Math/Stat 341: Probability First Lecture

Steven J Miller Williams College

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller/public_html/341

Bronfman 106 Williams College, February 6, 2015

Introduction and Objectives

Introduction / Objectives

Probability theory: model the real world, predict likelihood of events.

One of the three most important quantitative classes (statistics, programming).

Introduction

Probability theory: model the real world, predict likelihood of events.

One of the three most important quantitative classes (statistics, programming).

Objectives

- Obviously learn probability.
- Emphasize techniques / asking the right questions.
- Model problems and analyze model.
- Elegant solutions vs brute force (parameters in closed form versus numerical solutions).
- Looking at equations and getting a sense: log −5
 Method: ^{p±pq}/_{p+q+2pq}.

Introduction

- Biology: will a species survive?
- Physics / Chemistry / Number Theory: Random Matrix Theory.
- Gambling: Double-plus-one.
- Economics: Stock market / economy.
- Finance: Monte Carlo integration.
- Marketing: Movie schedules.
- Cryptography: Markov Chain Monte Carlo.
- 8 ever 9 never (bridge).

My (applied) experiences

- Marketing: parameters for linear programming (SilverScreener).
- Data integrity: detecting fraud with Benford's Law (IRS, Iranian elections).
- Sabermetrics: Pythagorean Won-Loss Theorem.

Course Mechanics

Grading / Administrative

- Move at fast pace, responsible for reading before class: 5% of grade. HW: 15%. Writing: 10%.
 Midterm: 30% (if there are two exams only best counts). 'Final' exam: 40%. You may also do a project for 10% of your grade (which reduces all other categories proportionally).
- Pre-reqs: Calc III, basic combinatorics / set theory, linear algebra.

Office hours / feedback

- MWF 8:40-9:30am, Tues 1-2, Thur 2:30-3:30pm and when I'm in my office (schedule online)
- Feedback ephsmath@gmail.com, password williams1793.

Other

- Webpage: numerous handouts, additional comments each day (mix of review and optional advanced material).
- Clickers: see how well we can estimate probabilities, always anonymous.
- Probability Lifesaver: opportunity to help write a book, lots of worked examples.
- Creating HW problems: mix of ones you can solve and ones you want to learn about.
- Gather and analyze some data set of interest.
- PREPARE FOR CLASS! Must do readings before each class.

Being Prepared

Never know when an opportunity presents itself....

S. J. Miller at the Sarnak 61st Dinner (copyright C. J. Mozzochi, Princeton N.J)

Being Prepared

Your Job:

- Be prepared for class: do reading, think about material.
- Come to me, the TAs and each other with questions.

My/TAs Job:

- Provide resources, guiding questions.
- Be available.

Party less than the person next to you.

- Party less than the person next to you.
- Take advantage of office hours / mentoring.

- Party less than the person next to you.
- Take advantage of office hours / mentoring.
- Learn to manage your time: no one else wants to.

- Party less than the person next to you.
- Take advantage of office hours / mentoring.
- Learn to manage your time: no one else wants to.

Happy to do practice interviews, adjust deadlines....

Gambling

Football Wager

2007: Friend of a favorite student bet \$500 at 1000:1 odds on Patriots going undefeated and winning the Superbowl.

Football Wager

2007: Friend of a favorite student bet \$500 at 1000:1 odds on Patriots going undefeated and winning the Superbowl.

Football Wager

2008: In third quarter, Pats leading, Vegas offers to buy back the bet at 300:1, told no....

WHAT WAS THE BETTOR'S MISTAKE?

Hedging

Pats win with probability p, Giants q = 1 - p.

Bet \$1 bet on Giants, if they win get \$x. Already bet \$500 on Patriots, now bet \$B on the Giants.

Expected Winning:

$$f(p, x, B) = p \cdot 500000 + (1 - p)Bx - 500 - B.$$

Guaranteed Winnings

By hedging can ensure some winnings:

$$g(p, x, B) = \min(500000, Bx) - 500 - B.$$

Mathematica Code

Introduction

```
f[p_{-}, x_{-}, B_{-}] := 500000 p + (1-p) B x - 500 - B
g[p_{-}, x_{-}, B_{-}] := Min[500000, B x] - 500 - B
Plot[f[.8, 3, B], \{B, 0, 500000\}]
Plot[g[.8, 3, B], \{B, 0, 500000\}]
Manipulate[Plot[g[p, x, B], \{B, 0, 500000\}], \{p, 0, 1\}, \{x, 1, 10\}]
```

Mathematica Code

 Introduction
 Mechanics
 Gambling
 Clicker Qs
 Hoops Game

 000
 0000
 0000
 0000
 0000

Sabermetrics Club at Williams....

http://fivethirtyeight.com/features/

Clicker Problems

Birthday Problem

How large must *N* be for there to be at least a 50% probability that two of the *N* people share a birthday?

Birthday Problem

How large must *N* be for there to be at least a 50% probability that two of the *N* people share a birthday?

- (A) 11 people
- (B) 22 people
- (C) 33 people
- (D) 44 people
- (E) 90 people
- (F) 180 people
- (G) 365 people
- (H) 500 people.

Birthday Problem

How large must *N* be for there to be at least a 50% probability that two of the *N* people share a birthday?

How large must *N* be for there to be at least a 50% probability that two of *N* Plutonians share a birthday?

How large must *N* be for there to be at least a 50% probability that two of *N* Plutonians share a birthday? 'Recall' one Plutonian year is about 248 Earth years (or 90,520 days).

How large must *N* be for there to be at least a 50% probability that two of *N* Plutonians share a birthday? 'Recall' one Plutonian year is about 248 Earth years (or 90,520 days).

- (A) 110 people
- (B) 220 people
- (C) 330 people
- (D) 440 people
- (E) 1,000 people
- (F) 5,000 people
- (G) 10,000 people
- (H) 20,000 people
- (I) more than 30,000 people.

How large must *N* be for there to be at least a 50% probability that two of *N* Plutonians share a birthday? 'Recall' one Plutonian year is about 248 Earth years (or 90,520 days).

Voting: Democratic Primaries

During the Democratic primaries in 2008, Clinton and Obama received exactly the same number of votes in Syracuse, NY. How probable was this?

Voting: Democratic Primaries

During the Democratic primaries in 2008, Clinton and Obama received exactly the same number of votes in Syracuse, NY. How probable was this? (Note: they each received 6001 votes.)

- (A) 1 / 10
- (B) 1 / 100
- (C) 1 / 1,000
- (D) 1 / 10,000
- (E) 1 / 100,000
- (F) 1 / 1,000,000 (one in a million)
- (G) 1 / 1,000,000,000 (one in a billion).

Voting: Democratic Primaries (continued)

Syracuse University mathematics Professor Hyune-Ju Kim said the result was less than one in a million, according to the Syracuse Post-Standard, which quoted the professor as saying, "It's almost impossible." Her comments were reprinted widely, as the Associated Press picked up the story. (Carl Bialik, WSJ, 2/12/08)

Voting: Democratic Primaries (continued)

Syracuse University mathematics Professor Hyune-Ju Kim said the result was less than one in a million, according to the Syracuse Post-Standard, which quoted the professor as saying, "It's almost impossible." Her comments were reprinted widely, as the Associated Press picked up the story. (Carl Bialik, WSJ, 2/12/08)

Far greater than 1/137! What's going on?

Voting: Democratic Primaries (continued)

Syracuse University mathematics Professor Hyune-Ju Kim said the result was less than one in a million, according to the Syracuse Post-Standard, which quoted the professor as saying, "It's almost impossible." Her comments were reprinted widely, as the Associated Press picked up the story. (Carl Bialik, WSJ, 2/12/08)

Far greater than 1/137! What's going on?

Prof. Kim's calculation ... was based on the assumption that Syracuse voters were likely to vote in equal proportions to the state as a whole, which went for Ms. Clinton, its junior senator, 57%-40%. Prof. Kim said she had little time to make the calculation, so she made the questionable assumption ... for simplicity.

From Shooting Hoops to the Geometric Series Formula

Simpler Game: Hoops

Game of hoops: first basket wins, alternate shooting.

Simpler Game: Hoops: Mathematical Formulation

Bird and **Magic** (I'm old!) alternate shooting; first basket wins.

- Bird always gets basket with probability p.
- Magic always gets basket with probability q.

Let *x* be the probability **Bird** wins – what is *x*?

Classic solution involves the geometric series.

Classic solution involves the geometric series.

Break into cases:

• Bird wins on 1st shot: p.

Classic solution involves the geometric series.

- Bird wins on 1st shot: p.
- Bird wins on 2^{nd} shot: $(1-p)(1-q) \cdot p$.

Classic solution involves the geometric series.

- Bird wins on 1st shot: p.
- Bird wins on 2^{nd} shot: $(1-p)(1-q) \cdot p$.
- **Bird** wins on 3^{rd} shot: $(1-p)(1-q) \cdot (1-p)(1-q) \cdot p$.

Classic solution involves the geometric series.

- Bird wins on 1st shot: p.
- Bird wins on 2^{nd} shot: $(1-p)(1-q) \cdot p$.
- **Bird** wins on 3rd shot: $(1-p)(1-q) \cdot (1-p)(1-q) \cdot p$.
- Bird wins on nth shot:

$$(1-p)(1-q)\cdot (1-p)(1-q)\cdots (1-p)(1-q)\cdot p.$$

Introduction

Classic solution involves the geometric series.

Break into cases:

- Bird wins on 1st shot: p.
- Bird wins on 2^{nd} shot: $(1-p)(1-q) \cdot p$.
- Bird wins on 3rd shot: $(1-p)(1-q) \cdot (1-p)(1-q) \cdot p$.
- Bird wins on nth shot: $(1-p)(1-q)\cdot (1-p)(1-q)\cdot \cdot \cdot (1-p)(1-q)\cdot p$.

$$(1-p)(1-q)\cdot (1-p)(1-q)\cdots (1-p)(1-q)\cdot p$$

Let
$$r = (1 - p)(1 - q)$$
. Then
$$x = \text{Prob}(\textbf{Bird wins})$$

$$= p + rp + r^2p + r^3p + \cdots$$

$$= p(1 + r + r^2 + r^3 + \cdots)$$

the aeometric series.

Showed

$$x = \text{Prob}(Bird \text{ wins}) = p(1 + r + r^2 + r^3 + \cdots);$$

Hoops Game

will solve without the geometric series formula.

Showed

Introduction

$$x = \text{Prob}(Bird wins) = p(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

$$\mathbf{x} = \text{Prob}(\mathbf{Bird} \text{ wins}) = \mathbf{p} + \mathbf{p}$$

Showed

Introduction

$$x = \text{Prob}(Bird wins) = p(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

$$\mathbf{x} = \text{Prob}(\mathbf{Bird} \text{ wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - \mathbf{q})$$

Showed

$$x = \text{Prob}(Bird wins) = p(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

$$x = \text{Prob}(\textbf{Bird wins}) = p + (1 - p)(1 - q)x$$

Showed

$$x = \text{Prob}(Bird wins) = p(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

$$\mathbf{x} = \text{Prob}(\mathbf{Bird} \text{ wins}) = p + (1 - p)(1 - q)\mathbf{x} = p + r\mathbf{x}.$$

Showed

Introduction

$$x = \text{Prob}(Bird \text{ wins}) = p(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

$$\mathbf{x} = \text{Prob}(\mathbf{Bird} \text{ wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - \mathbf{q})\mathbf{x} = \mathbf{p} + r\mathbf{x}.$$

Thus

$$(1-r)\mathbf{x} = \mathbf{p} \text{ or } \mathbf{x} = \frac{\mathbf{p}}{1-r}.$$

Showed

Introduction

$$x = \text{Prob}(Bird \text{ wins}) = p(1 + r + r^2 + r^3 + \cdots);$$

will solve without the geometric series formula.

Have

$$\mathbf{x} = \text{Prob}(\mathbf{Bird} \text{ wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - \mathbf{q})\mathbf{x} = \mathbf{p} + r\mathbf{x}.$$

Thus

$$(1-r)^{\mathbf{X}} = p \text{ or } \mathbf{X} = \frac{p}{1-r}.$$

As
$$x = p(1 + r + r^2 + r^3 + \cdots)$$
, find

$$1 + r + r^2 + r^3 + \cdots = \frac{1}{1 - r}$$

Lessons from Hoop Problem

- Power of Perspective: Memoryless process.
- Can circumvent algebra with deeper understanding! (Hard)
- Depth of a problem not always what expect.
- Importance of knowing more than the minimum: connections.
- Math is fun!