Math/Stat 341: Probability First Lecture

Steven J Miller
Williams College

sjm1@williams.edu
http://www.williams.edu/Mathematics/sjmiller/public_html/341

Bronfman 106
Williams College, February 6, 2015

Introduction and Objectives

Introduction / Objectives

Probability theory: model the real world, predict likelihood of events.

One of the three most important quantitative classes (statistics, programming).

Introduction / Objectives

Probability theory: model the real world, predict likelihood of events.

One of the three most important quantitative classes (statistics, programming).

Objectives

- Obviously learn probability.
- Emphasize techniques / asking the right questions.
- Model problems and analyze model.
- Elegant solutions vs brute force (parameters in closed form versus numerical solutions).
- Looking at equations and getting a sense: $\log -5$ Method: $\frac{p \pm p q}{p+q \pm 2 p q}$.

Types of Problems

- Biology: will a species survive?
- Physics / Chemistry / Number Theory: Random Matrix Theory.
- Gambling: Double-plus-one.
- Economics: Stock market / economy.
- Finance: Monte Carlo integration.
- Marketing: Movie schedules.
- Cryptography: Markov Chain Monte Carlo.
- 8 ever 9 never (bridge).

My (applied) experiences

- Marketing: parameters for linear programming (SilverScreener).
- Data integrity: detecting fraud with Benford's Law (IRS, Iranian elections).
- Sabermetrics: Pythagorean Won-Loss Theorem.

Course Mechanics

Grading / Administrative

- Move at fast pace, responsible for reading before class: 5% of grade. HW: 15\%. Writing: 10\%. Midterm: 30\% (if there are two exams only best counts). 'Final' exam: 40\%. You may also do a project for 10% of your grade (which reduces all other categories proportionally).
- Pre-reqs: Calc III, basic combinatorics / set theory, linear algebra.

Office hours / feedback

- MWF 8:40-9:30am, Tues 1-2, Thur 2:30-3:30pm and when I'm in my office (schedule online)
- Feedback ephsmath@gmail.com, password williams1793.

Other

- Webpage: numerous handouts, additional comments each day (mix of review and optional advanced material).
- Clickers: see how well we can estimate probabilities, always anonymous.
- Probability Lifesaver: opportunity to help write a book, lots of worked examples.
- Creating HW problems: mix of ones you can solve and ones you want to learn about.
- Gather and analyze some data set of interest.
- PREPARE FOR CLASS! Must do readings before each class.

Being Prepared

Never know when an opportunity presents itself....

S. J. Miller at the Sarnak $61^{\text {st }}$ Dinner (copyright C. J. Mozzochi, Princeton N.J)

Being Prepared

- Your Job:
\diamond Be prepared for class: do reading, think about material.
\diamond Come to me, the TAs and each other with questions.
- My/TAs Job:
\diamond Provide resources, guiding questions.
\diamond Be available.

Other: Advice from Jeff Miller

- Party less than the person next to you.

Other: Advice from Jeff Miller

- Party less than the person next to you.
- Take advantage of office hours / mentoring.

Other: Advice from Jeff Miller

- Party less than the person next to you.
- Take advantage of office hours / mentoring.
- Learn to manage your time: no one else wants to.

Other: Advice from Jeff Miller

- Party less than the person next to you.
- Take advantage of office hours / mentoring.
- Learn to manage your time: no one else wants to.

Happy to do practice interviews, adjust deadlines....

Gambling

Football Wager

2007: Friend of a favorite student bet $\$ 500$ at 1000:1 odds on Patriots going undefeated and winning the Superbowl.

Football Wager

2007: Friend of a favorite student bet $\$ 500$ at 1000:1 odds on Patriots going undefeated and winning the Superbowl.

Football Wager

2008: In third quarter, Pats leading, Vegas offers to buy back the bet at $300: 1$, told no....

WHAT WAS THE BETTOR'S MISTAKE?

Hedging

Pats win with probability p, Giants $q=1-p$.
Bet $\$ 1$ bet on Giants, if they win get $\$ x$. Already bet $\$ 500$ on Patriots, now bet $\$ B$ on the Giants.

Expected Winning:

$$
f(p, x, B)=p \cdot 500000+(1-p) B x-500-B .
$$

Guaranteed Winnings

By hedging can ensure some winnings:

$$
g(p, x, B)=\min (500000, B x)-500-B .
$$

Here $p=.8, x=3$.

Mathematica Code

```
f[\mp@subsup{p}{-}{\prime},\mp@subsup{x}{_}{\prime},\mp@subsup{B}{-}{\prime}]:= 500000p + (1-p) B x - 500 - B
g[p_, x_, B_] := Min[500000, Bx] - 500 - B
Plot[f[.8, 3, B], {B, 0, 500 000}]
Plot[g[.8, 3, B], {B, 0, 500 000}]
Manipulate[Plot[g[p, x, B], {B, 0, 500000}], {p, 0, 1}, {x, 1, 10}]
```


Mathematica Code

Sabermetrics Club at Williams....

http://fivethirtyeight.com/features/

Clicker Problems

Birthday Problem I

Birthday Problem

How large must N be for there to be at least a 50% probability that two of the N people share a birthday?

Birthday Problem I

Birthday Problem

How large must N be for there to be at least a 50% probability that two of the N people share a birthday?

- (A) 11 people
- (B) 22 people
- (C) 33 people
- (D) 44 people
- (E) 90 people
- (F) 180 people
- (G) 365 people
- (H) 500 people.

Birthday Problem I

Birthday Problem

How large must N be for there to be at least a 50% probability that two of the N people share a birthday?

Birthday Problem II

How large must N be for there to be at least a 50% probability that two of N Plutonians share a birthday?

Birthday Problem II

How large must N be for there to be at least a 50% probability that two of N Plutonians share a birthday? 'Recall' one Plutonian year is about 248 Earth years (or 90,520 days).

Birthday Problem II

How large must N be for there to be at least a 50% probability that two of N Plutonians share a birthday? 'Recall' one Plutonian year is about 248 Earth years (or 90,520 days).

- (A) 110 people
- (B) 220 people
- (C) 330 people
- (D) 440 people
- (E) 1,000 people
- (F) 5,000 people
- (G) 10,000 people
- (H) 20,000 people
- (I) more than 30,000 people.

Birthday Problem II

How large must N be for there to be at least a 50% probability that two of N Plutonians share a birthday? 'Recall' one Plutonian year is about 248 Earth years (or 90,520 days).

Voting: Democratic Primaries

During the Democratic primaries in 2008, Clinton and Obama received exactly the same number of votes in Syracuse, NY. How probable was this?

Voting: Democratic Primaries

During the Democratic primaries in 2008, Clinton and Obama received exactly the same number of votes in Syracuse, NY. How probable was this? (Note: they each received 6001 votes.)

- (A) 1 / 10
-(B) $1 / 100$
-(C) 1/ 1,000
- (D) 1 / 10,000
- (E) $1 / 100,000$
- (F) 1 / 1,000,000 (one in a million)
- (G) 1 / 1,000,000,000 (one in a billion).

Voting: Democratic Primaries (continued)

Syracuse University mathematics Professor Hyune-Ju Kim said the result was less than one in a million, according to the Syracuse Post-Standard, which quoted the professor as saying, "It's almost impossible." Her comments were reprinted widely, as the Associated Press picked up the story. (Carl Bialik, WSJ, 2/12/08)

Voting: Democratic Primaries (continued)

Syracuse University mathematics Professor Hyune-Ju Kim said the result was less than one in a million, according to the Syracuse Post-Standard, which quoted the professor as saying, "It's almost impossible." Her comments were reprinted widely, as the Associated Press picked up the story. (Carl Bialik, WSJ, 2/12/08)

Far greater than $1 / 137$! What's going on?

Voting: Democratic Primaries (continued)

Syracuse University mathematics Professor Hyune-Ju Kim said the result was less than one in a million, according to the Syracuse Post-Standard, which quoted the professor as saying, "It's almost impossible." Her comments were reprinted widely, as the Associated Press picked up the story. (Carl Bialik, WSJ, 2/12/08)

Far greater than $1 / 137$! What's going on?
Prof. Kim's calculation ... was based on the assumption that Syracuse voters were likely to vote in equal proportions to the state as a whole, which went for Ms. Clinton, its junior senator, 57\%-40\%. Prof. Kim said she had little time to make the calculation, so she made the questionable assumption ... for simplicity.

From Shooting Hoops to the Geometric Series Formula

Simpler Game: Hoops

Game of hoops: first basket wins, alternate shooting.

Simpler Game: Hoops: Mathematical Formulation

Bird and Magic (l'm old!) alternate shooting; first basket wins.

- Bird always gets basket with probability p.
- Magic always gets basket with probability q.

Let x be the probability Bird wins - what is x ?

Solving the Hoop Game

Classic solution involves the geometric series.
Break into cases:

Solving the Hoop Game

Classic solution involves the geometric series.
Break into cases:

- Bird wins on $1^{\text {st }}$ shot: p.

Solving the Hoop Game

Classic solution involves the geometric series.
Break into cases:

- Bird wins on $1^{\text {st }}$ shot: p.
- Bird wins on $2^{\text {nd }}$ shot: $(1-p)(1-q) \cdot p$.

Solving the Hoop Game

Classic solution involves the geometric series.
Break into cases:

- Bird wins on $1^{\text {st }}$ shot: p.
- Bird wins on $2^{\text {nd }}$ shot: $(1-p)(1-q) \cdot p$.
- Bird wins on $3^{\text {rd }}$ shot: $(1-p)(1-q) \cdot(1-p)(1-q) \cdot p$.

Solving the Hoop Game

Classic solution involves the geometric series.
Break into cases:

- Bird wins on $1^{\text {st }}$ shot: p.
- Bird wins on $2^{\text {nd }}$ shot: $(1-p)(1-q) \cdot p$.
- Bird wins on $3^{\text {rd }}$ shot: $(1-p)(1-q) \cdot(1-p)(1-q) \cdot p$.
- Bird wins on $\mathrm{n}^{\text {th }}$ shot:

$$
(1-p)(1-q) \cdot(1-p)(1-q) \cdots(1-p)(1-q) \cdot p
$$

Solving the Hoop Game

Classic solution involves the geometric series.
Break into cases:

- Bird wins on $1^{\text {st }}$ shot: p.
- Bird wins on $2^{\text {nd }}$ shot: $(1-p)(1-q) \cdot p$.
- Bird wins on $3^{\text {rd }}$ shot: $(1-p)(1-q) \cdot(1-p)(1-q) \cdot p$.
- Bird wins on $\mathrm{n}^{\text {th }}$ shot:

$$
(1-p)(1-q) \cdot(1-p)(1-q) \cdots(1-p)(1-q) \cdot p
$$

Let $r=(1-p)(1-q)$. Then

$$
\begin{aligned}
x & =\operatorname{Prob}(\text { Bird wins }) \\
& =p+r p+r^{2} p+r^{3} p+\cdots \\
& =p\left(1+r+r^{2}+r^{3}+\cdots\right),
\end{aligned}
$$

the geometric series.

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.
Have

$$
x=\operatorname{Prob}(\text { Bird wins })=p+
$$

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.
Have

$$
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q)
$$

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.
Have

$$
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) x
$$

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.
Have

$$
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) x=p+r x .
$$

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.
Have

$$
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) x=p+r x .
$$

Thus

$$
(1-r) x=p \text { or } x=\frac{p}{1-r} .
$$

Solving the Hoop Game: The Power of Perspective

Showed

$$
x=\operatorname{Prob}(\text { Bird wins })=p\left(1+r+r^{2}+r^{3}+\cdots\right) ;
$$

will solve without the geometric series formula.
Have

$$
x=\operatorname{Prob}(\text { Bird wins })=p+(1-p)(1-q) x=p+r x .
$$

Thus

$$
(1-r) x=p \quad \text { or } \quad x=\frac{p}{1-r} .
$$

As $x=p\left(1+r+r^{2}+r^{3}+\cdots\right)$, find

$$
1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r} .
$$

Lessons from Hoop Problem

\diamond Power of Perspective: Memoryless process.
\diamond Can circumvent algebra with deeper understanding! (Hard)
\diamond Depth of a problem not always what expect.
\diamond Importance of knowing more than the minimum: connections.
\diamond Math is fun!

