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THE VARIATION OF CERTAIN SPECULATIVE PRICES* 

BENOIT MANDELBROTt 

I. INTRODUCTION 

Ename of Louis Bachelier is often 
mentioned in books on diffusion 
process. Until very recently, how- 

ever, few people realized that his early 
(1900) and path-breaking contribution 
was the construction of a random-walk 
model for security and commodity mar- 
kets.' Bachelier's simplest and most im- 
portant model goes as follows: let Z(t) be 
the price of a stock, or of a unit of a com- 

modity, at the end of time period t. Then 
it is assumed that successive differences 
of the form Z(t + T) - Z(t) are inde- 
pendent, Gaussian or normally distrib- 
uted, random variables with zero mean 
and variance proportional to the differ- 
encing interval T.2 

Despite the fundamental importance 
of Bachelier's process, which has come to 
be called "Brownian motion," it is now 
obvious that it does not account for the 
abundant data accumulated since 1900 
by empirical economists, simply because 
the empirical distributions of price changes 
are usually too "peaked" to be relative to 
samples from Gaussian populations.3 That 

* The theory developed in this paper is a natural 
continuation of my study of the distribution of in- 
come. I was still working on the latter when Hendrik 
S. Houthakker directed my interest toward the 
distribution of price changes. The present model was 
thus suggested by Houthakker's data; it was dis- 
cussed with him all along and was first publicly 
presented at his seminar. I therefore owe him a great 
debt of gratitude. 

The extensive computations required by this 
work were performed on the 7090 computer of the 
I.B.M. Research Center and were mostly pro- 
grammed by N. J. Anthony, R. Coren, and F. L. 
Zarnfaller. Many of the data which I have used were 
most kindly supplied by F. Lowenstein and J. Don- 
ald of the Economic Statistics section of the United 
States Department of Agriculture. Some stages of 
the present work were supported in part by the 
Office of Naval Research, under contract number 
Nonr-3775(00), NR-047040. 

t Harvard University and Research Center of the 
International Business Machines Corporation. 

1 The materials of this paper will be included in 
greater detail in my book tentatively titled Studies in 
Speculation, Economics, and Statistics, to be pub- 
lished within a year by John Wiley and Sons. 

The present text is a modified version of my "Re- 
search Note," NC-87, issued on March 26, 1962 by 
the Research Center of the International Business 
Machines Corporation. I have been careful to avoid 
any change in substance, but certain parts of that 
exposition have been clarified, and I have omitted 
some less essential sections, paragraphs, or sen- 
tences. Sections I and II correspond roughly to 
chaps. i and ii of the original, Sections III and IV 
correspond to chaps. iv and v, Sections V and VI, to 
chap. vi, and Section VII, to chap. vii. 

2 The simple Bachelier model implicitly assumes 
that the variance of the differences Z(t + T) - Z(t) 
is independent of the level of Z(t). There is reason to 
expect, however, that the standard deviation of 
AZ(t) will be proportional to the price level, and for 
this reason many modern authors have suggested 
that the original assumption of independent incre- 
ments of Z(t) be replaced by the assumption of inde- 
pendent and Gaussian increments of log. Z(t). 

Since Bachelier's original work is fairly inacces- 
sible, it is good to mention more than one reference: 
"Theorie de la speculation" (Paris Doctoral Disser- 
tation in Mathematics, March 29, 1900) Annales de 
l'Ecole Normale Superieure, ser. 3, XVII (1900), 21- 
86; "Theorie mathematique du jeu," Annales de 
l'Ecole Normale Superieure, ser. 3, XVIII (1901), 
143-210; Calcul des probabilites (Paris: Gauthier- 
Villars, 1912); Le jeu, la chance et le hasard (Paris, 
1914 [reprinted up to 1929 at least]). 

3 To the best of my knowledge, the first to note 
this fact was Wesley C. Mitchell, "The Making and 
Using of Index Numbers," Introduction to Index 
Numbers and Wholesale Prices in the United States 
and Foreign Countries (published in 1915 as Bulletin 
No. 173 of the U.S. Bureau of Labor Statistics, re- 
printed in 1921 as Bulletin No. 284). But unques- 
tionable proof was only given by Maurice Olivier in 
"Les Nombres indices de la variation des prix" 
(Paris doctoral dissertation, 1926), and Frederick C. 
Mills in The Behavior of Prices (New York: National 
Bureau of Economic Research, 1927). Other evi- 
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is, the histograms of price changes are in- 
deed unimodal and their central "bells" 
remind one of the "Gaussian ogive." But 
there are typically so many "outliers" 
that ogives fitted to the mean square of 
price changes are much lower and flatter 
than the distribution of the data them- 
selves (see, e.g., Fig. 1). The tails of the 
distributions of price changes are in fact 
so extraordinarily long that the sample 
second moments typically vary in an 
erratic fashion. For example, the second 
moment reproduced in Figure 2 does not 
seem to tend to any limit even though 
the sample size is enormous by economic 
standards, and even though the series to 
which it applies is presumably station- 
ary. 

It is my opinion that these facts war- 
rant a radically new approach to the 
problem of price variation.4 The purpose 
of this paper will be to present and test 
such a new model of price behavior in 
speculative markets. The principal fea- 
ture of this model is that starting from 
the Bachelier process as applied to log, 
Z(t) instead of Z(t), I shall replace the 
Gaussian distributions throughout by 
another family of probability laws, to be 
referred to as "stable Paretian," which 
were first described in Paul Levy's classic 

Calcul des probabilites (1925). In a some- 
what complex way, the Gaussian is a 
limiting case of this new family, so the 
new model is actually a generalization of 
that of Bachelier. 

Since the stable Paretian probability 
laws are relatively unknown, I shall be- 
gin with a discussion of some of the more 

important mathematical properties of 
these laws. Following this, the results of 
empirical tests of the stable Paretian 
model will be examined. The remaining 
sections of the paper will then be devoted 
to a discussion of some of the more 
sophisticated mathematical and descrip- 
tive properties of the stable Paretian 
model. I shall, in particular, examine its 
bearing on the very possibility of imple- 
menting the stop-loss rules of speculation 
(Section VI). 

FIG. 1.-Two histograms illustrating departure 
from normality of the fifth and tenth difference of 
monthly wool prices, 1890-1937. In each case, the 
continuous bell-shaped curve represents the Gaus- 
sian "interpolate" based upon the sample variance. 
Source: Gerhard Tintner, The Variate-Difference 
Method (Bloomington, Ind., 1940). dence, referring either to Z(t) or to log,Z(t) and 

plotted on various kinds of coordinates, can be found 
in Arnold Larson, "Measurement of a Random Proc- 
ess in Future Prices," Food Research Institute Studies, 
I (1960), 313-24; M. F. M. Osborne, "Brownian 
Motion in the Stock Market," Operations Research, 
VII (1959), 145-73, 807-11; S. S. Alexander, 
"Price Movements in Speculative Markets: Trends 
of Random Walks?" Industrial Management Review 
of M.I.T., II, pt. 2 (1961), 7-26. 

4Such an approach has also been necessary-and 
successful-in other contexts; for background infor- 
mation and many additional explanations see my 
"New Methods in Statistical Economics," Journal of 
Political Economy, Vol. LXXI (October, 1963). 

I believe, however, that each of the applications 
should stand on their own feet and have minimized 
the number of cross references. 
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II. MATHIEMATICAL TOOLS: PAUL LEVY'S 

STABLE PARETIAN LAWS 

A. PROPERTY OF ?CSTABILITYYY OF THE GAUSSIAN 
LAW AND ITS GENERALIZATION 

One of the principal attractions of the 
modified Bachelier process is that the 
logarithmic relative 

L(t, T) = loge Z(t + T) - log, Z(t) 

is a Gaussian random variable for every 
value of T; the only thing that changes 
with T is the standard deviation of L(t, 
T). This feature is the consequence of the 
following fact: 

Let G' and G" be two independent Gaus- 
sian random variables, of zero means and 

of mean squares respectively equal to o-J2 
and o0-12. Then, the sum G' + G" is also a 
Gaussian variable, of mean square equal to 
0)2 + 0u"2. In particular, the "reduced" 
Gaussian variable, with zero mean and 
unit mean square, is a solution to 

(S) s'U + s"U = sU, 

where s is a function of s' and s" given by 
the auxiliary relation 

(A2) s2 = S-2 + S"2 

It should be stressed that, from the view- 
point of equation (S) and relation (A2), 
the quantities s', s", and s are simply 
scale factors that "happen" to be closely 
related to the root-mean-square in the 
Gaussian case. 

The property (S) expresses a kind of 
stability or invariance under addition, 
which is so fundamental in probability 
theory that it came to be referred to 
simply as "stability." The Gaussian is 
the only solution of equation (S) for 
which the second moment is finite-or 
for which the relation (A2) is satisfied. 
,When the variance is allowed to be in- 
finite, however, (S) possesses many other 
solutions. This was shown constructively 
by Cauchy, who considered the random 
variable U for which 

Pr(U > u) = Pr(U <-u) 

= a-(1/7r) tan-l (u), 

so that its density is of the form 

dPr(U < u) = [7r(l + u2)]f. 

For this law, integral moments of all 
orders are infinite, and the auxiliary rela- 
tion takes the form 

(A1) s = si + si/ 

where the scale factors s', s", and s are 
not defined by any moment. 

As to the general solution of equation 

FIG. 2.-Both graphs are relative to the sequen- 
tial sample second moment of cotton price changes. 
Horizontal scale represents time in days, with two 
different origins T?: on the upper graph, T? was 
September 21, 1900; on the lower graph T? was 
August 1, 1900. Vertical lines represent the value of 
the function 

(T-7T?)-1j [L0t11) 12 X 
t= TO 

where L(t, 1) = log. Z(t + 1) - log. Z(t) and Z(t) 
is the closing spot price of cotton on day 1, as private- 
ly reported by the United States Department of 
Agriculture. 
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(S), discovered by Paul Levy,5 the loga- 
rithm of its characteristic function takes 
the form 

co 
(PL)log f exp(iuz)dPr( U< u)=i6z 

-yZ a [1+j ( Z/ Z I )tan(axr/2)] 

It is clear that the Gaussian law and 
the law of Cauchy are stable and that 
they correspond to the cases (a = 2) and 
(a = 1; A = 0), respectively. 

Equation (PL) determines a family 
of distribution and density functions 
Pr(U < u) and dPr(U < u) that depend 
continuously upon four parameters which 
also happen to play the roles usually as- 
sociated with the first four moments of 
U, as, for example, in Karl Pearson's 
classification. 

First of all, the a is an index of "peak- 
edness" that varies from 0 (excluded) to 
2 (included); if a = 1, A must vanish. 
This a will turn out to be intimately 
related to Pareto's exponent. The A is an 
index of "skewness" that can vary from 
- 1 to + 1. If - = 0, the stable densities 
are symmetric. 

One can say that a and f together de- 
termine the "type" of a stable random 
variable, and such a variable can be 
called "reduced" if y =- 1 and a = 0. It 
is easy to see that, if U is reduced, sU is 
a stable variable having the same values 
for a, f and a and having a value of y 
equal to sa: this means that the third 
parameter, y, is a scale factor raised to 
the power a. Suppose now that U' and 
U" are two independent stable variables, 
reduced and having the same values for 
a and $; since the characteristic function 

of s'U' + s"U" is the product of those 
of s'U' and of s"U", the equation (S) is 
readily seen to be accompanied by the 
auxiliary relation 

(A) S s=S + S"t 

If on the contrary U' and U" are stable 
with the same values of a, a and of 
8 = 0, but with different values of oy (re- 
spectively, oy' and oy"), the sum U' + U" 
is stable with the parameters a, (, 7 = 
7' + y" and 8 = 0. Thus the familiar 
additivity property of the Gaussian 
"variance" (defined by a mean-square) 
is now played by either oy or by a scale 
factor raised to the power a. 

The final parameter of (PL) is 8; strict- 
ly speaking, equation (S) requires that 
8 = 0, but we have added the term i8z to 
(PL) in order to introduce a location 
parameter. If 1 < a ? 2 SO that E(U) is 
finite, one has 8 = E(U); if A = 0 so that 
the stable variable has a symmetric den- 
sity function, 8 is the median or modal 
value of U; but 8 has no obvious interpre- 
tation when 0 < a < 1 with A 0 0. 

B. ADDITION OF MORE THAN TWO 
STABLE RANDOM VARIABLES 

Let the independent variables U. sat- 
isfy the condition (PL) with values of a, 
A, y, and 8 equal for all n. Then, the loga- 
rithm of the characteristic function of 

SN = Ul +U2 + * *Un + * * UN 

is N times the logarithm of the character- 
istic function of Un, and it equals 

i 8Nz - Ny zI Za [1 + iO(z/Izf ) tan (ar/2)], 

so that SN is stable with the same a and 
( as Un, and with parameters 8 and y 
multiplied by N. It readily follows that 

N 
U. - a andN-'/a E (US-6) 

n=1 

have identical characteristic functions 
and thus are identically distributed ran- 

Paul L6vy, Calcul des probabilitds (Paris: 
Gauthier-Villars, 1925); Paul Levy, Thdorie de l'addi- 
lion des variables al.atoires (Paris: Gauthier-Villars, 
1937 [2d ed., 1954]). The most accessible source on 
these problems is, however, B. V. Gnedenko and 
A. N. Kolmogoroff, Limit Distributions for Sums of 
Independent Random Variables, trans. K. L. Chung 
(Reading, Mass.: Addison-Wesley Press, 1954). 
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dom variables. (This is, of course, a most 
familiar fact in the Gaussian case, 
a = 2.) 

The generalization of the classical '"T1/2 
Law."-In the Gaussian model of Bache- 
lier, in which daily increments of Z(t) are 
Gaussian with the standard deviation 
a (1), the standard deviation of the change 
of Z(t) over T days is equal to a(T) = 

T1/2 o(1). 

The corresponding prediction of my 
model is the following: consider any 
scale factor such as the intersextile range, 
that is, the difference between the quan- 
tity U+ which is exceeded by one-sixth 
of the data, and the quantity U- which 
is larger than one-sixth of the data. It is 
easy to find that the expected range 
satisfies 

E[U+(T) - U-(T)]= 

TuIa E[U+(1) - U-(1)]. 

We should also expect that the devia- 
tions from these expectations exceed 
those observed in the Gaussian case. 

Diferences between successive means of 
Z(t).-In all cases, the average of Z(t) 
over the time span t? + 1 to t? + N can 
then be written as 

(1/N) [Z(t? + 1) + Z(t? + 2) + ... 

Z(t? + N)] = (1/N) {N Z(t? + 1) 

+ (N- 1) [Z(t? + 2) -Z(t? + 1)]+... 

+ (N- n) [Z(t? + n + 1) -Z(to + n)] 

+ . .. [Z(t? + N) -Z(t? + N -1)]} . 

On the contrary, let the average over 
the time span t? - N - 1 to t? be written 
as 

(1/N) { N Z(tO) -(N - 1) [Z(tO) - Z(tO 

-1)] -. . .-(N -n) [Z(to?-n + 1 

-Z(t?-n)]-. . . [Z(t?-N + 2) 

-Z(t?-N+1)]}. 

Thus, if the expression Z(t + 1) - Z(t) 
is a stable variable U(t) with a = 0, the 
difference between successive means of 
values of Z is given by 

U(tO) + [(N - 1)/N] [U(to + 1) 

+ U(t - 1)] + [(N - n)/N] [U(to + n) 

+U (t?-n)] + . . . [U(t? + N-1) 

+ U(tO--N + 1)]. 

This is clearly a stable variable, with the 
same a and A as the original U, and with 
a scale parameter equal to 

'y0(N) = [1 + 2(N -)a N-a + 

2(N-n) N-+. .. + 2] y(U). 

As N - co, one has 

'y0(N)/'y(U) --+ 2N/(a + 1), 

whereas a genuine monthly change of 
Z(t) has a parameter 'y(N) = Ny(U); 
thus the effect of averaging is to mul- 
tiply "y by the expression 2/(a + 1), 
which is smaller than 1 if a > 1. 

C. STABLE DISTRIBUTIONS AND THE 
LAW OF PARETO 

Except for the Gaussian limit case, the 
densities of the stable random variables 
follow a generalization of the asymptotic 
behavior of the Cauchy law. It is clear 
for example that, as u -> c, the Cauchy 
density behaves as follows: 

u Pr(U > u) = u Pr(U < -u) --+1/r . 

More generally, Levy has shown that the 
tails of all non-Gaussian stable laws fol- 
low an asymptotic form of the law of 
Pareto, in the sense that there exist two 
constants C' = a" and C" = a', linked 
by ( = (C' - C")/(C' + C"), such that, 
when u -> c, uaPr(U > u) - C' = 
O/a and uaPr(U < -u) -> C" = ". 

Hence both tails are Paretian if I (1 
1, a solid reason for replacing the term 
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"stable non-Gaussian" by the less nega- 
tive one of "stable Paretian." The two 
numbers a' and a" share the role of the 
standard deviation of a Gaussian vari- 
able and will be designated as the "stand- 
ard positive deviation" and the "stand- 
ard negative deviation." 

In the extreme cases where A = 1 and 
hence C" = 0 (respectively, where ( = 
-1 and C' = 0), the negative tail (re- 
spectively, the positive tail) decreases 
faster than the law of Pareto of index a. 
In fact, one can prove6 that it withers 
away even faster than the Gaussian den- 
sity so that the extreme cases of stable 
laws are practically J-shaped. They play 
an important role in my theory of the 
distributions of personal income or of 
city sizes. A number of further properties 
of stable laws may therefore be found in 
my publications devoted to these topics.7 

D. STABLE VARIABLES AS THE ONLY POSSIBLE LIM- 
ITS OF WEIGHTED SUMS OF INDEPENDENT 

IDENTICALLY DISTRIBUTED ADDENDS 

The stability of the Gaussian law may 
be considered as being only a matter of 
convenience, and it is often thought that 
the following property is more impor- 
tant. 

Let the Un be independent, identically 
distributed, random variables, with afinite 
a2 = E[Un - E(U)]2. Then the classical 
central limit theorem asserts that 

N 

Nlim N-1 -1E [ Un-E (U)] 
N -+co 

n=1 

is a reduced Gaussian variable. 
This result is of course the basis of the 

explanation of the presumed occurrence 
of the Gaussian law in many practical 
applications relative to sums of a variety 
of random effects. But the essential 
thing in all -these aggregative arguments 
is not that [U - E(U)] is weighted by 
any special factor, such as N-1/2, but 
rather that the following is true: 

There exist two functions, A(N) and 
B (N), such that, as N -? o, the weighted 
sum 

N 

(L) A (N) E~ Un -B (N) 
n=1 

has a limit that is finite and is not reduced 
to a non-random constant. 

If the variance of Un is not finite, how- 
ever, condition (L) may remain satisfied 
while the limit ceases to be Gaussian. For 
example, if Un is stable non-Gaussian, 
the linearly weighted sum 

N-l/af2 ( Un - ) 

was seen to be identical in law to Un, so 
that the "limit" of that expression is al- 
ready attained for N = 1 and is a stable 
non-Gaussian law. Let us now suppose 
that U. is asymptotically Paretian with 
0 < a < 2, but not stable; one can show 
that the limit exists in a real sense, and 
that it is the stable Paretian law having 
the same value of a. Again the function 
A (N) can be chosen equal to N-/ . 
These results are crucial but I had better 
not attempt to rederive them here. There 
is little sense in copying the readily avail- 
able full mathematical arguments, and 
experience shows that what was intended 
to be an illuminating heuristic explana- 
tion often looks like another instance in 
which far-reaching conclusions are based 

6A. V. Skorohod, "Asymptotic Formulas for 
Stable Distribution Laws," Dokl. Ak. Nauk SSSR, 
XCVIII (1954), 731-35, or Sdect. Tranl. Math. Stat. 
Proba. Am. Math. Soc. (1961), pp. 157-61. 

7 Benoit Mandelbrot, "The Pareto-L6vy Law 
and the Distribution of Income," International Eco- 
nomic Review, I (1960), 79-106, as amended in "The 
Stable Paretian Income Distribution, When the Ap- 
parent Exponent Is near Two," International Econom- 
ic Review, IV (1963), 111-15; see also my "Stable 
Paretian Random Functions and the Multiplicative 
Variation of Income," Econometrica, XXIX (1961), 
517-43, and "Paretian Distributions and Income 
Maximization," Quarterly Journal of Economics, 
LXXVI (1962), 57-85. 
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on loose thoughts. Let me therefore just 
quote the facts: 

The problem of the existence of a limit 
for A (N)iUn - B(N) can be solved by 
introducing the following generalization 
of the asymptotic law of Pareto:8 

The conditions of Pareto-Doeblin- 
Gnedenko.-Introduce the notations 

Pr(U > u) = Q(u)m-a ; 

Pr(U <-u) = Q"(u)ua-,. 

The conditions of P-D-G require that (a) 
when u -* c, Q'(u)/Q"(u) tends to a limit 
C'/C", (b) there exists a value of a > 0 
such that for every k > 0, and for u -* 

one has 
Q (u) +Q ( ) - 

Q'(ku) +Q"(ku) 

These conditions generalize the law of 
Pareto, for which Q'(u) and Q"(u) them- 
selves tend to limits as u -> c. With 
their help, and unless a = 1, the prob- 
lem of the existence of weighting factors 
A (N) and B(N) is solved by the follow- 
ing theorem: 

If the Un, are independent, identically 
distributed random variables, there may 
exist no functions A(N) and B (N) such 
that A(N) Z Un- B (N) tends to a proper 
limit. But, if such functions A(N) and 
B (N) exist, one knows that the limit is one 
of the solutions of the stability equation (S). 
More precisely, the limit is Gaussian if and 
only if the Un has finite variance; the limit 
is stable non-Gaussian if and only if the 
conditions of Pareto-Doeblin-Gnedenko are 
satisfied for some 0 < a < 2. Then A = 
(C' - C")/(C' + C") and A(N) is de- 
termined by the requirement that 

N Pr[U > u A-'(N)] -* C'u-a 

(Whichever the value of a, the P-D-G 
condition (b) also plays a central role in 
the study of the distribution of the ran- 
dom variable max Us.) 

As an application of the above defini- 
tion and theorem, let us examine the 
product of two independent, identically 
distributed Paretian (but not stable) 
variables U' and U". First of all, for 
u > 0, one can write 

Pr(U'UI" > u) = Pr(U' > 0; U" > 0 

and log U' + log U" > log u) 

+ Pr(U' <; IU" < O and 

log I U'I + log U "I > log u). 

But it follows from the law of Pareto that 

Pr(U > ez) -' C' exp(- az) and 

Pr(U < - ez) -,' C" exp(- az), 

where U is either U' or U". Hence, the 
two terms P' and P" that add up to 
Pr(U'U" > u) satisfy 

PI,, C'2 az exp(- az) and 

PI' , C"2 az exp(- az). 

Therefore 

Pr(U'U" > u) -,' a(C'2 + C"2) (log, U) Ua. 

Similarly 

Pr(U'U" < - u) --' a2C'C" (loge u) U-a. 

It is obvious that the Pareto-Doeblin- 
Gnedenko conditions are satisfied for the 
functions Q'(u) (CI2 + C"2)a loge U 
and Q"(u) -,' 2C'C"a log, u. Hence the 
weighted expression 

(N log N) 1/a2S U' U"n 
n=1 

converges toward a stable Paretian limit 
with the exponent a and the skewness 

= (C'2 + C"2 - 2C'C"l)/(C'2 + C"12 

+ 2C'C") = [(C' - C")/(C' + C"I)]2 > 0. 

8 See Gnedenko and Kolmogoroff, op. cit., n. 4, 
p. 175, who use a notation that does not emphasize, 
as I hope to do, the relation between the law of 
Pareto and its present generalization. 
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In particular, the positive tail should al- 
ways be bigger than the negative. 

E. SHAPE OF STABLE PARETIAN DISTRIBUTIONS 

OUTSIDE ASYMPTOTIC RANGE 

The result of Section IIC should not 
hide the fact that the asymptotic be- 
havior is seldom the main thing in the 
applications. For example, if the sample 
size is N, the orders of magnitude of the 
largest and smallest item are given by 

N Pr[U > u+(N)] = 1, 
and 

NPr[U <-u-(N)= 1, 

and the interesting values of u lie be- 
tween -u- and u+. Unfortunately, ex- 
cept in the cases of Gauss and of Cauchy 
and the case (a = 2; = 1), there are no 
known closed expressions for the stable 
densities and the theory only says the 
following: (a) the densities are always 
unimodal; (b) the densities depend con- 
tinuously upon the parameters; (c) if 
A > 0, the positive tail is the fatter- 
hence, if the mean is finite (i.e., if 1 < 
a < 2), it is greater than the most prob- 
able value and greater than the median. 

To go further, I had to resort to nu- 
merical calculations. Let us, however, 
begin by interpolative arguments. 

The symmetric cases, fi = O.-For a = 

1, one has the Cauchy law, whose density 
[ir(1 + u2)]-l is always smaller than the 
Paretian density 1/wXu2 toward which it 
tends in relative value as u --> . There- 
fore, 

Pr (U> u) <l/lr u, 

and it follows that for a = 1 the doubly 
logarithmic graph of loge [Pr(U > u)] is 
entirely on the left side of its straight 
asymptote. By continuity, the same 
shape must apply when a is only a little 
higher or a little lower than 1. 

For a = 2, the doubly logarithmic 
graph of the Gaussian loge [Pr(U > u)] 
drops down very fast to negligible values. 

Hence, again by continuity, the graph for 
a = 2 - e must also begin by a rapid 
decrease. But, since its ultimate slope is 
close to 2, it must have a point of inflec- 
tion corresponding to a maximum slope 
greater than 2, and it must begin by 
"overshooting" its straight asymptote. 

Interpolating between 1 and 2, we see 
that there exists a smallest value of a, say 
ao, for -which the doubly logarithmic 
graph begins by overshooting its asymp- 
tote. In the neighborhood of a?, the 
asymptotic a can be measured as a slope 
even if the sample is small. If a < a?, the 
asymptotic slope will be underestimated 
by the slope of small samples; for a > a0 
it will be overestimated. The numerical 
evaluation of the densities yields a value 
of a0 in the neighborhood of 1.5. A graph- 
ical presentation of the results of this 
section is given in Figure 3. 

The skew cases.-If the positive tail is 
fatter than the negative one, it may well 
happen that its doubly logarithmic graph 
begins by overshooting its asymptote, 
while the doubly logarithmic graph of the 
negative tail does not. Hence, there are 
two critical values of a0, one for each tail; 
if the skewness is slight, a is between the 
critical values and the sample size is not 
large enough, the graphs of the two tails 
will have slightly different over-all ap- 
parent slopes. 

F. JOINT DISTRIBUTION OF INDEPENDENT 
STABLE PARETIAN VARIABLES 

Let p1(u1) and p2(u2) be the densities 
of Ui and of U2. If both u1 and u2 are 
large, the joint probability density is 
given by 

p0(Uli U2) = aC1'u ( a+1) aC2'u2 (a+1) 

= a2C 'C2' (U1U2)( a+l) 

Hence, the lines of equal probability are 
portions of the hyperbolas 

Ulu2= constant. 
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In the regions where either U1 or U2 is 
large (but not both), these bits of hyper- 
bolas are linked together as in Figure 4. 
That is, the isolines of small probability 
have a characteristic "plus-sign" shape. 
On the contrary, when both U1 and U2 
are small, loge pl(ul) and loge p2(u2) are 
near their maxima and therefore can be 
locally approximated by a, - (ul/bl)2 and 

a2 - (U2/b2)2. Hence, the probability iso- 
lines are ellipses of the form 

(ul/b1)2 + (u2/b2)2 = constant. 

The transition between the ellipses 
and the "plus signs" is, of course, con- 
tinuous. 

G. DISTRIBUTION OF U1, WHEN U1 AND U2 ARE 
INDEPENDENT STABLE PARETIAN VARI- 
ABLES AND U1 + U2 = U IS KNOWN 

This conditional distribution can be 
obtained as the intersection between the 
surface that represents the joint density 
po(ul, u2) and the plane ul + u2 = u. 
Hence the conditional distribution is 
unimodal for small u. For large u, it has 
two sharply distinct maxima located near 
ul = 0 and near u2 = 0. 

More precisely, the conditional den- 
sity of Ui is given by p1(u1)p2(u - u)/ 
q(u), where q(u) is the density of U = 

U1 + U2. Let u be positive and very 
large; if ul is small, one can use the 
Paretian approximations for p2(u2) and 
q(u), obtaining 

P1(u1)P2(u -ui)/q(u) 

[Cl'/(Cl' + C2')]pl(ul). 

If U2 iS small, one similarly obtains 

P1(U1)P2(U -ui)/q(u) 

[C2'/C1' + C2')]p2(U - U1) 

In other words, the conditional den- 
sity pl(ul)p2(u -ul)/q(u) looks as if 
two unconditioned distributions scaled 
down in the ratios Cl'/(Cl' + C2') and 
C2'/(C1' + C2') had been placed near 
ul = 0 and ul = u. If u is negative but 

Jul is very large, a similar result holds 
with Ci" and C2" replacing Cl' and C2'. 

For example, for a = 2 - and Cl' = 

C2', the conditioned distribution is made 
up of two almost Gaussian bells, scaled 
down to one-half of their height. But, as 
a tends toward 2, these two bells become 

FIG. 3.-The various lines are doubly logarithmic 
plots of the symmetric stable Paretian probability 
distributions with a = 0, y = 1, B = 0 and various 
values of a. Horizontally, log, u; vertically, log, 
Pr(U > u) = log, Pr(U < - u). Sources: unpub- 
lished tables based upon numerical computations 
performed at the author's request by the I.B.M. 
Research Center. 
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smaller and a third bell appears near 
Ul = u/2. Ultimately, the two side bells 
vanish and one is left with a central bell 
which corresponds to the fact that when 
the sum U1 + U2 is known, the condi- 
tional distribution of a Gaussian UI is 
itself Gaussian. 

III. EMPIRICAL TESTS OF THE STABLE 

PARETIAN LAWS: COTTON PRICES 

This section will have two main goals. 
First, from the viewpoint of statistical 
economics, its purpose is to motiVate 
and develop a model of the variation of 
speculative prices based on the stable 
Paretian laws discussed in the previous 
section. Second, from the viewpoint of 
statistics considered as the theory of data 
analysis, I shall use the theorems con- 
cerning the sums 22Un to build a new test 
of the law of Pareto. Before moving on to 
the main points of the section, however, 
let us examine two alternative ways of 
treating the excessive numbers of large 
price changes usually observed in the 
data. 

A. EXPLANATION OF LARGE PRICE CHANGES BY 
CAUSAL OR RANDOM "CONTAMINATORS" 

One very common approach is to note 
that, a posteriori, large price changes are 
usually traceable to well-determined 
"causes" that should be eliminated be- 
fore one attempts a stochastic model of 
the remainder. Such preliminary censor- 
ship obviously brings any distribution 
closer to the Gaussian. This is, for ex- 
ample, what happens when one restricts 
himself to the study of "quiet periods" of 
price change. There need not be any ob- 
servable discontinuity between the "out- 
liers" and the rest of the distribution, 
however, and the above censorship is 
therefore usually undeterminate. 

Another popular and classical proce- 
dure assumes that observations are gen- 
erated by a mixture of two normal dis- 

tributions, one of which has a small 
weight but a large variance and is con- 
sidered as a random "contaminator." In 
order to explain the sample behavior of 
the moments, it unfortunately becomes 
necessary to introduce a larger number of 
contaminators, and the simplicity of the 
model is destroyed. 

B. INTRODUCTION OF THE LAW OF PARETO 
TO REPRESENT PRICE CHANGES 

I propose to explain the erratic be- 
havior of sample moments by assuming 
that the population moments are infinite, 
an approach that I have used with suc- 
cess in a number of other applications 
and which I have explained and demon- 
strated in detail elsewhere. 

This hypothesis amounts practically 
to the law of Pareto. Let us indeed as- 
sume that the increment 

L(t, 1) = loge Z(t + 1) - loge Z(t) 

FIG. 4.-Joint distribution of successive price 
relatives L(t, 1) and L(t + 1, 1) under two alterna- 
tive models. If L(t, 1) and L(t + 1, 1) are independ- 
ent, they should be plotted along the horizontal and 
vertical coordinate axes. If L(t, 1) and L(t + 1, 1) are 
linked by the model in Section VII, they should be 
plotted along the bisectrixes, or else the above 
figure should be rotated by 45? before L(t, 1) and 
L(t + 1, 1) are plotted along the coordinate axes. 



404 THE JOURNAL OF BUSINESS 

is a random variable with infinite popu- 
lation moments beyond the first. This 
implies that its density p(u) is such that 
fp(u) u2du diverges but fp(u) udu con- 
verges (the integrals being taken all the 
way to infinity). It is of course natural, 
at least in the first stage of heuristic mo- 
tivating argument, to assume that p(u) 
is somehow "well behaved" for large u; 
if so, our two requirements mean that as 
U -> cx, p(u)u3 tends to infinity and 
p(u)u2 tends to zero. 

In words: p(u) must somehow de- 
crease faster than u-2 and slower than 
u-3. From the analytical viewpoint, the 
simplest expressions of this type are 
those with an asymptotically Paretian 
behavior. This was the first motivation of 
the present study. It is surprising that I 
could find no record of earlier application 
of the law of Pareto to two-tailed phe- 
nomena. 

My further motivation was more theo- 
retical. Granted that the facts impose a 
revision of Bachelier's process, it would 
be simple indeed if one could at least 
preserve the convenient feature of the 
Gaussian model that the various incre- 
ments, 

L(t, T) = log, Z(t + T) - log, Z(t), 

depend upon T only to the extent of hav- 
ing different scale parameters. From all 
other viewpoints, price increments over 
days, weeks, months, and years would 
have the same distribution, which would 
also rule the fixed-base relatives. This 
naturally leads directly to the probabil- 
ists' concept of stability examined in 
Section II. 

In other terms, the facts concerning 
moments, together with a desire to have 
a simple representation, suggested a 
check as to whether the logarithmic price 
relatives for unsmoothed and unproc- 
essed time series relative to very active 
speculative markets are stable Paretian. 

Cotton provided a good example, and the 
present paper will be limited to the ex- 
amination of that case. I have, however, 
also established that my theory applies 
to many other commodities (such as 
wheat and other edible grains), to 
many securities (such as those of the 
railroads in their nineteenth-century hey- 
day), and to interest rates such as those of 
call or time money.9 On the other hand, 
there are unquestionably many economic 
phenomena for which much fewer "out- 
liers" are observed, even though the 
available series are very long; it is natu- 
ral in these cases to favor Bachelier's 
Gaussian model-known to be a limiting 
case in my theory as well as its proto- 
type. I must, however, postpone a discus- 
sion of the limits of validity of my ap- 
proach to the study of prices. 

C. PARETO'S GRAPHICAL METHOD APPLIED 
TO COTTON-PRICE CHANGES 

Let us begin by examining in Figure 5 
the doubly logarithmic graphs of various 
kinds of cotton price changes as if they 
were independent of each other. The 
theoretical log Pr(U > u), relative to 
a = 0, a = 1.7, and A = 0, is plotted 
(solid curve) on the same graph for com- 
parison. If the various cotton prices fol- 
lowed the stable Paretian law with a = 0, 
a = 1.7 and A = 0, the various graphs 
should be horizontal translates of each 
other, and a cursory examination shows 
that the data are in close conformity 
with the predictions of my model. A 
closer examination suggests that the 
positive tails contain systematically 
fewer data than the negative tails, sug- 

9 These examples were mentioned in my 1962 
"Research Note" (op. cit., n. 1). My presentation, 
however, was too sketchy and could not be improved 
upon without modification of the substance of that 
"Note" as well as its form. I prefer to postpone ex- 
amination of all the other examples as well as the 
search for the point at which my model of cotton 
prices ceases to predict the facts correctly. Both will 
be taken up in my forthcoming book (op. cit., n. 1). 
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gesting that A actually takes a small neg- 
ative value. This is also confirmed by the 
fact that the negative tails alone begin by 
slightly "overshooting" their asymp- 
totes, creating the bulge that should be 
expected when a is greater than the criti- 
cal value a' relative to one tail but not 
to the other. 

D. APPLICATION OF THE GRAPHICAL METHOD 
TO THE STUDY OF CHANGES IN THE 

DISTRIBUTION ACROSS TIME 

Let us now look more closely at the 
labels of the various series examined in 

the previous section. Two of the graphs 
refer to daily changes of cotton prices, 
near 1900 and near 1950, respectively. It 
is clear that these graphs do not coincide 
but are horizontal translates of each 
other. This implies that between 1900 
and 1950 the generating process has 
changed only to the extent that its scale 
,y has become much smaller. 

Our next test will be relative to month- 
ly price changes over a longer time span. 
It would be best to examine the actual 
changes between, say, the middle of one 

FIG. 5.-Composite of doubly logarithmic graphs of positive and negative tails for three kinds of cotton 
price relatives, together with cumulated density function of a stable distribution. Horizontal scale u of 
lines la, lb, and Ic is marked only on lower edge, and horizontal scale it of lines 2a, 2b, and 2c is marked 
along upper edge. Vertical scale gives the following relative frequencies: (la) Fr[loge Z(t + one day) - 

loge Z(t) > u], (2a) Fr[loge Z(t + one day) - loge Z(t) < - u], both for the daily closing prices of cotton 
in New York, 1900-1905 (source: private communication from the United States Department of Agricul- 
ture). 

(lb) Fr[loge Z(t + one day) - log, Z(t) > u], (2b) Fr[loge Z(t + one day) - log, Z(t) < - u], both for 
an index of daily closing prices of cotton in the United States, 1944-58 (source: private communication 
from Hendrik S. Houthakker). 

(1c) Fr[loge Z(t + one month) - loge Z(t) > u], (2c) Fr[loge Z(t + one month) - log, Z(t) < -u 
both for the closing prices of cotton on the 15th of each month in New York, 1880-1940 (source: private 
communication from the United States Department of Agriculture). 

The reader is advised to copy on a transparency the horizontal axis and the theoretical distribution and 
to move both horizontally until the theoretical curve is superimposed on either of the empirical graphs; 
the only discrepancy is observed for line 2b; it is slight and would imply an even greater departure from 
normality. 
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month to the middle of the next. A longer 
sample is available, however, when one 
takes the reported monthly averages of 
the price of cotton; the graphs of Figure 
6 were obtained in this way. 

If cotton prices were indeed generated 
by a stationary stochastic process, our 
graphs should be straight, parallel, and 
uniformly spaced. However, each of the 
15-year subsamples contains only 200- 
odd months, so that the separate graphs 
cannot be expected to be as straight as 
those relative to our usual samples of 
1,000-odd items. The graphs of Figure 6 
are, indeed, not quite as neat as those re- 
lating to longer periods; but, in the ab- 
sence of accurate statistical tests, they 
seem adequately straight and uniformly 
spaced, except for the period 1880-96. 

I conjecture therefore that, since 1816, 
the process generating cotton prices has 
changed only in its scale, with the pos- 
sible exception of the Civil War and of 
the periods of controlled or supported 
prices. Long series of monthly price 
changes should therefore be represented 
by mixtures of stable Paretian laws; such 
mixtures remain Paretian.10 

E. APPLICATION OF THE GRAPHICAL METHOD 
TO STUDY EFFECTS OF AVERAGING 

It is, of course, possible to derive 
mathematically the expected distribu- 
tion of the changes between successive 
monthly means of the highest and lowest 
quotation; but the result is so cumber- 
some as to be useless. I have, however, 
ascertained that the empirical distribu- 
tion of these changes does not differ sig- 
nificantly from the distribution of the 
changes between the monthly means ob- 
tained by averaging all the daily closing 
quotations within months; one may 
therefore speak of a single averageprice 
for each month. 

We then see on Figure 7 that the great- 
er part of the distribution of the aver- 
ages differs from that of actual monthly 
changes by a horizontal translation to 
the left, as predicted in Section IIC 
(actually, in order to apply the argument 
of that section, it would be necessary to 
rephrase it by replacing Z(t) by log, Z(t) 
throughout; however, the geometric and 
arithmetic averages of daily Z(t) do not 
differ much in the case of medium-sized 
over-all monthly changes of Z(t)). 

However, the largest changes between 
successive averages are smaller than pre- 
dicted. This seems to suggest that the 
dependence between successive daily 
changes has less effect upon actual 
monthly changes than upon the regu- 
larity with which these changes are per- 
formed. 

IF. A NEW PRESENTATION OF THE EVIDENCE 

Let me now show that my evidence 
concerning daily changes of cotton price 
strengthens my evidence concerning 
monthly changes and conversely. 

The basic assumption of my argument 
is that successive daily changes of log 
(price) are independent. (This argument 
will thus have to be revised when the as- 
sumption is improved upon.) Moreover, 
the population second moment of L(t) 
seems to be infinite and the monthly or 
yearly price changes are patently not 
Gaussian. Hence the problem of whether 
any limit theorem whatsoever applies to 
log, Z(t + T) - log, Z(t) can also be an- 
swered in theory by examining whether 
the daily changes satisfy the Pareto- 
Doeblin-Gnedenko conditions. In prac- 
tice, however, it is impossible to ever 
attain an infinitely large differencing in- 
terval T or to ever verify any condition 
relative to an infinitely large value of the 
random variable u. Hence one must con- 
sider that a month or a year is infinitely 

10 See my "New Methods in Statistical Econom- 
ics," Journal of Political Economy, October, 1963. 



FIG. 6.-A rough test of stationarity for the process of change of cotton prices between 1816 and 1940. 
Horizontally, negative changes between successive monthly averages (source: Statistical Bulletin No. 99 of 
the Agricultural Economics Bureau, United States Department of Agriculture.) (To avoid interference 
between the various graphs, the horizontal scale of the kth graph from the left was multiplied by 2k-1.) 
Vertically, relative frequencies Fr(U < - u) corresponding respectively to the following periods (from 
left to right): 1816-60, 1816-32, 1832-47, 1847-61, 1880-96, 1896-1916, 1916-31, 1931-40, 1880-1940. 

FIG. 7.-These graphs illustrate the effect of averaging. Dots reproduce the same data as the lines 1 c 
and 2c of Fig. 5. The x's reproduce distribution of loge Z?(t + 1) - loge ZO(t), where ZO(t) is the average 
spot price of cotton in New York during the month t, as reported in the Statistical Bulletin No. 99 of the 
Agricultural Economics Bureau, United States Department of Agriculture. 



408 THE JOURNAL OF BUSINESS 

long, and that the largest observed daily 
changes of loge Z(t) are infinitely large. 
Under these circumstances, one can 
make the following inferences. 

Inference from aggregation.-The cot- 
ton price data concerning daily changes 
of loge Z(t) surely appear to follow the 
weaker condition of Pareto-Doeblin- 
Gnedenko. Hence, from the property of 
stability and according to Section IID, 
one should expect to find that, as T in- 
creases, 

7-l/a { loge Z(t + T) - loge Z(t) 

-T E[L(t, 1)]) 

tends toward a stable Paretian variable 
with zero mean. 

Inference from disaggregation.-Data 
seem to indicate that price changes over 
weeks and months follow the same law 
up to a change of scale. This law must 
therefore be one of the possible non- 
Gaussian limits, that is, it must be a 
stable Paretian. As a result, the inverse 
part of the theorem of Section IID shows 
that the daily changes of log Z(t) must 
satisfy the conditions of Pareto-Doeblin- 
Gnedenko. 

It is pleasant to see that the inverse 
condition of P-D-G, which greatly em- 
barrassed me in my work on the distribu- 
tion of income, can be put to use in the 
theory of prices. 

A few of the difficulties involved in 
making the above two inferences will 
now be discussed. 

Disaggregation.-The P-D-G condi- 
tions are weaker than the asymptotic law 
of Pareto because they require that lim- 
its exist for Q'(u)/Q"(u) and for [Q'(u) + 
Q"(u)]/[Q'(ku) + Q"(ku)], but not for 
Q'(u) and Q"(u) taken separately. Sup- 
pose, however, that Q'(u) and Q"(u) still 
vary a great deal in the useful range of 
large daily variations of prices. If so, 
A (N)2Un - B(N) will not approach its 

own limit until extremely large values of 
N are reached. Therefore, if one believes 
that the limit is rapidly attained, the 
functions Q'(u) and Q"(u) of daily 
changes must vary very little in the re- 
gions of the tails of the usual samples. In 
other words, it is necessary after all that 
the asymptotic law of Pareto apply to 
daily price changes. 

Aggregation.-Here, the difficulties are 
of a different order. From the mathemati- 
cal viewpoint, the stable Paretian law 
should become increasingly accurate as T 
increases. Practically, however, there is 
no sense in even considering values of T 
as long as a century, because one cannot 
hope to get samples sufficiently long to 
have adequately inhabited tails. The 
year is an acceptable span for certain 
grains, but only if one is not worried by 
the fact that the long available series of 
yearly prices are ill known and variable 
averages of small numbers of quotations, 
not prices actually quoted on some mar- 
ket on a fixed day of each year. 

From the viewpoint of economics, 
there are two much more fundamental 
difficulties with very large T. First of all, 
the model of independent daily L's elimi- 
nates from consideration every "trend," 
except perhaps the exponential growth or 
decay due to a non-vanishing 8. Many 
trends that are negligible on the daily 
basis would, however, be expected to be 
predominant on the monthly or yearly 
basis. For example, weather might have 
upon yearly changes of agricultural 
prices an effect different from the simple 
addition of speculative daily price move- 
ments. 

The second difficulty lies in the 
"linear" character of the aggregation of 
successive L's used in my model. Since I 
use natural logarithms, a small log, Z(t + 
T) - log, Z(t) will be undistinguishable 
from the relative price change [Z(t + 
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T) - Z(t)]/Z(t). The addition of small 
L's is therefore related to the so-called 
"principle of random proportionate ef- 
fect"; it also means that the stochas- 
tic mechanism of prices readjusts itself 
immediately to any level that Z(t) may 
have attained. This assumption is quite 
usual, but very strong. In particular, I 
shall show that, if one finds that log 
Z(t + one week) - log Z(t) is very large, 
it is very likely that it differs little from 
the change relative to the single day of 
most rapid price variation (see Section 
VE); naturally, this conclusion only 
holds for independent L's. As a result, 
the greatest of N successive daily price 
changes will be so large that one may 
question both the use of log, Z(t) and the 
independence of the L's. 

There are other reasons (see Section 
IVB) to expect to find that a simple ad- 
dition of speculative daily price changes 
predicts values too high for the price 
changes over periods such as whole 
months. 

Given all these potential difficulties, I 
was frankly astonished by the quality of 
the predictions of my model concerning 
the distribution of the changes of cotton 
prices between the fifteenth of one month 
and the fifteenth of the next. The nega- 
tive tail has the expected bulge, and even 
the most extreme changes are precise ex- 
trapolates from the rest of the curve. 
Even the artificial excision of the Great 
Depression and similar periods would not 
affect the general results very greatly. 

It was therefore interesting to check 
whether the ratios between the scale co- 
efficients, C'(T)/C'(1) and C"(T)/C"(1), 
were both equal to T, as predicted by my 
theory whenever the ratios of standard 
deviations o'(T)/o-'(s) and o"(T)/I"(s) 
follow the TI/a generalization of the "TT1/2 
Law" referred to in Section IIB. If the 
ratios of the C parameter are different 

from T, their value may serve as a meas- 
ure of the degree of dependence between 
successive L(t, 1). 

The above ratios were absurdly large 
in my original comparison between the 
daily changes near 1950 of the cotton 
prices collected by Houthakker and the 
monthly changes between 1880 and 1940 
of the prices communicated by the 
USDA. This suggested that the sup- 
ported prices around 1950 varied less 
than their earlier counterparts. There- 
fore I repeated the plot of daily changes 
for the period near 1900, chosen hap- 
hazardly but not actually at random. 
The new values of C'(T)/C'(1) and 
C"(T)/C"(1) became quite reasonable, 
equal to each other and to 18. In 1900, 
there were seven trading days per week, 
but they subsequently decreased to 5. 
Besides, one cannot be too dogmatic 
about estimating C'(T)/C'(1). Therefore 
the behavior of this ratio indicated that 
the "apparent" number of trading days 
per month was somewhat smaller than 
the actual number. 

IV. WHY ONE SHOULD EXPECT TO FIND 

NONSENSE MOMENTS AND NONSENSE 

PERIODICITIES IN ECONOMIC TIME SE- 

RIES 

A. BEHAVIOR OF SECOND MOMENTS AND 
FAILURE OF THE LEAST-SQUARES 

METHOD OF FORECASTING 

It is amusing to note that the first 
known non-Gaussian stable law, namely, 
Cauchy's distribution, was introduced in 
the course of a study of the method of 
least squares. In a surprisingly lively ar- 
gument following Cauchy's 1853 paper, 
J. Bienayme"l stressed that a method 
based upon the minimization of the sum 

"J. Bienayme, "Considerations a I'appui de la 
d6couverte de Laplace sur la loi de probabilit6 dans 
la m6thode des moindres carres," Comptes rendus, 
Acad6tmie des Sciences de Paris, XXXVII (August, 
1853), 309-24 (esp. 321-23). 
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of squares of sample deviations cannot be 
reasonably used if the expected value of 
this sum is known to be infinite. The 
same argument applies fully to the prob- 
lem of least-squares smoothing of eco- 
nomic time series, when the "noise" fol- 
lows a stable Paretian law other than 
that of Cauchy. 

Similarly, consider the problem of 
least-squares forecasting, that is, of the 
minimization of the expected value of the 
square of the error of extrapolation. In 
the stable Paretian case this expected 
value will be infinite for every forecast, so 
that the method is, at best, extremely 
questionable. One can perhaps apply a 
method of "least c-power" of the fore- 
casting error, where r < a, but such an 
approach would not have the formal 
simplicity of least squares manipula- 
tions; the most hopeful case is that of 

= 1, which corresponds to the mini- 
mization of the sum of absolute values of 
the errors of forecasting. 

B. BEHAVIOR OF THE KURTOSIS AND ITS FAILURE 
AS A MFASURE OF "PEAKEDNESS" 

Pearson's index of "kurtosis" is de- 
fined as 

_3 ? fourth moment 
square of the second moment' 

If 0 < a < 2, the numerator and the 
denominator both have an infinite ex- 
pected value. One can, however, show 
that the kurtosis behaves proportion- 
ately to its "typical" value given by 

(1/N) (most probable value of 2 L4) 
[(1/N) (most probable value of 2 L2)]' 

const. N-1+4/a 

[const. N"1+2/a]2 = const. N. 

In other words, the kurtosis is expected 
to increase without bound as N -.* . 

For small N, things are less simple but 
presumably quite similar. 

Let me examine the work of Cootner in 
this light.'2 He has developed the tempt- 
ing hypothesis that prices vary at random 
only as long as they do not reach either 
an upper or a lower bound, that are con- 
sidered by well-informed speculators to 
delimit an interval of reasonable values 
of the price. If and when ill-informed 
speculators let the price go too high or 
too low, the operations of the well-in- 
formed speculators will induce this price 
to come back within a "penumbra" a la 
Taussig. Under the circumstances, the 
price changes over periods of, say, four- 
teen weeks should be smaller than would 
be expected if the contributing weekly 
changes were independent. 

This theory is very attractive a priori 
but could not be generally true because, 
in the case of cotton, it is not supported 
by the facts. As for Cootner's own jus- 
tification, it is based upon the observa- 
tion that the price changes of certain se- 
curities over periods of fourteen weeks 
have a much smaller kurtosis than one- 
week changes. Unfortunately, his sample 
contains 250-odd weekly changes and 
only 18 fourteen-week periods. Hence, on 
the basis of general evidence concerning 
speculative prices, I would have expected 
a priori to find a smaller kurtosis for the 
longer time increment, and Cootner's 
evidence is not a proof of his theory; 
other methods must be used in order to 
attack the still very open problem of the 
possible dependence between successive 
price changes. 

C. METHOD OF SPECTRAL ANALYSIS 
OF RANDOM TIME SERIES 

Applied mathematicians are fre- 
quently presented these days with the 
task of describing the stochastic mecha- 

Paul H. Cootner, "Stock Prices: Random 
Walks vs. Finite Markov Chains," Industrial Man- 
agement Review of M.I.T., III (1962), 24-45. 
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nism capable of generating a given time 
series u(t), known or presumed to be ran- 
dom. The response to such questions is 
usually to investigate first what is ob- 
tained by applying the theory of the 
"second-order random processes." That 
is, assuming that E(U) = 0, one forms 
the sample covariance 

U(t)U(t+ r), 

which is used, somewhat indirectly, to 
evaluate the population covariance 

R(T) = E[U (t) U(t + r)] . 

Of course, R(r) is always assumed to be 
finite for all; its Fourier transform gives 
the "spectral density" of the "harmonic 
decomposition" of U(t) into a sum of 
sine and cosine terms. 

Broadly speaking, this method has 
been very successful, though many 
small-sample problems remain unsolved. 
Its applications to economics have, how- 
ever, been questionable even in the 
large-sample case. Within the context of 
my theory, there is unfortunately noth- 
ing surprising in such a finding. The ex- 
pression 2E[U(t)U(t + r)] equals indeed 
E[U(t) + U(t + 7)]2 - E[U(t)]2 - 

E[U(t + r)]2; these three variances are 
all infinite for time series covered by my 
model, so that spectral analysis loses its 
theoretical motivation. I must, however, 
postpone a more detailed examination of 
this fascinating problem. 

V. SAMPLE FUNCTIONS GENERATED BY 

STABLE PARETIAN PROCESSES; SMALL- 

SAMPLE ESTIMATION OF THE MEAN 

"DRIFT"1 OF SUCH A PROCESS 

The curves generated by stable Pare- 
tian processes present an even larger 
number of interesting formations than 
the curves generated by Bachelier's 
Brownian motion. If the price increase 

over a long period of time happens a 
posteriori to have been usually large, in a 
stable Paretian market, one should ex- 
pect to find that this change was mostly 
performed during a few periods of espe- 
cially high activity. That is, one will find 
in most cases that the majority of the 
contributing daily changes are distrib- 
uted on a fairly symmetric curve, while a 
few especially high values fall well out- 
side this curve. If the total increase 
is of the usual size, the only difference 
will be that the daily changes will show 
no "outliers." 

In this section these results will be 
used to solve one small-sample statistical 
problem, that of the estimation of the 
mean drift b, when the other parameters 
are known. We shall see that there is no 
"sufficient statistic" for this problem, 
and that the maximum likelihood equa- 
tion does not necessarily have a single 
root. This has severe consequences from 
the viewpoint of the very definition of 
the concept of "trend." 

A. CERTAIN PROPERTIES OF SAPLE 
PATHS OF BROWNIAN MOTION 

As noted by Bachelier and (independ- 
ently of him and of each other) by sev- 
eral modern writers,'3 the sample paths 
of the Brownian motion very much 
"look like" the empirical curves of time 
variation of prices or of price indexes. At 
closer inspection, however, one sees very 
well the effect of the abnormal number of 

13 See esp. Holbrolk Working, "A Random-Dif- 
ference Series for Use in the Analysis of Time Se- 
ries," Journal of the American Statistical Association, 
XXIX (1934), 11-24; Maurice Kendall, "The Anal- 
ysis of Economic Time-Series-Part I: Prices," 
Journal of she Royal Statistical Society, Ser. A, 
CXVI (1953), 11-34; M. F. M. Osborne, "Brownian 
Motion in the Stock Market," op. cit.; Harry V. 
Roberts, "Stock-Market 'Patterns' and Financial 
Analysis: Methodological Suggestions," Journal of 
Finance, XIV (1959), 1-10; and S. S. Alexander, 
"Price Movements in Speculative Markets: Trends 
or Random Walks," op. cit., n. 3. 
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large positive and negative changes of 
loge Z(t). At still closer inspection, one 
finds that the differences concern some of 
the economically most interesting fea- 
tures of the generalized central-limit the- 
orem of the calculus of probability. It is 
therefore necessary to discuss this ques- 
tion in detail, beginning with a reminder 
of some classical facts concerning Gaus- 
sian random variables. 

Conditional distribution of a Gaussian 
L(t), knowing L(t, T) = L(t, 1) + 
. . . + L(t + T - 1, 1).-Let the prob- 
ability density of L(t, T) be 

(2 ro-2T)-112 exp[- (u - 5T)2/2To2] 

It is then easy to see that-if one knows 
the value u of L(t, T) -the density of any 
of the quantities L(t + r, 1) is given by 

[2 7ro2(T-1 )/TI] -1/2 

r - uIT-/)21 
exL2 a2(T- 1) IT 

We see that each of the contributing 
L(t + r, 1) equals u/T plus a Gaussian 
error term. For large T, that term has the 
same variance as the unconditioned L(t, 
1); one can in fact prove that the value of 
u has little influence upon the size of the 
largest of those "noise terms." One can 
therefore say that, whichever its value, u 
is roughly uniformly distributed over the 
T time intervals, each contributing neg- 
ligibly to the whole. 

Sufficiency of u for the estimation of the 
mean drift 6 from the L(t + r, 1).-In 
particular, a has vanished from the dis- 
tribution of any L(t + r, 1) conditioned 
by the value of u. This fact is expressed 
in mathematical statistics by saying that 
u is a "sufficient statistic" for the estima- 
tion of a from the values of all the L(t + 
r, 1). That is, whichever method of esti- 
mation a statistician may favor, his esti- 
mate of a must be a function of u alone. 

The knowledge of intermediate values of 
loge Z(t + r) is of no help to him. Most 
methods recommend estimating a by 
u/T and extrapolating the future linearly 
from the two known points, loge Z(t) and 
loge Z(t + T). 

Since the causes of any price move- 
ment can be traced back only if it is 
ample enough, the only thing that can be 
explained, in the Gaussian case is the 
mean drift interpreted as a trend, and 
Bachelier's model, which assumes a zero 
mean for the price changes, can only rep- 
resent the movement of prices once the 
broad causal parts or trends have been 
removed. 

B. SAMPLE FROM A PROCESS OF INDEPENDENT 
STABLE PARETIAN INCREMENTS 

Returning to the stable Paretian case, 
suppose that one knows the values of 'y 
and ,B (or of C' and C") and of a. The 
remaining parameter is the mean drift b, 
which one must estimate starting from 
the known L(t, T) = log, Z(t + T) - 

log, Z(t). 
The unbiased estimate of 3 is L(t, 

T)/T, while the maximum likelihood es- 
timate matches the observed L(t, T) to 
its a priori most probable value. The 
"bias" of the maximum likelihood is 
therefore given by an expression of the 
form zyi/af(3), where the function f(,) 
must be determined from the numerical 
tables of the stable Paretian densities. 
Since : is mostly manifested in the rela- 
tive sizes of the tails, its evaluation re- 
quires very large samples, and the qual- 
ity of one's predictions will depend 
greatly upon the quality of one's knowl- 
edge of the past. 

It is, of course, not at all clear that 
anybody would wish the extrapolation to 
be unbiased with respect to the mean of 
the change of the logarithm of the price. 
Moreover, the bias of the maximum like- 
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lihood estimate comes principally from 
an underestimate of the size of changes 
that are so large as to be catastrophic. 
The forecaster may therefore very well 
wish to treat such changes separately and 
to take account of his private feelings 
about many things that are not included 
in the independent-increment model. 

C. TWO SAMPLES FROM A STABLE 
PARETIAN PROCESS 

Suppose now that T is even and that 
one knows L(t, T/2) and L(t + T/2, 
T/2) and their sum L(t, T). We have 
seen in Section II G that, when the value 
u = L(t, T) is given, the conditional dis- 
tribution of L(t, T/2) depends very 
sharply upon u. This means that the to- 
tal change u is not a sufficient statistic 
for the estimation of 8; in other words, 
the estimates of 8 will be changed by the 
knowledge of L(t, T/2) and L(t + T/2, 
T/2). 

Consider for example the most likely 
value 8. If L(t, T/2) and L(t + T/2, 
T/2) are of the same order of magnitude, 
this estimate will remain close to L(t, 
T)/T, as in the Gaussian case. But sup- 
pose that the actually observed values of 
L(t, T/2) and L(t + T/2, T/2) are very 
unequal, thus implying that at least one 
of these quantities is very different from 
their common mean and median. Such an 
event is most likely to occur when 8 is 
dose to the observed value either of 
L(t + T/2, T/2)/(T/2) or of L(t, T/2)/ 
(T/2). 

We see that as a result, the maximum 
likelihood equation for 8 has two roots, 
respectively close to 2L(t, T/2)/T and 
to 2L(t + T/2, T/2)/T. That is, the 
maximum-likelihood procedure says that 
one should neglect one of the available 
items of information, any weighted mean 
of the two recommended extrapolations 
being worse than either; but nothing says 
which item one should neglect. 

It is clear that few economists will ac- 
cept such advice. Some will stress that 
the most likely value of a is actually 
nothing but the most probable value in 
the case of a uniform distribution of a 
priori probabilities of 8. But it seldom 
happens that a priori probabilities are 
uniformly distributed. It is also true, of 
course, that they are usually very poorly 
determined; in the present problem, 
however, the economist will not need to 
determine these a priori probabilities 
with any precision: it will be sufficient to 
choose the most likely for him of the two 
maximum-likelihood estimates. 

An alternative approach to be pre- 
sented later in this paper will argue that 
successive increments of loge Z(t) are not 
really independent, so that the estima- 
tion of 8 depends upon the order of the 
values of L(t, T/2) and L(t + T/2, T/2) 
as well as upon their sizes. This may help 
eliminate the indeterminacy of estima- 
tion. 

A third alternative consists in aban- 
doning the hypothesis that 8 is the same 
for both changes L(t, T/2) and L(t + 
T/2, T/2). For example, if these changes 
are very unequal, one may be tempted to 
believe that the trend 8 is not linear but 
parabolic. Extrapolation would then ap- 
proximately amount to choosing among 
the two maximum-likelihood estimates 
the one which is chronologically the lat- 
est. This is an example of a variety of 
configurations which would have been so 
unlikely in the Gaussian case that they 
should be considered as non-random and 
would be of help in extrapolation. In the 
stable Paretian case, however, their 
probability may be substantial. 

D. THREE SAMPLES FROM A STABLE 
PARETIAN PROCESS 

The number of possibilities increases 
rapidly with the sample size. Assume 
now that T is a multiple of 3, and con- 



414 THE JOURNAL OF BUSINESS 

sider L(t, T/3), L(t + T/3, T/3), and 
L(t + 2T/3, T/3). If these three quanti- 
ties are"of comparable size, the knowl- 
edge of log Z(t + T/3) and log Z(t + 
2T/3) will again bring little change to the 
estimate based upon L(t, T). 

But suppose that one datum is very 
large and the other are of much smaller 
and comparable sizes. Then, the likeli- 
hood equation will have two local maxi- 
mums, having very different positions 
and sufficiently equal sizes to make it im- 
possible to dismiss the smaller one. The 
absolute maximum yields the estimate 
a = (3/2T) (sum of the two small data); 
the smaller local maximum yields the 
estimate 6 = (3/T) (the large datum). 

Suppose finally that the three data are 
of very unequal sizes. Then the maxi- 
mum likelihood equation has three roots. 

This indeterminacy of maximum like- 
lihood can again be lifted by one of the 
three methods of Section VC. For ex- 
ample, if the middle datum only is large, 
the method of non-linear extrapolation 
will suggest a logistic growth. If the data 
increase or decrease-when taken chron- 
ologically-one will rather try a para- 
bolic trend. Again the probability of 
these configurations arising from chance 
under my model will be much greater 
than in the Gaussian case. 

E. A LARGE NUMBER OF SAMPLES FROM 
A STABLE PARETIAN PROCESS 

Let us now jump to a very large num- 
ber of data. In order to investigate the 
predictions of my stable Paretian model, 
we must first re-examine the meaning to 
be attached to the statement that, in 
order that a sum of random variables 
follow a central limit of probability, it is 
necessary that each of the addends be 
negligible relative to the sum. 

It is quite true, of course, that one can 
speak of limit laws only if the value of 
the sum is not dominated by any single 

addend known in advance. That is, to 
study the limit of A(N)2Un- B(N), 
one must assume that (for every n) 
Pr|A(N) Un- B(N)/NI > e) tends to 
zero with 1/N. 

As each addend decreases with 1/N, 
their number increases, however, and the 
condition of the preceding paragraph does 
not by itself insure that the largest of the 
IA (N) U4 - B(N)/N is negligible in 
comparison with their sum. As a matter 
of fact, the last condition is true only if 
the limit of the sum is Gaussian. In the 
Paretian case, on the contrary, the fol- 
lowing ratios, 

max fA (N) Un - B(N)/N f 
A(N)ZU, - B(N) 

and 

sum of k largest IA(N) Un - B(N)/NI 
A (N)2 Un--B (BN) 

tend to non-vanishing limits as N in- 
creases.14 If one knows moreover that the 
sum A (N)2J; n- B(N) happens to be 
large, one can prove that the above ratios 
should be expected to be close to one. 

Returning to a process with independ- 
ent stable Paretian L(t), we may say 
the following: If, knowing a, f, 'y, and 6, 
one observes that L(t, T = one month) 
is not large, the contribution of the day 
of largest price change is likely to be non- 
negligible- in relative value, but it will re- 
main small in absolute value. For large 
but finite N, this will not differ too much 
from the Gaussian prediction that even 
the largest addend is negligible. 

Suppose however that L(t, T= one 
month) is very large. The Paretian theory 

14 Donald Darling, "The Influence of the Maxi- 
mum Term in the Addition of Independent Random 
Variables," Transactions of the American Mathemati- 
cal Society, LXX (1952), 95-107; and D. Z. Arov 
and A. A. Bobrov, "The Extreme Members of 
Samples and Their Role in the Sum of Independent 
Variables," Theory of Probability and Its Applica- 
tions, V (1960), 415-35. 
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then predicts that the sum of a few larg- 
est daily changes will be very close to the 
total L(t, T); if one plots the frequencies 
of various values of L(t, 1), conditioned 
by a known and very large value for 
L(t, T), one should expect to find that 
the law of L(t + r, 1) contains a few 
widely "outlying" values. However, if 
the outlying values are taken out, the 
conditioned distribution of L(t + -r, 1) 
should depend little upon the value of the 
conditioning L(t, T). I believe this last 
prediction to be very well satisfied by 
prices. 

Implications concerning estimation.- 
Suppose now that a is unknown and that 
one has a large sample of L(t + r, 1)'s. 
The estimation procedure consists in that 
case of plotting the empirical histogram 
and translating it horizontally until one 
has optimized its fit to the theoretical 
density curve. One knows in advance 
that this best value will be very little in- 
fluenced by the largest outliers. Hence 
"rejection of the outliers" is fully justi- 
fied in the present case, at least in its 
basic idea. 

F. CONCLUSIONS CONCERNING ESTIMATION 

The observations made in the preced- 
ing sections seem to confirm some econo- 
mists' feeling that prediction is feasible 
only if the sample size is both very large 
and stationary, or if the sample size is 
small but the sample values are of com- 
parable sizes. One can also predict when 
the sample size is one, but here the 
unicity of the estimator is only due to 
ignorance. 

G. CAUSALITY AND RANDOMNESS IN 
STABLE PARETIAN PROCESSES 

We mentioned in Section V A that, in 
order to be "causally explainable," an 
economic change must at least be large 
enough to allow the economist to trace 
back the sequence of its causes. As a re- 

sult, the only causal part of a Gaussian 
random function is the mean drift 8. This 
will also apply to stable Paretian random 
functions when their changes happen to 
be roughly uniformly distributed. 

Things are different when loge Z(t) 
varies greatly between the times t an 
t + T, changing mostly during a few of 
the contributing days. Then, these larg- 
est changes are sufficiently clear-cut, and 
are sufficiently separated from "noise," 
to be traced back and explained causally, 
just as well as the mean drift. 

In others words, a careful observer of a 
stable Paretian random function will be 
able to extract causal parts from it. But, 
if the total change of loge Z(t) is neither 
very large nor very small, there will be a 
large degree of arbitrariness in this dis- 
tinction between causal and random. 
Hence one could not tell whether the pre- 
dicted proportions of the two kinds of 
effects are empirically correct. 

To sum up, the distinction between 
the causal and the random areas is sharp 
in the Gaussian case and very diffuse in 
the stable Paretian case. This seems to 
me to be a strong recommendation in 
favor of the stable Paretian process as a 
model of speculative markets. Of course, 
I have not the slightest idea why the 
large price movements should be repre- 
sented in this way by a simple extrapola- 
tion of movements of ordinary size. I 
came to believe, however, that it is very 
desirable that both "trend" and "noise" 
be aspects of the same deeper "truth," 
which may not be explainable today, but 
which can be adequately described. I am 
surely not antagonistic to the ideal of 
economics: eventually to decompose even 
the "noise" into parts similar to the trend 
and to link various series to each other. 
But, until we can approximate this ideal, 
we can at least represent some trends as 
being similar to "noise." 
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H. CAtJSALITY AND RANDOMNESS IN 
AGGREGATION "IN PARALLEL" 

Borrowing a term from elementary 
electrical circuit theory, the addition of 
successive daily changes of a price may 
be designated by the term "aggrega- 
tion in series," the term "aggregation in 
parallel" applying to the operation 

I 

L(t, T) = EL(i, t, T), 
i=l 

I T-1 

'= E L(i,tT 1) 
i=1 T0? 

where i refers to "events" that occur 
simultaneously during a given time inter- 
val such as T or 1. 

In the Gaussian case, one should, of 
course, expect any occurrence of a large 
value for L(t, T) to be traceable to a 
rare conjunction of large changes in all or 
most of the L(i, t, T). In the stable Pare- 
tian case, one should on the contrary ex- 
pect large changes L(t, T) to be traceable 
to one or a small number of the con- 
tributing L(i, t, T). It seems obvious that 
the Paretian prediction is closer to the 
facts. 

To add up the two types of aggrega- 
tion in a Paretian world, a large L(t, T) is 
likely to be traceable to the fact that 
L(i, t + r, 1) happens to be very large 
for one or a few sets of values of i and of 
r. These contributions would stand out 
sharply and be causally explainable. But, 
after a while, they should of course rejoin 
the "noise" made up by the other factors. 
The next rapid change of loge Z(t) should 
be due to other "causes." If a contribu- 
tion is "trend-making" in the above sense 
during a large number of time-incre- 
ments, one will, of course, doubt that it 
falls under the same theory as the fluctu- 
ations. 

VI. PRICE VARIATION IN CONTINUOUS TIME 
AND THE THEORY OF SPECULATION 

The main point of this section is to 
show that certain systems of speculation, 
which would have been advantageous if 
one could implement them, cannot in 
reality be followed in the case of price 
series generated by a Paretian process. 

A. INFINITE DIVISIBILITY OF 
STABLE PARETIAN LAWS 

Whichever N, it is possible to con- 
sider that a stable Paretian increment 

L(t, 1) = loge Z(t + 1) - loge Z(t) 

is the sum of N independent, identically 
distributed, random variables, and that 
those variables differ from L(t) only by 
the value of the constants y, C' and C", 
which are N times smaller. 

In fact, it is possible to interpolate the 
process of independent stable Paretian 
increments to continuous time, assuming 
that L(t, dt) is a stable Paretian variable 
with a scale coefficient y(dt) = dt y(l). 
This interpolated process is a very im- 
portant "zeroth" order approximation to 
the actual price changes. That is, its pre- 
dictions are surely modified by the mech- 
anisms of the market, but they are very 
illuminating nonetheless. 

B. PATH FUNCTIONS OF A STABLE 
PROCESS IN CONTINUOUS TIME 

It is almost universally assumed, in 
mathematical models of physical or of 
social sciences, that all functions can 
safely be considered as being continuous 
and as having as many derivatives as one 
may wish. The functions generated by 
Bachelier are indeed continuous ("almost 
surely almost everywhere," but we may 
forget this qualification); although they 
have no derivatives ("almost surely al- 
most nowhere"), we need not be con- 
cerned because price quotations are al- 
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ways rounded to simple fractions of the 
unit of currency. 

In the Paretian case things are quite 
different. If my process is interpolated to 
continuous t, the paths which it gener- 
ates become everywhere discontinuous 
(or rather, they become "almost surely 
almost everywhere discontinuous"). That 
is, most of their variation is performed 
through non-infinitesimal "jumps," the 
number of jumps larger than u and locat- 
ed within a time increment T, being 
given by the law C'T I d(w-a) |. 

Let us examine a few aspects of this 
discontinuity. Again, very small jumps 
of loge Z(t) could not be perceived, since 
price quotations are always expressed in 
simple fractions. It is more interesting to 
note that there is a non-negligible prob- 
ability that a jump of price is so large 
that "supply and demand" cease to be 
matched. In other words, the stable Pare- 
tian model may be considered as predict- 
ing the occurrence of phenomena likely 
to force the market to close. In a Gaus- 
sian model such large changes are so ex- 
tremely unlikely that the occasional 
closure of the markets must be explained 
by non-stochastic considerations. 

The most interesting fact is, however, 
the large probability predicted for me- 
dium-sized jumps by the stable Paretian 
model. Clearly, if those medium-sized 
movements were oscillatory, they could 
be eliminated by market mechanisms 
such as the activities of the specialists. 
But if the movement is all in one direc- 
tion, market specialists could at best 
transform a discontinuity into a change 
that is rapid but progressive. On the 
other hand, very few transactions would 
then be expected at the intermediate 
smoothing prices. As a result, even if the 
price Z? is quoted transiently, it may be 
impossible to act rapidly enough to sat- 
isfy more than a minute fraction of orders 

to "sell at ZO." In other words, a large 
number of intermediate prices are quoted 
even if Z(t) performs a large jump in a 
short time; but they are likely to be so 
fleeting, and to apply to so few transac- 
tions, that they are irrelevant from the 
viewpoint of actually enforcing a "stop 
loss order" of any kind. In less extreme 
cases-as, for example, when borrowings 
are oversubscribed-the market may 
have to resort to special rules of alloca- 
tion. 

These remarks are the crux of my criti- 
cism of certain systematic methods: they 
would perhaps be very advantageous if 
only they could be enforced, but in fact 
they can only be enforced by very few 
traders. I shall be content here with a 
discussion of one example of this kind of 
reasoning. 

C. THE FAIRNESS OF ALEXANDER'S GAME 

S. S. Alexander has suggested the fol- 
lowing rule of speculation: "if the market 
goes up 5%, go long and stay long until it 
moves down 5%, at which time sell and 
go short until it again goes up 5%."15 

This procedure is motivated by the 
fact that, according to Alexander's inter- 
pretation, data would suggest that "in 
speculative markets, price changes ap- 
pear to follow a random walk over time; 
but ... if the market has moved up x%, 
it is likely to move up more than x% 
further before it moves down x%." He 
calls this phenomenon the "persistence 
of moves." Since there is no possible per- 
sistence of moves in any "random walk" 
with zero mean, we see that if Alexan- 
der's interpretation of facts were con- 
firmed, one would have to look at a very 
early stage for a theoretical improvement 
over the random walk model. 

In order to follow this rule, one must 
of course watch a price series continu- 

15 S. S. Alexander, op. cit. n. 3. 
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ously in time and buy or sell whenever its 
variation attains the prescribed value. In 
other words, this rule can be strictly fol- 
lowed if and only if the process Z(t) gen- 
erates continuous path functions, as for 
example in the original Gaussian process 
of Bachelier. 

Alexander's procedure cannot be fol- 
lowed, however, in the case of my own 
first-approximation model of price 
change in which there is a probability 
equal to one that the first move not 
smaller than 5 per cent is greater than 5 
per cent and not equal to 5 per cent. It is 
therefore mandatory to modify Alex- 
ander's scheme to suggest buying or sell- 
ing when moves of 5 per cent are first ex- 
ceeded. One can prove that the stable 
Paretian theory predicts that this game 
also is fair. Therefore, the evidence-as 
interpreted by Alexander-would again 
suggest that one must go beyond the 
simple model of independent increments 
of price. 

But Alexander's inference was actually 
based upon the discontinuous series con- 
stituted by the closing prices on succes- 
sive days. He assumed that the inter- 
mediate prices could be interpolated by 
some continuous function of continuous 
time-the actual form of which need not 
be specified. That is, whenever there was 
a difference of over 5 per cent between the 
closing price on day F' and day F", 
Alexander implicitly assumed that there 
was at least one instance between these 
moments when the price had gone up 
exactly 5 per cent. He recommends buy- 
ing at this instant, and he computes the 
empirical returns to the speculator as if 
he were able to follow this procedure. 

For price series generated by my 
process, however, the price actually paid 
for a stock will almost always be greater 
than that corresponding to a 5 per cent 
rise; hence the speculator will almost al- 

ways have paid more than assumed in 
Alexander's evaluation of the returns. 
On the contrary, the price received will 
almost always be less than suggested by 
Alexander. Hence, at best, Alexander 
overestimates the yield corresponding to 
his method of speculation and, at worst, 
the very impression that the yield is posi- 
tive may be a delusion due to overopti- 
mistic evaluation of what happens during 
the few most rapid price changes. 

One can of course imagine contracts 
guaranteeing that the broker will charge 
(or credit) his client the actual price 
quotation nearest by excess (or default) 
to a price agreed upon, irrespective of 
whether the broker was able to perform 
the transaction at the price agreed upon. 
Such a system would make Alexander's 
procedure advantageous to the specula- 
tor; but the money he would be making 
on the average would come from his 
broker and not from the market; and 
brokerage fees would have to be such as 
to make the game at best fair in the long 
run. 

VII. A MORE REFINED MODEL 

OF PRICE VARIATION 

Broadly speaking, the predictions of 
my main model seem to me to be reason- 
able. At closer inspection, however, one 
notes that large price changes are not 
isolated between periods of slow change; 
they rather tend to be the result of sev- 
eral fluctuations, some of which "over- 
shoot" the final change. Similarly, the 
movement of prices in periods of tran- 
quillity seem to be smoother than pre- 
dicted by my process. In other words, 
large changes tend to be followed by 
large changes-of either sign-and small 
changes tend to be followed by small 
changes, so that the isolines of low prob- 
ability of [L(t, 1), L(t - 1, 1)] are X- 
shaped. In the case of daily cotton prices, 
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Hendrik S. Houthakker stressed this fact 
in several conferences and private con- 
versation. 

Such an X shape can be easily ob- 
tained by rotation from the "plus-sign 
shape" which was observed in Figure 4 
to be applicable when L(t, 1) and L(t - 

1, 1) are statistically independent and 
symmetric. The necessary rotation intro- 
duces the two expressions: 

S(t) = (1/2)[L(t, 1) + L(t - 1, 1)] 

= (1/2) [loge Z(t + 1) - loge Z(t - 1)1 

and 

D(t) = (1/2) [L(t, 1) -L(t- 1, 1)] 

= (1/2) [loge Z(t + 1) - 2 loge Z(t) 

+ loge Z(t - 1)]. 

It follows that in order to obtain the X 
shape of the empirical isolines, it would 
be sufficient to assume that the first and 
second finite differences of loge Z(t) are 
two stable Paretian random variables, 
independent of each other and naturally 
of loge Z(t) (see Fig. 4). Such a process is 
invariant by time inversion. 

It is interesting to note that the dis- 
tribution of L(1, 1), conditioned by the 
known L(t - 1, 1), is asymptotically 
Paretian with an exponent equal to 2a + 
1.1' Since, for the usual range of a, 2a + 1 
is greater than 4, it is clear that no stable 
Paretian law can be associated with the 
conditioned LQ, 1). In fact, even the 
kurtosis is finite for the conditioned 
L(t, 1). 

Let us then consider a Markovian 
process with the transition probability 
I have just introduced. If the initial 
L(TO, 1) is small, the first values of 

L(t, 1) will be weakly Paretian with a 
high exponent 2a + 1, so that loge Z(t) 
will begin by fluctuating much less rap- 
idly than in the case of independent L(t, 
1). Eventually, however, a large L(t0, 1) 
will appear. Thereafter, L(t, 1) will fluc- 
tuate for some time between values of the 
orders of magnitude of L(t0, 1) and 
-L(t0, 1). This will last long enough to 
compensate fully for the deficiency of 
large values during the period of slow 
variation. In other words, the occasional 
sharp changes of L(t, 1) predicted by the 
model of independent L(t, 1) are replaced 
by oscillatory periods, and the periods 
without sharp change are less fluctuating 
than when the L(t, 1) are independent. 

We see that, for the correct estimation 
of a, it is mandatory to avoid the elimina- 
tion of periods of rapid change of prices. 
One cannot argue that they are "caus- 
ally" explainable and ought to be elimi- 
nated before the "noise" is examined 
more closely. If one succeeded in elimi- 
nating all large changes in this way, one 
would have a Gaussian-like remainder 
which, however, would be devoid of any 
significance. 

16 Proof: Pr[L(t, 1) > u, when w < L(t - 1, 
1) < w + dw] is the product by (l/dw) of the in- 
tegral of the probability density of [L(t - 1, l)L(t, 
1)], over a strip that differs infinitesimally from the 
zone defined by 

S(t) > (u + w)/2; 

w + S(t < D(t) < w + S(t) + dw. 

Hence, if u is large as compared to w, the conditional 
probability in question is equal to the following 
integral, carried from (u + w)/2 to . 

fC'as-(a+l)C'a(s + w)-(a+l) ds 

- (2a + 1)-i (C')2a22-(2a+l) U-(2a+l) 
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