' be the event that the sum of the
tworollsisc, c € {2,...,12}. Aseach pair of rolls is equally likely, the probability
that the first roll is a is % (as six of the thirty-six pairs give a first roll of a). Thus,



IMNT_PUP_final March 2, 2007

206 CHAPTER 8

for any choices of a and b, the result of the first roll is independent of the second
roll. We say that the two rolls (or the events A and B) are independent.

Consider now event C, the sum of the two rolls. If the sum of the rolls is 7, then
the probability that the first roll equals a is % for all a; however, in general the
conditional probabilities for the first roll will depend on the sum. For example, if
the sum is 2 then the probability that the first roll is 1 is 1 and the probability that
the first roll is 2 or more is 0. Thus, events A and C (the first roll and the sum of
the rolls) are not independent.

Definition 8.1.32 (Independent Random Variables). Let X and Y be two random
variables. We can associate events A; = {w € Q : X(w) = x;} and B; = {w €
QN :Y(w) =y;}. Ifforalliand j the events A; and B; are independent, we say the
random variables X and'Y are independent: knowledge of the value of Y yields
no information about the value of X.

Exercise 8.1.33. Again consider two tosses of a fair coin, with X (w) the number
of the first toss and Y (w) the number of the second toss. Prove X and Y are
independent. Let Z be the random variable which is the number of heads in two
tosses. Prove X and Z are not independent.

The above exercise appears throughout probability investigations. For example,
if we choose a non-rational « € (0, 1) “at random,” we could let X («) denote the
value of the first decimal digit, and Y («) denote the value of the second decimal
digit. Are X and Y independent? The answer will depend on how we “randomly”
choose a.

We give an example typical of the independence we will see in our later inves-
tigations. Let ©; = {0, 1} and for some finite N consider Q@ = Oy x --- x Qn.
For each i, define probability functions p;(1) = ¢; and p;(0) = 1 — ¢;, ¢; € [0, 1],
and for w = (wi,...,wn) € Q, let p(w) = [[,; pi(wi). We may interpret this
as follows: we toss IV coins, where coin 7 has probability ¢; of being heads. The
outcome of each toss is independent of all the other tosses.

Exercise™ 8.1.34 (The Birthday Problem). Assume each day of the year is equally
likely to be someone’s birthday, and no one is ever born on February 29%. How
many people must there be in a room before there is at least a 50% chance that
two share a birthday? How many other people must there be before at least one
of them shares your birthday? Note the two questions have very different answers,
because in the first we do not specify beforehand which is the shared day, while in
the second we do. How many people must be in the room before at least two share
a birthday? See also Exercise A.4.8. Note: in the hint to this problem we show how
to approximate the number of people needed before there is a 50% chance that two
share a birthday.

Exercise 8.1.35. Redo the previous problem assuming that there are one-fourth as
many people born on February 29" as on any other day.

Exercise™ 8.1.36. Two players roll die with k sides, with each side equally likely
of being rolled. Player one rolls m dice and player two rolls n dice. If player one’s
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highest roll exceeds the highest roll of player two then player one wins, otherwise
player two wins. Prove

1 k

Prob(Player one wins) = - dlam—(a-1)"-(a=1)" (83D
a=2
which by the integral version of partial summation equals
1 I . _
P lkm (k-1 —/1 [u]™ - n(u—1)""'dul| . (8.32)
If m,n and k are large and of approximately the same size, show
m m n

Prob(Player one wins) = (8.33)

m+n 2(m—|—n—1)E;
note if m = n = k the probability is much less than 50%. See [Mil7] for more
details.

8.1.5 Expectation

Definition 8.1.37 (Expected Value). Consider an outcome space ) with outcomes
w; occurring with probabilities p(w;) and a random variable X. The expected
value (or mean or average value) of the random variable X is defined by

X = 3 X(w)pw). (8.34)

We often write E[X], read as the expected value or expectation of X, for X.

Exercise 8.1.38. Show the mean of one roll of a fair dice is 3.5. Consider N
tosses of a fair coin. Let X (w) equal the number of heads in w = (w1, ...,WN).
Determine E[X].

Remark 8.1.39. Remember we may regard random variables as events; thus it
makes sense to talk about the mean value of such events, as the events are real
numbers. If we considered an event not arising through a random variable, things
would not be as clear. For example, consider ! = {HH, HT,TH,TT}, each with
probability i. We cannot add a head and a tail; however, if we assign a 1 to a head
and a 0 to the tail, we need only add numbers.

Exercise 8.1.40. Consider all finite fair tosses of a coin where all but the last toss
are tails (and the last toss is a head). We denote the outcome space by

Q= {H,THTTHTTTH,...}. (8.35)
Let X be the random variable equal to the number of the toss which is the head.

For example, X (TTH) = 3. Calculate the probability that the first head is the i
toss. Calculate E[X].

Definition 8.1.41 (k™ Moment). The k™ moment of X is the expected value of z*.
If X is a random variable on an outcome space ) with events w;, we write

EX*] = > X(wi)* - p(ws). (8.36)
Wi EQ
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Note the first moment is the expected value of X, and the zeroth moment is
always 1.

Definition 8.1.42 (Moments of Probability Distributions). Let @ C R; thus all
events are real numbers, which we shall denote by x € ). Let p be a probability
distribution on () so that the probability of « is just p(x). We can consider a random
variable X with X (x) = x; thus the probability that the random variable takes on
the value x is p(x). Equivalently we can consider p as a random variable (see
Example 8.1.6). We define the k™ moment of p by

o = EB[X*] = Zxkp(x). (8.37)
zEN

Similar to how Taylor series coefficients can often determine a “nice” function, a
sequence of moments often uniquely determines a probability distribution. We will
use such a moment analysis in our Random Matrix Theory investigations in Part 5;
see §15.3.2 for more details.

Exercise 8.1.43. Prove the zeroth moment of any probability distribution is 1.

Lemma 8.1.44 (Additivity of the Means). If X and Y are two random variables
on §) with a probability function p, they induce a joint probability function P with

P(z;,y;) := Prob(X(w) = z;,Y(w) = y;). (8.38)
Consider the random variable Z, Z = X + Y. Then E[Z] = E[X] + E[Y].

Proof. First note

Prob(X(w) = x;) = ZProb(X(w) =2, Y(w) =y;) = ZP(xi,yj).

(8.39)
Thus the expected value of the random variable X is
E[X] = Y @Y Pxi,y)), (8.40)
i J
and similarly for the random variable Y. Therefore
E[X +Y]=Y (i +y;)P(xi,y))
(4,9
i i
Zzwi ZP(»’l?i,yj) + Z?Jj ZP(iUi,yj)
i j j i
=E[X]+E[Y]. (8.41)
O

The astute reader may notice that some care is needed to interchange the order
of summations. If 3, > [#; + y;[p(zi, y;) < oo, then Fubini’s Theorem (Theo-
rem A.2.8) is applicable and we may interchange the summations at will. For an
example where the summations cannot be interchanged, see Exercise 11.4.12.
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Lemma 8.1.45 (Expectation Is Linear). Let X through X n be a finite collection
of random variables. Let a; through an be real constants. Then

]E[a1X1 + -+ aNXN] = alE[Xl] + -+ CLN]E[XN]. (8.42)

See §10.5.2 for an application of the linearity of expected values to investigating
digits of continued fractions.

Exercise 8.1.46. Prove Lemma 8.1.45.

Lemma 8.1.47. Let X and Y be independent random variables. Then E[XY] =
E[X]E[Y].

Proof. From Definition 8.1.32, for all ¢ and j the events 4; = {w : X(w) = z;}
and B; = {w : Y (w) = y;} are independent. This implies

Prob(A4; N B;j) = Prob(4;)Prob(B;) = p(z:)q(y;). (8.43)

If r(x;,y;) is the probability that the random variable X is z; and the random vari-
able Y is y;, then independence implies r(x;,y;) = p(x;)q(y;) for two probability
functions p and q. Thus,

E[XY] = sziyjr(xiayj)
- ZZmiyjp(xi)Q(yj)
= lep(xz) 'Zij(yj)

= E[X]-E[Y]. (8.44)

Exercise 8.1.48. Find two random variables such that E[XY] # E[X]E[Y].

Exercise 8.1.49 (Two Envelope Problem). Consider two sealed envelopes; one has
X dollars inside and the other has 2X dollars, X > 0. You are randomly given an
envelope — you have an equal likelihood of receiving either. You calculate that you
have a 50% chance of having the smaller (larger) amount. Let Y be the amount in
your envelope. If you keep this envelope you expect to receive say Y dollars; if you
switch your expected value is .5 - 2Y + .5 - X, or 1.25Y. But this is true without
ever looking inside the envelope, so you should switch again! What is wrong with
the above analysis?

Exercise™ 8.1.50. Consider a group of m people. We choose a person at random
(thus each person is equally likely to be chosen); we do this n times (at each step,
each person is equally likely to be chosen). If n < m then clearly there is at least
one person whom we haven’t chosen. How large must n be so that we have a 50%
chance of having chosen everyone at least once? What is the average value of n
such that everyone is chosen at least once? See the remarks for applications.
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8.1.6 Variances

The variance U§( and its square root, the standard deviation ox measure how
spread out the values taken on by a random variable are: the larger the variance, the
more spread out the distribution.

Definition 8.1.51 (Variance). Given an outcome space ) with outcomes w; with
probabilities p(w;) and a random variable X : Q! — R, the variance 0% is

ok = D (X(w) ~ E[X])) plw;) = E[(X—]E[X])2 . (8.45)

Exercise 8.1.52. Let Qy = {0, 25,50, 75,100} with probabilities { .2, .2, .2, .2, .2},
and let X be the random variable X (w) = w, w € Q. Thus X (0) = 0, X(25) =
25, and so on. Let s be the same outcome space but with probabilities {.1, .25,
.3,.25, .1}, and define Y (w) = w, w € Qa. Calculate the means and the variances
of X andY.

For computing variances, instead of (8.45) one often uses

Lemma 8.1.53. For a random variable X we have 0% = E[X?] — E[X]%.
Proof. Recall X = E[X]. Then

0% = (Xi(w) — E[X])" plwi)
=2 _(Xi(w)” = 2Xi(W)ELX] + E[X]*)p(wi)

= Z X;(w)*p(wi) — 2E[X] Z X;(w)p(wi) + E[X]? Zp(wi)

=E[X?] — 2E[X]? + E[X]? _ E[X?] — E[X]. (8.46)
O

The main result on variances is

Lemma 8.1.54 (Variance of a Sum). Let X and Y be two independent random
variables on an outcome space ). Then 0% |y = 0% + 0%

Proof. We use the fact that the expected value of a sum is the sum of expected
values (Lemma 8.1.45).

o4y = E[(X +Y)’] - E[(X +Y)]?

= E[X? + 2XY + Y?] — (E[X] + E[Y])’

= (E[X?] + 2E[XY] + E[Y?]) — (E[X]* + 2E[X]E[Y] + E[Y]?)
(E[X?] - E[X]?) + (E[Y?] - E[Y]*) + 2 (E[XY] - E[X]E[Y])
0% + o3 +2(E[XY] - E[X]E[Y]). (8.47)

By Lemma 8.1.47, as X and Y are independent, E[XY] = E[X]E[Y], completing
the proof. O
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Let 2 be an outcome space with outcomes w and a random variable X. For
1 < N let Q; = Q2 and let X; be the same random variable as X except X; lives
on ;. For example, we could have NV rolls with X; the outcome of the i roll. We
have seen in Lemma 8.1.45 that the mean of the random variable X; + --- + Xy
is NE[X]. What is the variance?

Lemma 8.1.55. Notation as above,
0x,4.1xy = VNox. (8.48)
Exercise 8.1.56. Prove Lemma 8.1.55.

Lemma 8.1.57. Given an outcome space ) with outcomes w with probabilities
p(w) and a random variable X. Consider the new random variable aX + b. Then

02y, = a’0%. (8.49)
Exercise 8.1.58. Prove 8.1.57.

Note that if the random variable X has units of meters then the variance 0% has
units of meters?, and the standard deviation o x and the mean X have units meters.
Thus it is the standard deviation that gives a good measure of the deviations of X
around its mean.

There are, of course, alternate measures one can use. For example, one could
consider

> (@i — X)p(as). (8.50)
i
Unfortunately this is a signed quantity, and large positive deviations can cancel with
large negatives. In fact, more is true.

Exercise 8.1.59. Show ). (x; — X)p(z;) = 0.

This leads us to consider

3 Jai — Xlp(z:). (8.51)

While this has the advantage of avoiding cancellation of errors (as well as having
the same units as the events), the absolute value function is not a good function
analytically. For example, it is not differentiable. This is primarily why we consider
the standard deviation (the square root of the variance).

Exercise 8.1.60 (Method of Least Squares). Consider the following set of data: for
i €{1,...,n}, givent; one observesy;. Believing that t and y are linearly related,
find the best fit straight line. Namely, determine constants a and b that minimize the
error (calculated via the variance)
n n

> (yi — (at; +b))* = > (Observed; — Predicted;)” . (8.52)

i=1 i=1
Hint: Use multi-variable calculus to find linear equations for a and b, and then
solve with linear algebra. If one requires that a = 0, show that the b leading to
least errorisb =7 = % > Vi
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The method of proof generalizes to the case when one expects y is a linear com-
bination of N fixed functions. The functions need not be linear; all that is required
is that we have a linear combination, say a1 f1(t) + --- + an fn(t). One then
determines the ay, ... ,ay that minimize the variance (the sum of squares of the
errors) by calculus and linear algebra. If instead of measuring the total error by
the squares of the individual error we used another measure (for example, using
the absolute value), closed form expressions for the a; become significantly harder,
even in the simple case of fitting a line.

Exercise 8.1.61. Consider the best fit line from the Method of Least Squares (Ex-
ercise 8.1.60). Is the point (T,y), where T = ~ 31" | w;andy = >_;_, y;, on the
best fit line? In other words, does the best fit line go through the “average” point?

Exercise 8.1.62 (Chebyshev’s Inequality). Let X be a random variable with mean
1 and finite variance o%. Prove Chebyshev’s inequality:

1

k_27
where Prob(|X — pu| > a) is the probability that X takes on values at least a
units from the mean. Chebyshev’s theorem holds for all nice distributions, and

provides bounds for being far away from the mean (where far is relative to the
natural spacing, namely o).

Prob(|X — u| > ko) < (8.53)

Exercise 8.1.63. Use Chebyshev’s Theorem to bound the probability of tossing a
fair coin 10000 times and observing at least 6000 heads.

Exercise 8.1.64. Does there exist a probability distribution such that Chebyshev’s
Inequality is an equality for all positive integral k?

If the probability distribution decays sufficiently rapidly we can use the Cen-
tral Limit Theorem (Theorem 8.4.1) and obtain better estimates than those from
Chebyshev’s Theorem. See Exercise 8.4.3.

8.2 STANDARD DISTRIBUTIONS

We describe several common probability distributions. Consider the important case
when the outcome space 2 C R and is countable; thus the outcomes are real num-
bers. Let p be a probability function on 2. For notational convenience we some-
times extend €2 to all of R and define the probabilities of the new outcomes as
0.

To each z € R we have attached a non-negative number p(z), which is zero
except for at most countably many X. We let x; denote a typical outcome where
p(x) # 0. Similar to calculating the means, variances and higher moments of a
random variable, we can compute these quantities for a probability distribution;
see Definition 8.1.42. For example, for a discrete probability distribution p the

mean is ), x;p(x;).
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8.2.1 Bernoulli Distribution

Recall the binomial coefficient (IX ) = % is the number of ways to choose

7 objects from N objects when order does not matter; see §A.1.3 for a review of
binomial coefficients. Consider n independent repetitions of a process with only
two possible outcomes. We typically call one outcome success and the other fail-
ure, the event a Bernoulli trial, and a collection of independent Bernoulli trials a
Bernoulli process. In each Bernoulli trial let there be probability p of success and
q = 1 — p of failure. Often we represent a success with 1 and a failure with 0. In
§8.2.4 we describe a Bernoulli trial to experimentally determine 7!

Exercise 8.2.1. Consider a Bernoulli trial with random variable X equal to 1 for
a success and 0 for a failure. Show X = p, 0% = pq, and ox = /pq. Note X is
also an indicator random variable (see Exercise 8.1.14).

Let Y be the number of successes in N trials. Clearly the possible values of
Yy are {0,1,..., N}. We analyze py (k) = Prob(Yx(w) = k). Here the sample
space (2 is all possible sequences of IV trials, and the random variable Yy : Q@ — R
is given by Yy (w) equals the number of successes in w.

If £ € {0,1,...,N}, we need k successes and N — k failures. We do not
care what order we have them (i.e., if k = 4 and N = 6 then SSFSSF and
FSSSSF both contribute equally). Each such string of k£ successes and N — k
failures has probability of p* - (1 — p)V~*. There are (}) such strings, which
implies py (k) = (IZ)pk -(1—=p)Nkifk € {0,1,...,N} and 0 otherwise.

By clever algebraic manipulations, one can directly evaluate the mean Yy and
the variance U%/N; however, Lemmas 8.1.45 and 8.1.55 allow one to calculate both
quantities immediately, once one knows the mean and variance for a single occur-
rence (see Exercise 8.2.1).

Lemma 8.2.2. For a Bernoulli process with N trials, each having probability p
of success, the expected number of successes is Yy = Np and the variance is
oy, = Npq.

Lemma 8.2.2 states the expected number of successes is of size Np, and the
fluctuations about Np are of size 03 = +/Npq. Thus, if p = 1 and N = 10, we
expect 500,000 successes, with fluctuations on the order of 500. Note how much
smaller the fluctuations about the mean are than the mean itself (the mean is of size
N, the fluctuations of size v/N). This is an example of a general phenomenon,
which we describe in greater detail in §8.4.

Exercise 8.2.3. Prove Lemma 8.2.2. Prove the variance is largest whenp = q = %

Consider the following problem: Let Q = {S, F'S,F'F'S, ...} and let Z be the
number of trials before the first success. What is Z and 0%?

First we determine the Bernoulli distribution p(k) = Prob(Z(w) = k), the
probability that the first success occurs after k trials. Clearly this probability is
non-zero only for k a positive integer, in which case the string of results must be
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k — 1 failures followed by 1 success. Therefore

1—p)k-1. if 1,2,...
p(k) = A=p)"op i ke{ o) (8.54)
0 otherwise.

To determine the mean Z we must evaluate

Z = Zk(l —p)lp = pz k¢* ', 0<g=1-p<1. (855
k=1 k=1

Consider the geometric series

= 1
flo =) d" = 1— (8.56)
k=0 q
A careful analysis shows we can differentiate term by term if —1 < g < 1. Then
= 1
fllg) = k¢&t = ——. (8.57)
,QZZO (1-g)?
Recalling ¢ = 1 — p and substituting yields
— > _ p 1
Z=p) k' = ———— = —. (8.58)
kZ::l (1-(01-p) p

Remark 8.2.4. Differentiating under the summation sign is a powerful tool in
Probability Theory, and is a common technique for proving such identities. See
[Mil4] for more on differentiating identities, where the expected number of alter-
nations between heads and tails in n tosses of a coin with probability p of heads is
derived, along with other combinatorial and probability results.

Exercise 8.2.5. Calculate 0. Hint: Differentiate f(q) twice.

Exercise 8.2.6. Consider the normgzl dizstribution with mean 0 and variance o*; its
density is f(x;0) = (2m02) "2~ /27" As f(x;0) integrates to I, we have
0 e—x2/202
o = —— dx. (8.59)
oo V2T

By differentiating with respect to o, show the second moment (and hence the vari-
ance since the mean is zero) is 0. This argument may be generalized (it may
be easier to consider the operator a®d/do) and yields all even moments of the
Gaussian; the 2m™ moment is (2m —1)(2m —3) - - - 3-1-0%™ and is often denoted
(2m — 1)!! (here the double factorial means every other term; thus 7! =7-5-3-1
and6!!' =6-4-2).

Exercise 8.2.7. The even moments of the Gaussian (see Exercise 8.2.6) have an
interesting combinatorial meaning. Show that the number of ways of pairing 2m
objects into m pairs of two elements is (2m—1)!\. We shall see these moments again
in §16.2.2, where we study the eigenvalues of real symmetric Toeplitz matrices.
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8.2.2 Poisson Distribution

Divide the unit interval into N equal pieces. Consider /N independent Bernoulli
trials, one in each subinterval. If the probability of a success is %, then by Lemma
8.2.2 the expected number of successes is IV - % = A. We consider the limit
as N — oo. We still expect A successes in each unit interval, but what is the
probability of 3\ successes? How long do we expect to wait between successes?

We call this a Poisson process with parameter \. For example, look at the
midpoints of the N intervals. At each midpoint we have a Bernoulli trial with
probability of success % and failure 1 — % We determine the N — oo limits. For
fixed IV, the probability of exactly k successes in a unit interval is

- () () (1-2)

NI Ak AV
RN —R)INE (1—ﬁ)

N (N1 (N—k+ DN <1_i>N<1_i>_k

N-N---N k! N N

1 E—1\ Mk A\ A\ F
:1'(1_N>”'<1_T)ﬁ<l_ﬁ> <1_N> . (8.60)

For fixed, finite £ and A\, as N — oo the first k factors in py (k) tend to 1,
(1- %)N — e, and (1— %)_k — 1 (see §5.4 for a review of properties

of e). Thus py (k) — %e”‘. We shall see similar calculations as these when we
investigate the properties of z,, = n*a mod 1 in Chapter 12.

Using our investigations of Bernoulli trials as a motivation, we are led to the
Poisson Distribution: Given a parameter A (interpreted as the expected number of
occurrences per unit interval), the probability of & occurrences in a unit interval is

p(k) = %e”‘ fork € {0,1,2,...}. This is a discrete, integer valued process.

Exercise 8.2.8. Check that p(k) given above is a probability distribution. Namely,
show > o p(k) = 1.

Exercise®™ 8.2.9. Calculate the mean and variance for the Poisson Distribution.

8.2.3 Continuous Distributions

Up to now we have only considered discrete probability distributions. We now
study a continuous example. We consider a generalization of a Bernoulli process
with A successes in a unit interval. We divide the real line into subintervals of size
% and consider a Bernoulli trial at the midpoint of each subinterval with probability
% of success. Start counting at 0, and let the first success be at X. How is X
distributed as N — oo (i.e., how long do we expect to wait before seeing the first
success)? Denote this distribution by pgs(x).

We have approximately ”1”/;]3 = Nz midpoints from 0 to X (with N midpoints

per unit interval). Let [y] be the smallest integer greater than or equal to y. Then we



IMNT_PUP_final March 2, 2007

216 CHAPTER 8

have [ Nz] midpoints, where the results of the Bernoulli trials of the first [Nz] — 1
midpoints are all failures and the last is a success. Thus the probability of the first
success occurring in an interval of length % containing X (with N divisions per

unit interval) is
A [Nz]—-1 A 1
pN,s(x) = <1 - N) : (N) . (8.61)

For N large the above is approximately e ~** %
Exercise 8.2.10. For large N, calculate the size of N (pn,s(z) — e=**%). Show
this difference tends to zero as N tends to infinity.

Definition 8.2.11 (Continuous Probability Distribution). We say p(x) is a continu-
ous probability distribution on R if

1. p(x) > 0 forall x € R
2. [pp(x)de = 1.
3. Prob(a <z <b) = f; p(z)dz.

We call p(x) the probability density function or the density; p(x)dx is interpreted
as the probability of the interval [z, x + dz].

In the previous example, as N — oo we obtain the continuous probability den-
sity function

(8.62)

e if x>0
ps(z) =

0 ifz <O0;
note % is like dz for N large. In the special case of A = 1, we get the stan-
dard exponential decay, e~*. We will see this distribution in Chapter 12 when we
investigate the fractional parts of n*« (k, « fixed, n varying).

For instance, let 7(M) be the number of primes that are at most M. The Prime
Number Theorem states 7(M) = lOIgV[M plus lower order terms. Thus the average
spacing between primes around M is about log M. We can model the distribution
of primes as a Poisson Process, with parameter A = Ay = log;M (this is called the
Cramér model). While possible locations of primes (obviously) is discrete (it must
be an integer, and in fact the location of primes are not independent), a Poisson
model often gives very good heuristics; see for example [Sch].

We often renormalize so that A = 1. This is denoted unit mean spacing. For
example, one can show the M™ prime pj; is about M log M, and spacings between
primes around pps is about log M. Then the normalized primes qp; ~ 22 will

X K log M
have unit mean spacing and A = 1.

Example 8.2.12 (Uniform Distribution on [a,b]). LetQ) = {r € R:a <z <
b}. The uniform distribution has probability density function p(z) = ;=. Note for
any [e,d) € [a,b),

d d—c
Prob ([¢,d]) = / p(z)dzr = e (8.63)
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The uniform distribution is one of the most common (and best understood!) con-
tinuous distributions; the probability of € [¢,d] C [a,b] depends only on the
length of the subinterval [c, d].

Example 8.2.13 (Gaussian Distribution). For x € R, consider the probability den-

sity function p(x) = 2;02 e~ (@=w*/20* This is called the Gaussian (or normal

or bell curve) distribution. By Exercise 8.2.14 it has mean p and variance . If
w = 0and 02 =1, it is called the standard normal or the standard Gaussian. See
§8.4 for more details.

We sketch the main idea in the proof that the above is a probability distribution.
As it is clearly non-negative, we need only show it integrates to one. Consider

I = / e~ da. (8.64)

— 00

Square I, and change from rectangular to polar coordinates, where dxdy becomes

rdrdf:
I2:/ e*Ide-/ e*yzdy
oo oo
= / e ¥ TV dady
— 00 — 00
27 [e’e] N
:/ d€/ e " rdr
0 0
1 2]*
=27 |—=e™" = . (8.65)
2 0

The reason the above works is that while e=%"dz is hard to integrate, re= " dr is
easy. Thus I = /7.

Exercise 8.2.14. Let p(z) = \/2;7 e~ (@2 prove [ p(z)dz = 1,

= xp(x)de = pand [ (x — p)?p(a)de = o This justifies our claim that the
Gaussian is a probability distribution with mean v and variance o>.

Example 8.2.15 (Cauchy Distribution). Consider
1 1
S
This is a continuous distribution and is symmetric about zero. While we would like

to say it therefore has mean zero, the problem is the integral ffoooxp(:ﬂ)dm is not
well defined as it depends on how we take the limit. For example,

(8.66)

A 24

lim zp(z)de = 0, lim zp(x)de = oo. (8.67)
A—oo J_»4 A—oo J_ 4

Regardless, p(x) has infinite variance. We shall see the Cauchy distribution again
in Chapter 15; see also Exercises 3.3.28 and 3.3.29.
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Figure 8.1 Buffon’s needle

Exercise 8.2.16. Prove the Cauchy distribution is a probability distribution by

showing

o0

/ l;daz = 1 (8.68)
oo T 1+ 22

Show the variance is infinite. See also Exercise 3.3.29.

The Cauchy distribution shows that not all probability distributions have finite
moments. When the moments do exist, however, they are a powerful tool for un-
derstanding the distribution. The moments play a similar role as coefficients in
Taylor series expansions. We use moment arguments to investigate the properties
of eigenvalues in Chapters 15 and 16; see in particular §15.3.2.

8.2.4 Buffon’s Needle and 7

We give a nice example of a continuous probability distribution in two dimensions.
Consider a collection of infinitely long parallel lines in the plane, where the spacing
between any two adjacent lines is s. Let the lines be located at x = 0, £s, +2s, . . ..
Consider a rod of length ¢ where for convenience we assume ¢ < s. If we were
to randomly throw the rod on the plane, what is the probability it hits a line? See
Figure 8.1. This question was first asked by Buffon in 1733. For a truly elegant
solution which does not use calculus, see [AZ]; we present the proof below as it
highlights many of the techniques for investigating probability problems in several
variables.

Because of the vertical symmetry we may assume the center of the rod lies on
the line z = 0, as shifting the rod (without rotating it) up or down will not alter the
number of intersections. By the horizontal symmetry, we may assume —5 < z <
5. We posit that all values of = are equally likely. As x is continuously distributed,

we may add in z = J without changing the probability. The probability density
dx

function of z is .
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Let 0 be the angle the rod makes with the z-axis. As each angle is equally likely,
the probability density function of 6 is %. We assume that = and 6 are chosen
independently. Thus the probability density for (z, 6) is i”;f

The projection of the rod (making an angle of 8 with the z-axis) along the x-axis
is £-|cosf|. If |z| < £-|cosf|, then the rod hits exactly one vertical line exactly
once; if & > £ - | cos 6|, the rod does not hit a vertical line. Note that if £ > s, a rod
could hit multiple lines, making the arguments more involved. Thus the probability

arod hits a line is

21 pl-|cos | 2y 9
p =/ dadh - _ 2/ Celeosbldb 20 ¢ o)
0= 9 s

0Jaz=—t|cosf| S* 27 =0 s 2m

Exercise 8.2.17. Show
1 [ 2
—/ |cosf|dd = —. (8.70)
2m Jo ™

Let A be the random variable which is the number of intersections of a rod of
length £ thrown against parallel vertical lines separated by s > £ units. Then

Ao {1 with probability i—i (8.71)

0  with probability 1 — 2£.

If we were to throw N rods independently, since the expected value of a sum is the
sum of the expected values (Lemma 8.1.45), we expect to observe IV - fr—‘; intersec-
tions.

Turning this around, let us throw NN rods, and let I be the number of observed
intersections of the rods with the vertical lines. Then

20

20
I ~ N.-— whichimplies 7 = —.
s

s

(8.72)

~| =

The above is an experimental formula for 7!

Exercise 8.2.18. Assume we are able to throw the rod randomly as described
above, and the N throws are independent. We then have a Bernoulli process with
N trials. We have calculated the expected number of successes; using the methods
of §8.2.1, calculate the variance (and hence the size of the fluctuations in I1). For
each N, give the range of values we expect to observe for .

8.3 RANDOM SAMPLING

We introduce the notion of random sampling. Consider a countable set 2 C R
and a probability function p on €; we can extend p to all of R by setting p(r) = 0
if » ¢ €. Using the probability function p, we can choose elements from R at
random. Explicitly, the probability that we choose w € Q is p(w).

For example, let Q = {1,2,3,4,5,6} with cach event having probability § (the
rolls of a fair die). If we were to roll a fair die N times (for N large), we observe
a particular sequence of outcomes. It is natural to assume the rolls are independent
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of each other. Let X; denote the outcome of the i roll. The X;’s all have the same
distribution (arising from p). We call the X; ii.d.r.v. (independent identically
distributed random variables), and we say the X; are a sample from the probability
distribution p. We say we randomly sample (with respect to p) R. Often we
simply say we have randomly chosen /N numbers.

A common problem is to sample some mathematical or physical process and use
the observations to make inferences about the underlying system. For example, we
may be given a coin without being told what its probabilities for heads and tails are.
We can attempt to infer the probability p of a head by tossing the coin many times,
and recoding the outcomes. Let X; be the outcome of the it toss (1 for head, 0 for
tail). After IV tosses we expect to see about /N p heads; however, we observe some
number, say Sy . Given that we observe Sy heads after N tosses, what is our best
guess for p? By Lemma 8.1.45, we guess p = SWN It is extremely unlikely that our
guess is exactly right. This leads us to a related question: given that we observe Sn
heads, can we give a small interval about our best guess where we are extremely
confident the true value p lies? The solution is given by the Central Limit Theorem
(see §8.4).

Exercise 8.3.1. For the above example, if p is irrational show the best guess can
never be correct.

One can generalize the above to include the important case where p is a contin-
uous distribution. For example, say we wish to investigate the digits of numbers
in [0,1]. It is natural to put the uniform distribution on this interval, and choose
numbers at random relative to this distribution; we say we choose /N numbers ran-
domly with respect to the uniform distribution on [0, 1], or simply we choose N
numbers uniformly from [0, 1]. Two natural problems are to consider the n™ digit
in the base 10 expansion and the n' digit in the continued fraction expansion. By
observing many choices, we hope to infer knowledge about how these digits are
distributed. The first problem is theoretically straightforward. It is not hard to cal-
culate the probability that the n™ digit is d; it is just £5. The probabilities of the
digits of continued fractions are significantly harder (unlike decimal expansions,
any positive integer can occur as a digit); see Chapter 10 for the answer.

Exercise 8.3.2 (Important for Computational Investigations). For any continuous
distribution p on R, the probability we chose a number in [a, b] is fab p(z)dz. If we

. b
were {o choose N numbers, N large, t'he1-1 we expect approximately N fa p(:L‘)d':L‘
to be in [a, b]. Often computers have built in random number generators for certain
continuous distributions, such as the standard Gaussian or the uniform, but not
for less common ones. Show if one can randomly choose numbers from the uni-
form distribution, one can use this to randomly choose from any distribution. Hint:
€T . . . . .

Use Cp(x? = . p(m)dm the Cumu'latlve Distribution Function of p (see also
§15.3.2); it is the probability of observing a number at most x.

Remark 8.3.3. The observant reader may notice a problem with sampling from
a continuous distribution: the probability of choosing any particular real number
is zero, but some number is chosen! One explanation is that, fundamentally, we
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cannot choose numbers from a continuous probability distribution. For example, if
we use computers to choose our numbers, all computers can do is a finite number of
manipulations of 0’s and 1’s; thus, they can only choose numbers from a countable
(actually finite) set. The other interpretation of the probability of any r € R is zero
is that, while at each stage some number is chosen, no number is ever chosen twice.
Thus, in some sense, any number we explicitly write down is “special.” See also
Exercise 8.1.49, where the resolution is that one cannot choose numbers uniformly
on all of (0, c0).

For our investigations, we approximate continuous distributions by discrete dis-
tributions with many outcomes. From a practical point of view, this suffices for
many experiments; however, one should note that while theoretically we can write
statements such as “choose a real number uniformly from [0, 1],” we can never
actually do this.

8.4 THE CENTRAL LIMIT THEOREM

We close our introduction to probability with a statement of the main theorem about
the behavior of a sum of independent events. We give a proof in an important
special case in §8.4.2 and sketch the proof in general in §11.5. For more details
and weaker conditions, see [Bi, CaBe, Fe]. We discuss applications of the Central
Limit Theorem to determining whether or not numerical experiments support a
conjecture in Chapter 9.

8.4.1 Statement of the Central Limit Theorem

Let X; ( € {1,...,N}) be independent identically distributed random variables
(ii.d.r.v.) asin §8.3, all sampled from the same probability distribution p with mean
pu and variance o2; thus E[X;] = pand 0%, = o foralli. Let Sy = 31t | X;. We
are interested in the distribution of the random variable Sy as N — oco. As each X;
has expected value y, by Lemma 8.1.45 E[Sn] = Nu. We now consider a more
refined question: how is Sy distributed about Nu? The Central Limit Theorem
answers this, and tells us what the correct scale is to study the fluctuations about
Np.

Theorem 8.4.1 (Central Limit Theorem). Fori € {1,..., N}, let X; be i.i.d.rv.
with mean pu, finite variance o and finite third moment. Let Sy = X1+ -+ -+ Xn.
As N = o0

Prob(Sx € [o, 8]) ~ —(t=uN)*/20*N gy (8.73)

1 B
27T0'2N «
In other words, the distribution of Sy converges to a Gaussian with mean uN and
variance 02 N. We may re-write this as

_ Sy — uN > 1 /b 29
| Prob| ——— € [a,b] | = — e ' /24dt. 8.74
NPT ( oy clwh) = (®.74)

Here Zn = Sn—uN - onverges to a Gaussian with mean 0 and variance 1.
VoIN
a
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The probability density \/%7 e~t*/2 is the standard Gaussian. It is he universal

curve of probability. Note how robust the Central Limit Theorem is: it does not
depend on fine properties of the X, just that they all have the same distributions
and finite variance (and a bit more). While this is true in most situations, it fails in
some cases such as sampling from a Cauchy distribution (see Exercise 12.7.8 for
another limit theorem which can handle such cases). Sometimes it is important to
know how rapidly Z is converging to the Gaussian. The rate of convergence does
depend on the higher moments; see §11.5 and [Fe].

Exercise 8.4.2. The Central Limit Theorem gives us the correct scale to study fluc-
tuations. For example, say we toss a fair coin N times (hence j = % and 0? = i ).
We expect Sy to be about % Find values of a and b such that the probability of
Sy — Np € [av/N /2,0 N /2] converges to 95% (resp., 99%). For large N, show
for any fixed 6 > O that the probability of Sy — N € [aNz+%/2 bNz19 /2]
tends to zero. Thus we expect to observe half of the tosses as heads, and we expect
deviations from one-half to be of size 2/ V/N.

Exercise 8.4.3. Redo Exercise 8.1.63 using the Central Limit Theorem and com-

pare the two bounds.

Sn—pN .
Vo2N ’

this shows Vo2 N is the correct scale to investigate fluctuations of Sy about uN.

Exercise 8.4.4. For Sy = X1+ - -+ X, calculate the variance of Zn =

One common application of the Central Limit Theorem is to test whether or not
we are sampling the X; independently from a fixed probability distribution with
mean g and known standard deviation o (if the standard deviation is not known,
there are other tests which depend on methods to estimate o). Choose N numbers
randomly from what we expect has mean p. We form Sy as before and investigate
%. As Sy = Zi\il X, we expect Sy to be of size N. If the X; are not
drawn from a distribution with mean p, then Sy — Ny will also be of size N.
Thus, % will be of size /N if the X, are not drawn from something with
mean pu. If, however, the X; are from sampling a distribution with mean y, the
Central Limit Theorem states that S‘I";—QNN“ will be of size 1. See Chapter 9 for
more details and Exercise 12.7.8 for an alternate sampling statistic.

Finally, we note that the Central Limit Theorem is an example of the Philosophy
of Square Root Cancellation: the sum is of size [V, but the deviations are of size
V/N. We have already seen examples of such cancellation in Remark 3.3.1 and
§4.4, and will see more in our investigations of writing integers as the sum of

primes (see §13.3.2).

8.4.2 Proof for Bernoulli Processes

We sketch the proof of the Central Limit Theorem for Bernoulli Processes where
the probability of success is p = % Consider the random variable X that is 1 with
probability % and —1 with probability % (for example, tosses of a fair coin; the
advantage of making a tail —1 is that the mean is zero). Note the mean of X is
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X =0, the variance is 0% = 1 (as we have 17 - £ + (—1)2 - 1) and the standard
deviationis ox = 1.

Let X4,..., Xon be independent identically distributed random variables, dis-
tributed as X (it simplifies the expressions to consider an even number of tosses).
Consider Sony = X1 + - -+ + Xon. Its mean is zero and its variance is 2.V, and we
expect fluctuations of size V2N. We show that for N large the distribution of Sonr
is approximately normal. We need

Lemma 8.4.5 (Stirling’s Formula). For n large,
n! = n"e™"V2mn (1+ 0(1/n)). (8.75)

For a proof, see [WW]. We show (8.75) is a reasonable approximation. It is often
easier to analyze a product by converting it to a sum; this is readily accomplished
by taking logarithms. We have

n n
logn! = > loghk ~ / logtdt = (tlogt —t)|7. (8.76)
k=1 1

Thus logn! ~ nlogn —n, orn! =~ n"e™".

We now consider the distribution of San. We first note that the probability that
Son = 2k + 11is zero. This is because Sy equals the number of heads minus the
number of tails, which is always even: if we have k heads and 2N — £ tails then
Son equals 2N — 2k.

The probability that Sy equals 2k is just (,¢2',) (3)¥T*(3)V~*. This is be-
cause for So to equal 2k, we need 2k more 1’s (heads) than —1’s (tails), and the
number of 1’s and —1’s add to 2/N. Thus we have N + k heads (1’'s) and N — k
tails (—1’s). There are 22V strings of 1’s and —1’s, (,¢%,) have exactly N + k
heads and N — k tails, and the probability of each string is (%)21\’ . We have writ-
ten (5)V ()Y =" to show how to handle the more general case when there is a
probability p of heads and 1 — p of tails.

We use Stirling’s Formula to approximate (
find

2N

Nt k). After elementary algebra we

2N\ (2N)2N N
(N + k) T (N + E)NFR(N — k)N-k\ 7(N + k)(N — k)

22N 1
= T —. (8.77)
VN (14 £)N+3+k(] - EyN+3-k
We would like to use (1 + %)N ~ e from §5.4; unfortunately, we must be a
little more careful as the values of k we consider grow with N. For example, we
might believe that (1 + £)N — e* and (1 — £)V — e*, so these factors cancel.
As k is small relative to N we may ignore the factors of %, and then say

E\F NN )
<1+ﬁ> = (HN) — eM/N. (8.78)

similarly, (1 — £)~F — e¥* /N Thus we would claim (and we shall see later in
Lemma 8.4.6 that this claim is in error!) that

E\NTatk E\NTzk o N
1+ — 1-— . .
( + N) < N) — e (8.79)
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We show that (1 + & 1-£ — e**/N_ The importance of
this calculation is that it highlights how crucial rates of convergence are. While it is
true that the main terms of (1 + £) are e**, the error terms (in the convergence)
are quite important, and yield large secondary terms when £ is a power of N. What
happens here is that the secondary terms from these two factors reinforce each

)N+%+k ( )N+%—k

other. Instead of using (1 + %)N ~ e from §5.4, it is better to take the logarithms
of the two factors, Taylor expand, and then exponentiate. This allows us to better
keep track of the error terms.

An immediate consequence of Chebyshev’s inequality (see Exercise 8.1.62) is
that we need only study k where |k| is at most N 3¢ This is because the standard
deviation of Sy is v/2N. Specifically, see Exercise 8.4.8 for a proof that given
any € > 0, the probability of observing a k with |k| > N 2+¢ is negligible. Thus it
suffices to analyze the probability that Sy = 2k for [k| < Nz2ts.

Lemma 8.4.6. For any ¢ < %,for N — cowithk K N%“, we have

N+i+k N+1—k B
(1 + %) <1 - %) — /NN (8.80)
Proof. Recall that for |z| < 1,
& —1)ntlpn
log(1+2) = Y ()Tx (8.81)

n=1

As we are assuming k < N3+€ note that any term below of size k? /N2, k* /N*?
or k*/N? will be negligible. Thus we have

g\ NTatk E\Ntik
Ponv=(1+— 1-—

1 k 1 AR
long’N=<N+§+k> log(l—f—N) + <N+§—k) log<l—ﬁ)

1 k k2 k3
=(vr34) (v -0 ()

(8.82)

Ask < N2+¢ fore < L the big-Oh term is dominated by N /%, and we finally
obtain that
Py = e INeOINT) (8.83)

which completes the proof. O
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Combining Lemma 8.4.6 with (8.77) yields

2N\ 1 1L e
o~ . .84
(N+k)22N VN € (859

The proof of the central limit theorem in this case is completed by some simple
algebra. We are studying San = 2k, so we should replace k? with (2k)? /4. Sim-
ilarly, since the variance of San is 2V, we should replace N with (2V)/2. We
find

e~(20)°/2(2N) (g 85)

2N\ 1 2
Prob(Say = 2k) = ( ) ~

N+k)2N = for. (2N)

Remember S> is never odd. The factor of 2 in the numerator of the normal-
ization constant above reflects this fact, namely the contribution from the prob-
ability that Son is even is twice as large as we would expect, because it has to
account for the fact that the probability that Sy is odd is zero. Thus the above
looks like a Gaussian with mean 0 and variance 2/N. For N large such a Gaussian
is slowly varying, and integrating from 2k to 2k + 2 is basically 2/,/27(2N) -
exp —(2k)?/2(2N).

Exercise 8.4.7. Use the integral test to bound the error in (8.76), and then use that
to bound the error in the estimate of n.

Exercise 8.4.8. Prove the standard deviation of San is vV2N. Use this and Cheby-
shev’s inequality (Exercise 8.1.62) to prove

1
which implies that it suffices to study values of k with k < N 3t

Prob(|Syn| > N¢-V2N) < (8.86)

Exercise 8.4.9. Prove (8.81).

Exercise 8.4.10. Can you generalize the above arguments to handle the case when
p#s.
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Chapter Nine

Applications of Probability: Benford’s Law and
Hypothesis Testing

The Gauss-Kuzmin Theorem (Theorem 10.3.1) tells us that the probability that the
millionth digit of a randomly chosen continued fraction expansion is k is approx-

imately g, = log, (1 + M) What if we choose N algebraic numbers, say

the cube roots of IV consecutive primes: how often do we expect to observe the
millionth digit equal to k£? If we believe that algebraic numbers other than rationals
and quadratic irrationals satisfy the Gauss-Kuzmin Theorem, we expect to observe
qr N digits equal to %, and probably fluctuations on the order of v/N. If we observe
M digits equal to k, how confident are we (as a function of M and NN, of course)
that the digits are distributed according to the Gauss-Kuzmin Theorem? This leads
us to the subject of hypothesis testing: if we assume some process has probability
p of success, and we observe M successes in N trials, does this provide support for
or against the hypothesis that the probability of success is p?

We develop some of the theory of hypothesis testing by studying a concrete
problem, the distribution of the first digit of certain sequences. In many problems
(for example, 2" base 10), the distribution of the first digit is given by Benford’s
Law, described below. We first investigate situations where we can easily prove
the sequences are Benford, and then discuss how to analyze data in harder cases
where the proofs are not as clear (such as the famous 3z + 1 problem). The error
analysis is, of course, the same as the one we would use to investigate whether or
not the digits of the continued fraction expansions of algebraic numbers satisfy the
Gauss-Kuzmin Theorem. In the process of investigating Benford’s Law, we en-
counter equidistributed sequences (Chapter 12), logarithmic probabilities (similar
to the Gauss-Kuzmin probabilities in Chapter 10), and Poisson Summation (Chap-
ter 11), as well as many of the common problems in statistical testing (such as
non-independent events and multiple comparisons).

9.1 BENFORD’S LAW

While looking through tables of logarithms in the late 1800s, Newcomb noticed a
surprising fact: certain pages were significantly more worn out than others. Peo-
ple were looking up numbers whose logarithm started with 1 more frequently than
other digits. In 1938 Benford [Ben] observed the same digit bias in a variety of phe-
nomenon. See [Hil, Rai] for a description and history, [Hi2, BBH, KonMi, LaSo,
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MN] for recent results, [Knu] for connections between Benford’s law and rounding
errors in computer calculations and [Nig1, Nig2] for applications of Benford’s Law
by the IRS to detect corporate tax fraud!

A sequence of positive numbers {z,,} is Benford (base b) if the probability of

observing the first digit of z,, in base b is j is log, (1 —+ %) . More precisely,

< N : first digit of x,, in base b is j 1
lim #{n < rst digit of x,, in base bis j} ~ log, (1 N —.) oD

Note that j € {1,...,b— 1}. This is a probability distribution as one of the b — 1
events must occur, and the total probability is

b—1 1 b—1 1 b—1 . + 1
Zlogb (1+ —_) = long (1+ —_) = long]—, = log, b = 1.
Jj=1 J j=1 J j=1 J

9.2)

It is possible to be Benford to some bases but not others; we show the first digit of
2" is Benford base 10, but clearly it is not Benford base 2 as the first digit is always
1. For many processes, we obtain a sequence of points, and the distribution of the
first digits are Benford. For example, consider the 3x+1 problem. Let ay be any
positive integer, and consider the sequence where

3a, +1 ifa,isodd
a =
e an /2 if a,, is even.

9.3)

For example, if ag = 13, we have
13 —40 — 20 — 10 — 5 — 16 — 8 — 4 — 2 — 1
— 4 — 22— 1 —4 — 2 —1.--. ©4

An alternate definition is to remove as many powers of two as possible in one step.
Thus

apy1 = LLZ: 1; 9.5)
where k is the largest power of 2 dividing 3a,, + 1. It is conjectured that for any
ap, eventually the sequence becomes 4 — 2 — 1 — 4--. (or in the alternate
definition 1 — 1 — 1---). While this is known for all ag < 2%, the problem
has resisted numerous attempts at proofs (Kakutani has described the problem as
a conspiracy to slow down mathematical research because of all the time spent on
it). See [Lagl, Lag2] for excellent surveys of the problem. How do the first digits
behave for ag large? Do numerical simulations support the claim that this process
is Benford? Does it matter which definition we use?

Exercise 9.1.1. Show the Benford probabilities log; (1 + %) forj e {l1,...,9}
are irrational. What if instead of base ten we work in base d for some integer d?

Exercise 9.1.2. Below we use the definition of the 3x + 1 map from (9.5). Show
there are arbitrarily large integers N such that if ag = N then ay = 1. Thus,
infinitely often, one iteration is enough to enter the repeating cycle. More generally,
for each positive integer k does there exist arbitrarily large integers N such that if
ap = N thena; > 1forj < kanday =17
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9.2 BENFORD’S LAW AND EQUIDISTRIBUTED SEQUENCES

As we can write any positive  as b* for some u, the following lemma shows that
it suffices to investigate v mod 1:

Lemma 9.2.1. The first digits of b* and b* are the same in base b if and only if
u = v mod 1.

Proof. We prove one direction as the other is similar. If v = v mod 1, we may
writtv =u+m, m € Z. If

b = upb® +up_ DF g Fu b 9.6)
then
[ — bu+m
=b"- o™
= (upb® +up_ 18"+ tug Fug b )B™
= wpb" o ugb™ Fu BT 4 9.7
Thus the first digits of each are uy, proving the claim. O

Exercise 9.2.2. Prove the other direction of the if and only if.
Consider the unit interval [0,1). For j € {1,..., b}, define p; by
bPi = j orequivalently p; = log,J. 9.8)
Forj e {l,...,b—1},1let

1Y = [pj.pj+1) C[0,1). 9.9)
Lemma 9.2.3. The first digit of b¥ base bis j if and only if y mod 1 € I".
Proof. By Lemma 9.2.1 we may assume y € [0,1). Theny € I](b) = [pj,Pj+1)

if and only if 77 < y < bPi+1, which from the definition of p; is equivalent to
J < bY < j+ 1, proving the claim. o

The following theorem shows that the exponentials of equidistributed sequences
(see Definition 12.1.4) are Benford.
Theorem 9.2.4. Ify,, = log, ©, is equidistributed mod 1 then x,, is Benford (base
b).

Proof. By Lemma 9.2.3,
{n <N :y, mod1 € [log j,logy(j + 1))}

= {n < N : first digit of x,, in base bis j} . (9.10)
Therefore
lim #{n <N :y, mod 1 € [log, j,log,(j + 1))}
N—oo N
< N : first digit of x,, in base b is j
_ A}gnoo #{n < rs 1g]1V0 I, in base 1sy}. ©.11)

If gy, is equidistributed, then the left side of (9.11) is log, (1 n ;) which implies

x,, 1s Benford base b.
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Remark 9.2.5. One can extend the definition of Benford’s Law from statements
concerning the distribution of the first digit to the distribution of the first k£ digits.
With such an extension, Theorem 9.2.4 becomes y,, = log, z,, mod 1 is equidis-
tributed if and only if z,, is Benford base b. See [KonMi] for details.

Let {z} = z — [z] denote the fractional part of x, where [z] as always is the
greatest integer at most . In Theorem 12.3.2 we prove that for a ¢ Q the frac-
tional parts of na are equidistributed modulo 1. From this and Theorem 9.2.4,
it immediately follows that geometric series are Benford (modulo the irrationality
condition):

Theorem 9.2.6. Let x,, = ar™ withlog, r € Q. Then x,, is Benford (base b).

Proof. Lety, = log, x,, = nlog, r + log, a. Aslog, r € Q, by Theorem 12.3.2
the fractional parts of y,, are equidistributed. Exponentiating by b, we obtain that
x,, is Benford (base b) by Theorem 9.2.4. O

Theorem 9.2.6 implies that 2" is Benford base 10, but not surprisingly that it is
not Benford base 2.

Exercise 9.2.7. Do the first digits of €™ follow Benford’s Law? What about e™ +
e "?

9.3 RECURRENCE RELATIONS AND BENFORD’S LAW
We show many sequences defined by recurrence relations are Benford. For more
on recurrence relations, see Exercise 7.3.9. The interested reader should see [BrDu,

NS] for more on the subject.

9.3.1 Recurrence Preliminaries

We consider recurrence relations of length k:

Upitk = Clpik—1 + - + Cpay, 9.12)
where ¢y, . . ., ¢ are fixed real numbers. If the characteristic polynomial
b — clrkfl — 027”“*2 —-—=cp1r—c = 0 9.13)
has k distinct roots Ay, ..., A, there exist kK numbers uq, ..., u such that
Gn = WAL + -+ upAp, 9.14)
where we have ordered the roots so that |A1]| > -+ > |A\g].
For the Fibonacci numbers k = 2,¢1 = ¢ = 1, u; = —us = %, and \; =

#, Ao = 1_2‘/5 (see Exercise 7.3.11). If |A;| = 1, we do not expect the first

digit of a,, to be Benford (base b). For example, if we consider
Ap = 20,1 — Qp_2 9.15)
with initial values ay = a; = 1, every a,, = 1! If we instead take ag = 0, a1 = 1,

we get a,, = n. See [Kos] for many interesting occurrences of Fibonacci numbers
and recurrence relations.
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9.3.2 Recurrence Relations Are Benford

Theorem 9.3.1. Let a,, satisfy a recurrence relation of length k with k distinct real
roots. Assume |\1| # 1 with |\1| the largest absolute value of the roots. Further,
assume the initial conditions are such that the coefficient of A1 is non-zero. If
logy |\ | & Q then ay, is Benford (base b).

Proof. By assumption, u; # 0. For simplicity we assume A; > 0, Ay > |\
and u; > 0. Again let y,, = log, z,,. By Theorem 9.2.4 it suffices to show y,, is
equidistributed mod 1. We have

Tp = WAT + - FupAp
kuly
Tn = WAL [1 +0< ’A‘nzﬂ : (9.16)
1
where u = max; |u;| + 1 (so ku > 1 and the big-Oh constant is 1). As A\; > |Az],

we “borrow” some of the growth from AT; this is a very useful technique. Choose
a small € and an ng such that

Lo da| < A5

2. forall n > no, (4" < 1, which then implies £ = (42"
As ku > 1, (ku)'/™ is decreasing to 1 as n tends to infinity. Note € > 0if A; > 1
and e < 0if A\; < 1. Letting

(k) /™ Dol

g = /\i /\%_g )

9.17)

we find that the error term above is bounded by 3" for n > ng, which tends to 0.
Therefore

Yn = logy T,
= log, (u1AY) + O (logy (1 + 8"))
= nlogy, A1 + log, uy + O(8"), 9.1%)

where the big-Oh constant is bounded by C say. As log, A1 € Q, the fractional
parts of n log, A1 are equidistributed modulo 1, and hence so are the shifts obtained
by adding the fixed constant logy u; .

We need only show that the error term O (™) is negligible. It is possible for the
error term to change the first digit; for example, if we had 999999 (or 1000000),
then if the error term contributes 2 (or —2), we would change the first digit base 10.
However, for n sufficiently large, the error term will change a vanishingly small
number of first digits. Say nlog, A; + log, u; exponentiates base b to first digit j,
j€{1,...,b— 1}. This means

nlog, \y +logyur € 1" = [pj_1,p)). (9.19)

The error term is at most C'/8" and y,, exponentiates to a different first digit than
nlogy, A1 + log, u; only if one of the following holds:
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1. nlogy, A1 + logy, u; is within C 8" of p;, and adding the error term pushes us
to or past p;;

2. nlogy A1 + log uy is within C'8™ of p;_1, and adding the error term pushes
us before p;j_1.

The first set is contained in [p; — C5", p;), of length C3™. The second is con-
tained in [pj_1,p;j—1 + CB™), also of length C3™. Thus the length of the interval
where n log, A1 + log;, u1 and y,, could exponentiate base b to different first digits
is of size 2C'8". If we choose N sufficiently large then for all n > N we can make
these lengths arbitrarily small. As nlog, A1 + log; u; is equidistributed modulo 1,
we can control the size of the subsets of [0, 1) where nlog, A1 + log, u1 and y,,
disagree. The Benford behavior (base b) of x,, now follows in the limit. a

Exercise 9.3.2. Weaken the conditions of Theorem 9.3.1 as much as possible. What
if several roots equal \1? What does a general solution to (9.12) look like now?
What if A1 is negative? Can anything be said if there are complex roots?

Exercise™ 9.3.3. Consider the recurrence relation Ap+1 = dap—8ap—1+4a,_o.
Show there is a choice of initial conditions such that the coefficient of A1 (a largest
root of the characteristic polynomial) is non-zero but the sequence does not satisfy
Benford’s Law.

Exercise™ 9.3.4. Assume all the roots of the characteristic polynomial are dis-
tinct, and let \1 be the largest root in absolute value. Show for almost all initial
conditions that the coefficient of A1 is non-zero, which implies that our assumption
that uy # 0 is true most of the time.

9.4 RANDOM WALKS AND BENFORD’S LAW

Consider the following (colorful) problem: A drunk starts off at time zero at a
lamppost. Each minute he stumbles with probability p one unit to the right and
with probability ¢ = 1 — p one unit to the left. Where do we expect the drunk to be
after IV tosses? This is known as a Random Walk. By the Central Limit Theorem
(Theorem 8.4.1), his distribution after N tosses is well approximated by a Gaussian
withmean 1 - pN + (—1) - (1 — p)N = (2p — 1)N and variance p(1 — p)N. For
more details on Random Walks, see [Re].

For us, a Geometric Brownian Motion is a process such that its logarithm is
a Random Walk (see [Hu] for complete statements and applications). We show
below that the first digits of Geometric Brownian Motions are Benford. In [KonSi]
the 3x + 1 problem is shown to be an example of Geometric Brownian Motion. For
heuristic purposes we use the first definition of the 3z + 1 map, though the proof is
for the alternate definition. We have two operators: T3 and T5, with T3(z) = 3z+1
and T3(z) = 5. If a, is odd, 3a,, + 1 is even, so T3 must always be followed by
T». Thus, we have really have two operators T and T 5, with T 5 (z) = 35 If
we assume each operator is equally likely, half the time we go from z — %:1: +1,
and half the time to Sz.
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If we take logarithms, log x goes to log %J; = logz + log% half the time and
log %x = logx + log % the other half. Hence on average we send logxz — logx +
% log %. As log % < 0, on average our sequence is decreasing (which agrees with
the conjecture that eventually we reach 4 — 2 — 1). Thus we might expect our
sequence to look like log x, = logx + glog %. As log% ¢ Q, its multiples are
equidistributed modulo 1, and thus when we exponentiate we expect to see Benford
behavior. Note, of course, that this is simply a heuristic, suggesting we might see
Benford’s Law. A better heuristic is sketched in Exercise 9.4.1.

‘While we can consider Random Walks or Brownian Motion with non-zero means,
for simplicity below we assume the means are zero. Thus, in the example above,

p=73.

Exercise™ 9.4.1. Give a better heuristic for the Geometric Brownian Motion of
the 3x + 1 map by considering the alternate definition: any1 = 3“;k+1, where
28|13z + 1. In particular, calculate the expected value of log a,+1. To do so, we
need to estimate the probability k = { for each £ € {1,2,3, ...}, note k # 0 as for
z odd, 3z + 1 is always even and thus divisible by at least one power of 2. Show it
is reasonable to assume that Prob(k = £) = 27°,

9.4.1 Needed Gaussian Integral

Consider a sequence of Gaussians G, with mean 0 and variance o2, with 0 — cc.
The following lemma shows that for any § > 0 as ¢ — oo almost all of the
probability is in the interval [—o!*?, o!1%]. We will use this lemma to show that it
is enough to investigate Gaussians in the range [—o!° o119,

Lemma 9.4.2.

2 o .
\/ﬁ / €7w2/202d$ << 67026/2. (920)
TO* Joglts

€T

V2

Proof. Change the variable of integration to w =
by I, we find

. Denoting the above integral

[= 2 /OO e . oV/2dw 2 / T e 9.21)
— .0’ = —_— . .
V2r0? Jos1a VT Jos vz

The integrand is monotonically decreasing. For w € [f/—;, f/—; + 1], the integrand
is bounded by substituting in the left endpoint, and the region of integration is of
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length 1. Thus,

2 2 >
I <1- e + e dw

v VT 2+l

2 25 2 o 2
_ & —0c"%)2 _/ —(u+1)
= e + e du
VT VT <
2 25 2 o 2
_ —0c<° /2 / —u® —2u_ —1
= —e + — e e e du
VT VT <
2 26 2 26 e
2 =02 L —o=°)2 —2u
< \/776 + eﬁe /f;; e ““du
< 2(e+1) 6_026/2
T
< 4e=" /2, (9.22)

O

Exercise 9.4.3. Prove a similar result for intervals of the form [—og(o),0g(0)]
where g(o) is a positive increasing function and lim,_,~, g(o) = +o0.

9.4.2 Geometric Brownian Motions Are Benford

We investigate the distribution of digits of processes that are Geometric Brownian
Motions. By Theorem 9.2.4 it suffices to show that the Geometric Brownian Motion
converges to being equidistributed modulo 1. Explicitly, we have the following:
after NV iterations, by the Central Limit Theorem the expected value converges to
a Gaussian with mean 0 and variance proportional to v/N. We must show that the
Gaussian with growing variance is equidistributed modulo 1.

For convenience we assume the mean is 0 and the variance is N/27. This cor-
responds to a fair coin where for each head (resp., tail) we move \/% units to the
right (resp., left). By the Central Limit Theorem the probability of being = units to
the right of the origin after IV tosses is asymptotic to

efwxz/N

PN (J? ) \/N

For ease of exposition, we assume that rather than being asymptotic to a Gaussian,
the distribution is a Gaussian. For our example of flipping a coin, this cannot be
true. If every minute we flip a coin and record the outcome, after N minutes there
are 2V possible outcomes, a finite number. To each of these we attach a number
equal to the excess of heads to tails. There are technical difficulties in working with
discrete probability distributions; thus we study instead continuous processes such
that at time NN the probability of observing x is given by a Gaussian with mean 0
and variance N/27. For complete details see [KonMi].

9.23)

6—132/N

Theorem 9.4.4. As N — oo, py(z) = 75— becomes equidistributed modulo
1.
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Proof. For each N we calculate the probability that for z € R, 2 mod 1 € [a, ] C
[0,1). This is
/OO pn(z)dz = L Z /b e @t /N gy (9.24)
g A VN (G o=
We need to show the above converges to b — a as N — oo. For z € [a, ], standard
calculus (Taylor series expansions, see §A.2.3) gives

e—T(@+n)?/N _ ,—mn®/N +0 (maxg\l; In|) en2/N> . (9.25)
We claim that in (9.24) it is sufficient to restrict the summation to |n| < N5/4,
The proof is immediate from Lemma 9.4.2: we increase the integration by expand-
ing to z € [0, 1], and then trivially estimate. Thus, up to negligible terms, all the
contribution is from |n| < N5/4,
In §11.4.2 we prove the Poisson Summation formula, which in this case yields

\/_ Soe N = NN, (9.26)
ne”Z neZ

The beauty of Poisson Summation is that it converts one infinite sum with slow
decay to another sum with rapid decay; because of this, Poisson Summation is an
extremely useful technique for a variety of problems. The exponential terms on the
left of (9.26) are all of size 1 forn < /N, and do not become small until n > v N
(for instance, once n > /N log N, the exponential terms are small for large N);
however, almost all of the contribution on the right comes from n = 0. The power
of Poisson Summation is it often allows us to approximate well long sums with
short sums. We therefore have

Z / o= (e+m)2/N g

VN &R
1 B max(1, |n|) n2
— ™ /N Has L, 1) /N
mlgﬁﬂ/”[ 0 ("5 “
_ b—a Z e~ /N 4 0 Nz:”+1 —n(n/VN)?
VN
In|<N/4 n=
_ b-a 3 e—’f”Q/N+O< / 3/4w+1 _’””\/_dw>
VN In|<N5/4 w=
= b 2y e™Nyo (N*W) : 9.27)

| |<N5/4

By Lemma 9.4.2 we can extend all sums to n € Z in (9.27) with negligible error.
We now apply Poisson Summation and find that up to lower order terms,

1 /b —m(atn)?/N —n?N
—> [ e Nay x (b—a)- Y e N (9.28)
\/NnEZ r=a nez
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For n = 0 the right hand side of (9.28) is b — a. For all other n, we trivially estimate
the sum:

TN < 9y emn < 2T 929)
- ~ 1—e N’ ’
n#0 n>1
which is less than 4e =™ for N sufficiently large. O

We can interpret the above arguments as follows: for each IV, consider a Gaussian
pn () with mean 0 and variance N/27. As N — oo for each z (which occurs with
probability py (x)) the first digit of 10% converges to the Benford base 10 probabil-
ities.

Remark 9.4.5. The above framework is very general and applicable to a variety of
problems. In [KonMi] it is shown that these arguments can be used to prove Ben-
ford behavior in discrete systems such as the 3z + 1 problem as well as continuous
systems such as the absolute values of the Riemann zeta function (and any “good”
L-function) near the critical line! For these number theory results, the crucial in-
gredients are Selberg’s result (near the critical line, log |((s + it)| for t € [T, 2T
converges to a Gaussian with variance tending to infinity in 7") and estimates by
Hejhal on the rate of convergence. For the 3z + 1 problem the key ingredients are
the structure theorem (see [KonSi]) and the approximation exponent of Definition
5.5.1; see [LaSo] for additional results on Benford behavior of the 3z + 1 problem.

9.5 STATISTICAL INFERENCE

Often we have reason to believe that some process occurs with probability p of suc-
cess and ¢ = 1 — p of failure. For example, consider the 3z + 1 problem. Choose
a large ag and look at the first digit of the a,’s. There is reason to believe the
distribution of the first digits is given by Benford’s Law for most ag as ay — o0.
We describe how to test this and similar hypotheses. We content ourselves with
describing one simple test; the interested reader should consult a statistics text-
book (for example, [BD, CaBe, LF, MoMc]) for the general theory and additional
applications.

9.5.1 Null and Alternative Hypotheses

Suppose we think some population has a parameter with a certain value. If the
population is small, it is possible to investigate every element; in general this is not
possible.

For example, say the parameter is how often the millionth decimal or continued
fraction digit is 1 in two populations: all rational numbers in [0, 1) with denomina-
tor at most 5, and all real numbers in [0, 1). In the first, there are only 10 numbers,
and it is easy to check them all. In the second, as there are infinitely many num-
bers, it is impossible to numerically investigate each. What we do in practice is
we sample a large number of elements (say IV elements) in [0, 1), and calculate the
average value of the parameter for this sample.
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We thus have two populations, the underlying population (in the second case,
all numbers in [0, 1)), and the sample population (in this case, the N sampled
elements).

Our goal is to test whether or not the underlying population’s parameter has a
given value, say p. To this end, we want to compare the sample population’s value
to p. The null hypothesis, denoted Hy, is the claim that there is no difference
between the sample population’s value and the underlying population’s value; the
alternative hypothesis, denoted H,, is the claim that there is a difference between
the sample population’s value and the underlying population’s value.

When we analyze the data from the sample population, either we reject the null
hypothesis, or we fail to reject the null hypothesis. It is important to note that
we never prove the null or alternative hypothesis is true or false. We are always
rejecting or failing to reject the null hypothesis, we are never accepting it. If we
flip a coin 100 times and observe all heads, this does not mean the coin is not fair:
it is possible the coin is fair but we had a very unusual sample (though, of course,
it is extremely unlikely).

We now discuss how to test the null hypothesis. Our main tool is the Central
Limit Theorem. This is just one of many possible inference tests; we refer the
reader to [BD, CaBe, LF, MoMc] for more details.

9.5.2 Bernoulli Trials and the Central Limit Theorem

Assume we have some process where we expect a probability p of observing a
given value. For example, if we choose numbers uniformly in [0, 1) and look at the
millionth decimal digit, we believe that the probability this digit is 1 is 11—0. If we
look at the continued fraction expansion, by Theorem 10.3.1 the probability that
the millionth digit is 1 is approximately log, %. What if we restrict to algebraic
numbers? What is the probability the millionth digit (decimal or continued fraction
expansion) equals 1?

In general, once we formalize our conjecture we test it by choosing IV elements
from the population independently at random (see §8.3). Consider the claim that a
process has probability p of success. We have [NV independent Bernoulli trials (see
§8.2.1). The null hypothesis is the claim that p percent of the sample are a success.
Let Sy be the number of successes; if the null hypothesis is correct, by the Central
Limit Theorem (see §8.4) we expect Sy to have a Gaussian distribution with mean
pN and variance pgN (see Exercise 8.2.1 for the calculations of the mean and
variance of a Bernoulli process). This means that if we were to look at many
samples with N elements, on average each sample would have pN + O(y/pgN)
successes. We calculate the probability of observing a difference |Sy — pN| as
large or larger than a. This is given by the area under the Gaussian with mean p/N
and variance pgN:

L / —(s—pN)?/2pgN
_ e ds. (9.30)
Vv 2pgN |s—pN|>a

If this integral is small, it is extremely unlikely that we choose N independent trials
from a process with probability p of success and we reject the null hypothesis; if
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the integral is large, we do not reject the null hypothesis, and we have support for
our claim that the underlying process does have probability p of success.

Unfortunately, the Gaussian is a difficult function to integrate, and we would
need to tabulate these integrals for every different pair of mean and variance. It is
easier, therefore, to renormalize and look at a new statistic which should also be
Gaussian, but with mean 0 and variance 1. The advantage is that we need only
tabulate one special Gaussian, the standard normal.

Let Z7 = %. This is known as the z-statistic. If Sx’s distribution is a
Gaussian with mean pN and variance pg/N, note Z will be a Gaussian with mean
0 and variance 1.

Exercise 9.5.1. Prove the above statement about the distribution of z.
Let

I(a =224, 9.31)

)= e

V27 Jjepza
the area under the standard normal (mean 0, standard deviation 1) that is at least a
units from the mean. We consider different confidence intervals. If we were to ran-
domly choose a number z from such a Gaussian, what is the probability (as a func-
tion of a) that z is at most a units from the mean? Approximately 68% of the time
|z| < 1((1) ~ .32), approximately 95% of the time z < 1.96 (I(1.96) = .05),
and approximately 99% of the time |z| < 2.57 (I(2.57) = .01). In other words,
there is only about a 1% probability of observing |z| > 2.57. If |z| > 2.57, we have
strong evidence against the hypothesis that the process occurs with probability p,
and we would be reasonably confident in rejecting the null hypothesis; of course, it
is possible we were unlucky and obtained an unrepresentative set of data (but it is
extremely unlikely that this occurred; in fact, the probability is at most 1%).

Remark 9.5.2. For a Gaussian with mean p and standard deviation o, the prob-
ability that | X — p| < o is approximately .68. Thus if X is drawn from a nor-
mal with mean p and standard deviation o, then approximately 68% of the time
i € [x — 0,2 + o] (where z is the observed value of the random variable X).

To test the claim that some process occurs with probability p, we observe N
independent trials, calculate the z-statistic, and see how likely it is to observe | Z|
that large or larger. We give two examples below.

9.5.3 Digits of the 3z + 1 Problem

Consider again the 3z 4+ 1 problem. Choose a large integer ag, and look at the
iterates: ai, as,as,.... We study how often the first digit of terms in the sequence
equald € {1,...,9}. We can regard the first digit of a term as a Bernoulli trial with
a success (or 1) if the first digit is d and a failure (or 0) otherwise. If the distribution
of digits is governed by Benford’s Law, the theoretical prediction is that the fraction
of the first digits that equal d is p = logw(‘%l). Assume there are N terms in our
sequence (before we hit the pattern4 — 2 — 1 — 4 ---), and say M of them have
first digit d. For what M does this experiment provide support that the digits follow

Benford’s Law?
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Exercise 9.5.3. The terms in the sequence generated by ag are not independent, as
Qn+1 IS determined by a,,. Show that if the first digit of a,, is 2 then the first digit
of a1 cannot be a 2.

The above exercise shows that the first digit of the terms cannot be considered
independent Bernoulli trials. As the sequence is completely determined by the first
term, this is not surprising. If we look at an enormous number of terms, however,
these effects “should” average out. Another possible experiment is to look at the
first digit of the millionth term for IV different ag’s.

Let ag = 333...333 be the integer that is 10,000 threes. There are 177,857
terms in the sequence before we hit4 — 2 — 1. The following data comparing the
number of first digits equal to d to the Benford predictions are from [Min]:

digit | observed predicted variance z-statistic I(z)
1 53425 53540 19345 —0.596  0.45
2 31256 31310  160.64 —0.393 0.31
3 22257 22220 13945 0.257 0.21
4 17294 17230 124.76 0464 0.36
5 14187 14080 113.88 0914 0.63
6 11957 11900  105.40 0.475 0.36
7 10267 10310 98.57 —0.480 0.37
8 9117 9090 92.91 0.206 0.16
9 8097 8130 88.12 —0.469 0.36

As the values of the z-statistics are all small (well below 1.96 and 2.57), the above
table provides evidence that the first digits in the 3z + 1 problem follow Benford’s
Law, and we would not reject the null hypothesis for any of the digits. If we had
obtained large z-statistics, say 4, we would reject the null hypothesis and doubt that
the distribution of digits follow Benford’s Law.

Remark 9.5.4 (Important). One must be very careful when analyzing all the digits.
Once we know how many digits are in {1, ..., 8}, then the number of 9’s is forced:
these are not nine independent tests, and a different statistical test (a chi-square
test with eight degrees of freedom) should be done. Our point here is not to write a
treatise on statistical inference, but merely highlight some of the tools and concepts.
See [BD, CaBe, LF, MoMc] for more details, and [Mil5] for an amusing analysis
of a baseball problem involving chi-square tests.

Additionally, if we have many different experiments, then “unlikely” events
should happen. For example, if we have 100 different experiments we would not be
surprised to see an outcome which only has a 1% chance of occurring (see Exercise
9.5.5). Thus, if there are many experiments, the confidence intervals need to be
adjusted. One common method is the Bonferroni adjustment method for multiple
comparisons. See [BD, MoMc].

Exercise 9.5.5. Assume for each trial there is a 95% chance of observing the frac-
tion of first digits equal to 1 is in [log,,2 — 1.960,log;,2 + 1.960] (for some
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o). If we have 10 independent trials, what is the probability that all the observed
percentages are in this interval? If we have 14 independent trials?

Remark 9.5.6. How does one calculate with 10,000 digit numbers? Such large
numbers are greater than the standard number classes (int, long, double) of many
computer programming languages. The solution is to represent numbers as arrays.
To go from a,, to 3a,, + 1, we multiply the array by 3, carrying as needed, and then
add 1; we leave space-holding zeros at the start of the array. For example,

3.[0,...,0,0,5,6,7] = [0,...,0,1,7,0,1]. (9.32)

We need only do simple operations on the array. For example, 3 - 7 = 21, so the
first entry of the product array is 1 and we carry the 2 for the next multiplication.
We must also compute a,, /2 if a, is even. Note this is the same as 5a,, divided by
10. The advantage of this approach is that it is easy to calculate 5ay,, and as a,, is
even, the last digit of 5a,, is zero, hence array division by 10 is trivial.

Exercise 9.5.7. Consider the first digits of the 3x + 1 problem (defined as in (9.3))
in base 6. Choose a large integer ag, and look at the iterates ay,as,a3,.... As
ag — o0, is the distribution of digits Benford base 6?

Exercise 9.5.8 (Recommended). Here is another variant of the 3x + 1 problem:

3a, +1 ifa, isodd
pt1 = { (9.33)

a,/2*  if a, is even and 2¥||a,;

2*%||a,, means 2% divides a,, but 2¥*1 does not. Consider the distribution of first
digits of this sequence for various ag. What is the null hypothesis? Do the data sup-
port the null hypothesis, or the alternative hypothesis? Do you think these numbers
also satisfy Benford’s Law? What if instead we define

3a, +1

an1 = —o—, 2*lan, (9.34)

9.5.4 Digits of Continued Fractions

Let us test the hypothesis that the digits of algebraic numbers are given by the
Gauss-Kuzmin Theorem (Theorem 10.3.1). Let us look at how often the 1000™
digit equals 1. By the Gauss-Kuzmin Theorem this should be approximately log, %.
Let p, be the n™ prime. In the continued fraction expansions of &/pn forn €
{100000, 199999}, exactly 41565 have the 1000" digit equal to 1. Assuming we
have a Bernoulli process with probability of success (a digit of 1) of p = log, %,
the z-statistic is .393. As the z-statistic is small (95% of the time we expect to
observe |z| < 1.96), we do not reject the null hypothesis, and we have obtained
evidence supporting the claim that the probability that the 1000™ digit is 1 is given
by the Gauss-Kuzmin Theorem. See Chapter 10 for more detailed experiments on
algebraic numbers and the Gauss-Kuzmin Theorem.
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9.6 SUMMARY

We have chosen to motivate our presentation of statistical inference by investigat-
ing the first digits of the 3z + 1 problem, but of course the methods apply to a
variety of problems. Our main tool is the Central Limit Theorem: if we have a
process with probability p (resp., ¢ = 1 — p) of success (resp., failure), then in N
independent trials we expect about pN successes, with fluctuations of size v/pgN.
To test whether or not the underlying probability is p we formed the z-statistic:
S\Z;IJ_T%V , where S is the number of successes observed in the IV trials.

If the process really does have probability p of success, then by the Central Limit
Theorem the distribution of Sy is approximately a Gaussian with mean p/N and
standard deviation y/pg/N, and we then expect the z-statistic to be of size 1. If,
however, the underlying process occurs not with probability p but p’, then we expect
S to be approximately a Gaussian with mean p' N and standard deviation /p'q'N.

We now expect the z-statistic to be of size (51%\[ . This is of size v/ N, much larger
than 1.

We see the z-statistic is very sensitive to p' — p: if p’ is differs from p, for large
N we quickly observe large values of z. Note, of course, that statistical tests can
only provide compelling evidence in favor or against a hypothesis, never a proof.



