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ABSTRACT: Strong concentration results play a fundamental role in probabilistic combinatorics
and theoretical computer science. In this paper, we present several new concentration results
developed recently by the author and collaborators. To illustrate the power of these new results, we
discuss applications in many different areas of mathematics, from combinatorial number theory to
the theory of random graphs. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 20: 262–316, 2002

1. OVERVIEW

Strong concentration (or large deviation) inequalities are vital tools in probabilistic
combinatorics and several related areas, such as theoretical computer science. The usual
way to prove a strong concentration inequality is via either Azuma’s (bounded martingale
method) or Talagrand’s inequalities. These inequalities work remarkably well when
applied to functions with relative small (discrete) Lipschitz coefficients. However, they
become less effective when the Lipschitz coefficient is large. Recently, J. H. Kim and the
present author [40, 79] developed a new type of inequality which can be used to handle
the latter case. These new inequalities have been used with considerable success in order
to attack intricate problems in diverse areas, ranging from random graphs to finite
geometry, leading to several improvements [41, 74, 75, 77, 78].

The present paper has two goals. The first is to give an up-to-date account about these
new inequalities. Beside the results, we shall also describe the intuition behind our
development and discuss the key ideas of the proofs. We believe that some of these ideas
(especially Lemma 3.1) can be applied in situations far more general than those considered
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in this paper and therefore could be of independent interest. Also in this part of the paper,
we shall present the proof of our most recent and most general inequalities.

The second part of the paper is a survey on applications, which touch an amazingly
large variety of basic concepts in combinatorics: random graphs, matching and coloring,
finite projective planes, additive bases, to mention a few. A pleasant feature about these
applications is that in many cases (see Sections 6.2, 6.3, and 8.2, for instance), our
inequalities not only solve the problem at hand, but also lead to the rediscovery of
important notions (such as the notion of balanced graphs in Section 6.2 or that of codegree
in Section 8.2). This makes it possible to view these notions from a different aspect and
provides a quantitative way to explain their necessity in the given problems. Another
appealing fact is that our inequalities are easy to use; their applications do not require the
sort of ingenuity one frequently needs when using, for instance, the martingale method.

Throughout the paper, we consider real-value functions depending on n variables
t1, . . . , tn, where the ti’s are independent random variables with arbitrary distributions in
[0, 1]. We denote by � the product space spanned by the ti’s, equipped with the natural
product measure. In most applications, the ti’s are binary (assuming only two values 0 and
1) and � is the n-dimensional unit hypercube. The lower case letters a, b, c, d denote
positive constants, whose values may be different at each occurrence. � and � denote the
set of real and natural numbers, respectively.

The paper is organized as follows. The first part consists of four sections, 2, 3, 4, and
5. Section 2 presents the general phenomenon of the theory of strong concentration and
some classical concentration results such as Azuma’s and Talagrand’s inequalities, to-
gether with the obstacle these inequalities face when applied to functions with large
Lipschitz coefficients. In the next section, we start by describing our intuition and main
ideas, and follow by our general scheme for proving a concentration result for a certain
class functions with large Lipschitz coefficient. We end this section with our key tool, a
new martingale inequality (Lemma 3.1). In Section 4, we present our new concentration
results and make a comparison with the classical ones on a well-known problem in the
theory of random graphs. In this section, we also pose several questions which may
stimulate further research and state the so-called polynomial method, which appears to be
useful in many applications. Section 5 contains the proofs of the most recent results which
nicely illustrate our general method.

While our method appears to be fairly general, our concentration results mainly focus
on a special class of functions: polynomials with positive coefficients. This has two
reasons. The first is that polynomials appear as the most natural candidate for our method.
The second is that in all applications found so far, the objective function is a polynomial
or can be very well approximated by one. On the other hand, our proofs do not rely too
much on the properties of polynomials, so we can easily modify them to obtain results for
a larger class of functions. Few examples of this kind are presented in Section 4.5, and we
hope that the emergence of new applications will lead to new developments in this
direction.

The second part of the paper consists of three sections: 6, 7, and 8. These sections are
devoted to applications in diverse areas of mathematics and can be read independently.
Section 6 discusses applications in random graph theory and similar random structures,
focusing on the classical subgraph count problem, where our new inequalities provide
breakthrough results on several questions. Section 7 contains applications in combinatorial
number theory, including a solution to an open problem of Nathanson on the existence of
thin Waring basis [53], posed in 1980. The final and richest section, Section 8 describes
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a powerful combination of our results with the so-called “semirandom” method, a
sophisticated method in probabilistic combinatorics. This combination is the key tool in
the proofs of several highly non-trivial results [41, 79, 80]. These include the solution to
a famous and long-standing open problem of Segre in finite geometry, dating back to the
1950s, and several improvements in two topics: nearly perfect matchings in hypergraphs
and list coloring of locally sparse graphs. These improvements all have far-reaching and
nontrivial consequences in several other problems, some of which will be mentioned
briefly. Due to the complexity of the proofs, we shall only be able to present the sketch
of the simplest proof, the proof of a recent theorem on nearly perfect matchings from [79].
On the other hand, as polynomials arise very naturally in applications of the semirandom
method (as shown in this sketch) and as our approach is quite robust, we hope that this
sketch not only convinces the reader about the power of our tools, but also makes the
semirandom method more accessible for nonexperts.

2. CLASSICAL CONCENTRATION RESULTS

2.1. Chernoff, Azuma, Talagrand

Let us start by describing what we mean by “strong concentration.” A typical strong
concentration result is the following, due to Chernoff.

Theorem 2.1. Let Y � ¥i�1
n ti, where ti are i.i.d binary random variables with mean

p. Then for any � � 0

Pr��Y � ��Y�� � ��n� � 2e��/ 2.

We say that a function is strongly concentrated if it satisfies an exponential deviation
bound of Chernoff’s type. Inequalities obtained by estimates of moments of small order
(such as Chebysev’s inequality) usually do not provide exponential bounds and are not
discussed in this paper.

To know whether a function is strongly concentrated is an issue of fundamental
importance in a number of areas in mathematics. This question has been investigated by
great mathematicians for centuries and the excellent survey by M. Talagrand [67] is a
good place to look for historical background and the most significant developments on the
topic. Central to this survey as well as to the whole theory of concentration is the
following phenomenon

If Y depends smoothly on the atom variables t1, . . . , tn,

then Y is strongly concentrated. (1)

The traditional definition of smoothness uses the notion of Lipschitz coefficient. A
function Y � Y(t1, . . . , tn) from � to � is called r-Lipschitz if

�Y�t� � Y�t��� � r,

whenever the vectors t and t� differ at exactly one coordinate. This definition of Lipschitz
coefficient is motivated by applications of discrete nature, and is somewhat different from
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the definition used in analysis. One then says that Y is smooth if r is relatively small. In
the following we present two well-known results which nicely illustrate phenomenon (1).
These results are not stated in the most general form, but in the form commonly used in
combinatorics and theoretical computer science.

The first result is Azuma’s inequality ([8], Chapter 7).

Theorem 2.2. If Y has Lipschitz coefficient r, then for any � � 0

Pr��Y � ��Y�� � r��n� � 2e��/2.

To state the second result, we first need to introduce the notion of “certificate.” Let f
be a function from � to �. A function Y from � to � is f-certifiable if whenever Y(t) �
b, there exists an index set � of at most f(b) elements so that every t� � � that agrees
with t on the coordinates in � satisfies Y(t�) � b. The following theorem is a consequence
of a recent result of Talagrand [67] (see also Chapter 2 of [34]).

Theorem 2.3. Assume that Y is r-Lipschitz, f-certifiable and let m be the median of Y.
Then for any T � 0,

Pr�Y � m � T� � 2e�T2/4r2f�m�,

and

Pr�Y � m � T� � 2e�T2/4r2f�m�T�.

Talagrand’s inequality provides a strong concentration result around m, the median of
Y. In practice, we usually can, for the sake of convenience, think of m as the mean of Y.
(One can make this rigorous by showing that once Y is strongly concentrated around its
median, then its mean and its median are more or less the same.)

Azuma and Talagrand’s inequalities are, perhaps, the most popular concentration
results in combinatorics and theoretical computer science. Several beautiful applications
can be found in various surveys and books [8, 50, 34, 64].

2.2. Difficulties with Large Lipschitz Coefficients

Once the Lipschitz coefficient r is small, Azuma’s and Talgrand’s inequalities are perfect
tools. However, these inequalities become less effective as r increases. Consider, for
instance, the typical case when the tail is O(�(Y)). In this case, Theorem 2.2 fails to give
a nontrivial bound if r � 	�(Y) and Theorem 2.3 fails if r � �(Y). Unfortunately,
functions with large Lipschitz coefficients do emerge in several natural problems. A
typical example is the following well-known problem from the theory of random graphs.

Example. A random graph G(N, p) on N vertices 1, 2, . . . , N is defined by drawing an
edge between each pair (i, j), 1 � i 
 j � N, with probability p, independently. Here
typically p can be a function in N. There are n � (2

N) i.i.d. random variables tij,
representing the choices; tij � 1 if the edge (i, j) is drawn and 0 otherwise. Random
graphs are basic objects in combinatorics and for more information about the model, we
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refer to two excellent books, by Bollobás [11] and Janson, Łuczak, and Ruciński [34],
respectively.

We say that three vertices i, j, l form a triangle if there is an edge between any pair
of them. Denote by Y the number of triangles in G(N, p). We would like to have an
exponential bound on the following probability

Pr��Y � ��Y�� � ���Y��, (2)

where � is a fixed positive constant and p is small.
Assume, for instance, that p � �(N�3/4). It is clear that in this range �(Y) � (3

N) p3 �
�(N3/4). Moreover, T is chosen to be ��(Y) � �(N3/4). Since an edge can be included
in N � 2 triangles, deleting one edge can change Y by as much as N � 2. Thus, the
Lipschitz coefficient of Y is at least N � 2 (in fact, it is equal to N � 2), which is much
larger than both �(Y) and T. So neither Theorem 2.2 nor Theorem 2.3 yield a nontrivial
bound.

It is clear that triangles do not play an essential role in the problem and the same
difficulty occurs for any fixed graph. Although the question of estimating the probability
in (2) has long been studied (see [34], Chapters 2, 3 and their references), due to the lack
of knowledge about concentration of functions with large Lipschitz coefficients, no
general exponential bounds (which works for an arbitrary fixed graph) were known prior
to our study (see Section 6 for more details).

3. OUR MAIN IDEAS AND TOOLS

3.1. Intuition and Main Ideas

Let us take another look at the previous example. The Lipschitz coefficient of Y is indeed
N � 2 and so Y is not at all smooth in the traditional sense. However, it is a very rare event
that any particular edge spans N � 2 triangles. For an fixed edge e, the expectation of the
number of triangles it spans is only (N � 2) p2 � O(1). This suggests that in order to
obtain a strong concentration result, instead of the “worst case” Lipschitz coefficient, we
might want to look at a sort of “average” or “typical” Lipschitz coefficient. In term of
smoothness, it means we might want to consider some sort of “average smoothness,”
rather than the global smoothness defined in Section 2.1. A question of great importance
is to find a reasonable definition of average smoothness such that for a large class of
functions the following variant of (1) hold

If Y is smooth in average, then it is strongly concentrated. (3)

The attempt to understand the concept of average smoothness has been the driving
force behind our development. At the highest level of generality, it seems that finding a
proper definition for average smoothness might be impossible, or as hard as proving the
concentration itself. On the other hand, we have discovered that for an important class of
functions there is in fact a simple way to define average smoothness.

Another idea which underlines our study is to exploit the structural properties of the
objective function Y. The proofs of both Azuma’s and Talagrand’s inequalities are based
on an inductive argument on n, the number of atom variables (or the number of martingale
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differences). These proofs are very general and require only a little knowledge about the
objective function. On the other hand, in discrete problems, functions typically have a
special structure which we may take advantage of. For instance, the structure may allow
us to apply an extra inductive argument on another parameter.

To conclude this subsection, let us summarize the two leading ideas in our investigation

● Use “average smoothness” instead of “global smoothness.”
● Exploit the structural properties of Y by, for instance, an extra induction.

3.2. A General Scheme

In order to use the above two ideas for certain class of functions, we have developed a
proving scheme which basically consists of two steps. The first step is general and can be
applied to any function. The heart of this step is a martingale lemma, which seems very
useful and would be of independent interest. The second step works for functions with
special structural properties such as polynomials. The special structure of the function
provides the ground for the above-mentioned induction.

The first step: Approximation. Consider a function Y. We call a point t � � good,
if changing any coordinate of t does not (in a certain sense) influence Y by too much. All
other points are bad. In this step, we want to approximate Y by a function Y� such that

(�) �(Y�) � �(Y),
(��) Y� is strongly concentrated,
(���) Y(t) � Y�(t) for any good point t.

The idea of cutting out the bad domain (consisting of bad points with large Lipshitz
coefficient) is fairly natural and was considered in various contexts by many authors,
including Spencer-Shamir, Kahn, Kim, Grabble, Godbole, Kersten and others. The extra
and critical point in our argument is that the set of bad points was defined in a delicate way
that not only guarantees the strong concentration of Y�, but also enables us to apply
induction in the second step. It appears very convenient in the proof that we have �(Y) �
�(Y�). In practice, it may be enough to guarantee that ��(Y) � �(Y�)� is considerably
smaller than the deviation tail of Y.

Central to this step is a new martingale lemma discussed in Section 3.4 which (among
others) provides the definition of bad points.

The second step: Induction. In this step, we need to make use of the structure of Y.
Assume, for example, that Y is a polynomial of degree k. Once we have obtained the
desired approximating function Y�, we continue as follows. Due to the fact that Y and Y�
have the same expectation

Pr��Y � ��Y�� � T� � Pr��Y� � ��Y��� � T� � Pr�Y � Y��. (4)

By (��), Y� is already strongly concentrated, so we only need to bound Pr(Y � Y�).
To do this, we make use of assumption (���), and simply bound the measure of the bad
set. This set was defined with foresight in the previous step so that we can bound its
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measure by a sum of large deviation probabilities involving other polynomials. These
polynomials arise from the first-order partial derivatives of Y and will have degree at most
k � 1. This crucial fact allows us to use induction on the degree to bound the large
deviation probabilities in concern. The appearance of the partial derivatives should not be
a big surprise, as the Lipschitz coefficient of Y can also be seen as the maximum value of
a first order partial derivative.

Central to the whole scheme is the induction hypothesis, or the formulation of the
theorem itself. Here we have discovered an amazing and essential fact that for certain class
of functions, it is indeed possible to formalize a hypothesis using an “average Lipschitz
coefficient,” instead of the global Lipschitz coefficient. Finding this hypothesis was
actually the hardest part of our work, requiring some insight and a numerous number of
attempts. As the reader will see after reading Section 5, a proper induction hypothesis not
only allows us to derive a powerful result, but also reduces the proof to a rather routine
verification of few conditions.

3.3. The Bad Set and How To Bound It

The definition of bad points requires some other definitions. First, for every x � [0, 1],
1 � i � n, and t � (t1, . . . , tn) � � define

Ci�x, t� 	 ���Y�t1, . . . , ti�1, ti 	 x� � ��Y�t1, . . . , ti�1��,

and C(t) � maxi, xCi( x, t). Intuitively, C(t) is the maximum effect of one coordinate. The
crucial point here is that we do not consider a global bound on C(t) (as done in the
bounded martingale method), but think of C(t) as a function of t.

To proceed, let us realize that the atom variables ti’s are not necessarily identically
distributed, so they may generalize different measures. In order to avoid confusion, we use
I f( x) dix to denote the integral of the function f( x) over the unit interval I with the
measure generalized by ti

�
I

f�x� dix 	 �
I

f�ti� dti.

Next, we set

Vi�t� 	 �
I

Ci
2�x, t� dix and V�t� 	 �

i�1

n

Vi�t�.

One can view V(t) as a sort of a variance function of Y. It is useful to observe that Ci( x,
t) depends on x and the first i � 1 coordinates of t. In particular, C1( x, t) depends only
on x. Similarly, Vi(t) depends only on the first i � 1 coordinates of t and so V1(t) is a
constant. Finally, we set

CY 	 max
1�i�n;x�I;t��

Ci�x, t� and VY 	 max
t��

V�t�.
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Remark that the parameters just defined are invariant under shifting (for instance, VY �
VY�s for any number s). This allows us to assume later on, without loss of generality, that
�(Y) � 0.

The leading observation in this and the following subsection is that if CY and VY are
relatively small, then Y is strongly concentrated. This is basically the content of our
martingale lemma and also provides the reader a way to reason the definition of the bad
set, which now follows.

For two arbitrary positive numbers C and V, the set � of bad points (with respect to
C and V) is

� 	 �t�C�t� � C or V�t� � V�.

For any t � �, let i(t) be the smallest index i (between 1 and n) such that either Ci( x,
t) � C for some x or ¥j�1

i Vj(t) � V. Let �t � { z � � � zi � ti for all i 
 i(t)}. It
is clear that

● �t � �.
● For any t, t� � �, �t and �t� are either identical or disjoint.

It follows that � is a disjoint union of subhypercubes. Now define the approximating
function Y� as follows

● Y�( z) � Y( z) if z � �.
● Y�( z) � ��t

(Y) if z � �t � �.

The following properties are immediate:

CY� � C,

VY� � V,

Pr�Y � Y�� � Pr���.

We next show that �(Y�) � �(Y). This is trivial by definition in the case the atom
variables ti’s have discrete distributions. In the general case, it needs a little proof. For all
i � 1, 2, . . . , n, let Ti be the set of all bad points t, where i(t) � i. Each Ti is measurable
and is a disjoint union of hypercubes of dimension n � i � 1. Moreover, the projection
of Ti onto the hyperplane spanned by the first i � 1 coordinates is measurable and
therefore Fubini’s theorem implies

�
Ti

Y 	 �
Ti

Y�,

concluding the proof.
Now we discuss the important question of how to bound Pr(�). One of the simplest,

but most useful, ways is the following. First observe that V(t) � CY ¥i�1
n  Ci( x, t) dix;

moreover, CY � C if and only if there is a tuple i, x, t such that Ci( x, t) � C. Therefore,
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Pr��� � Pr� �
i�1

n � Ci�x, t� dix � V/C� � �
i�1

n

Pr�Ci�x, t� � C for some x�. (5)

Next, we find functions Wi(t) and W(t) such that Ci( x, t) � Wi(t) for all x, i and t
and ¥i�1

n  Ci( x, t) dix � W(t) for all t. Trivially

Pr��� � Pr�W�t� � V/C� � �
i�1

n

Pr�Wi�t� � C�. (6)

To make ground for an inductive argument, we next find an index function Ind such
that with a proper choice of Wi’s and W, Ind(Wi)’s and Ind(W) are smaller than Ind(Y).
If this is possible, we can bound the right-hand side in (6) using induction on Ind.

The most convenient situation is when Y is a polynomial. In this case, we can choose
Wi to be (roughly) the first-order partial derivative of Y with respect to ti and so the degree
of Y serves as a natural index. Bounding Pr(W(t) � V/C) is usually a simple matter as
W can often be defined as a (sort of) weighted sum of the Wi’s. In general, when Y is
defined based on a underlying hypergraph (see Sections 4.1 and 4.5), the maximum size
of a hyperedge is a natural choice for the index.

There are, of course, lots of ways to improve or modify the above argument. For
instance, if ti is concentrated on a few points, we can define, for each x in the support of
ti, a function Wi, x(t) such that Wi, x(t) � Ci( x, t) for all t. This way, we obtain

Pr�Wi�t� � C� � �
x

Pr�Wi,x�t� � C�. (7)

We expect that several modifications like this, which is tailored to a specific situation,
will naturally arise with the emergence of new problems. To complete this subsection, let
us mention one important and interesting remark. For the same function, there might exist
several different indices and the quality of the concentration bound depends on the index
we use. Typically, a smaller index leads to a better bound. For certain polynomials, there
is, in fact, an index which serves better than the degree (see Section 6.6).

3.4. A Martingale Lemma

The following lemma shows that Y� is strongly concentrated (with respect to C and V).

Lemma 3.1. Let X be a real-value function on �. Assume that V, C, � are positive

number satisfying CX � C, VX � V, and � � 4V

C 2 . Then

Pr��X � ��X�� � ��V� � 2e��/4.

Consequently, for any function Y and positive numbers V, C, � such that � � 4V

C2

Pr��Y � ��Y�� � ��V� � 2e��/4 � Pr���,
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where the set � is defined with respect to C and V as above.

Proof of Lemma 3.1. We can assume, without loss of generality that �(X) � 0. So it
suffices to prove that

Pr��X� � ��V� � 2e��/4.

Lemma 3.2. Let Z be a function form � to � with mean 0. If u � 1/CZ, then

��euZ� � eu2VZ.

To see that Lemma 3.2 implies (8), set u 	 ��
4V . Since � � 4V

C2 , u � 1
C � 1

CX
. Lemma

3.2 yields

��euX� � eu2VX � eu2V.

By Markov’s inequality

Pr�X � ��V� 	 Pr�euX � eu��V� 	 Pr�euX 
 e�/2� � eu2V��/2 	 e��/4.

Inequality (8) follows by symmetry.

Proof of Lemma 3.2. First we need the following simple statement.

Proposition 3.3. Let � be an arbitrary measure on I � [0, 1]. Suppose that f( x) is a
measurable function on I which has absolute value at most 1 and mean 0 (with respect to
�). Then

�
I

ef� x� d� � eI f 2� x�d�.

Equality holds if and only if f � 0.

Proof of Proposition 3.3. Assume that f is not identically zero. By the Taylor’s series
expansion

�
I

ef � x� d� 	 1 � �
I

f� x� d� �
1

2! �
I

f 2� x� d� � · · ·

Since I f( x) d� � 0 and � f( x)� � 1, the right-hand side is at most

1 � �
i�2

� 1

i! �
I

f 2�x� d� � 1 � �
I

f 2�x� d� � eI f 2�x�d�.

�
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Remark. As c0 	 ¥i�2
� 1

i! 
 1, we can improve the proposition by replacing I f 2( x) d�
in the exponent by c0 I f 2( x) d�. This may lead to a constant better than 1/4 in the
exponent of the bound in Lemma 3.1. However, from the practical point of view, this does
not make a big difference, and we do not try to optimize the constants in this paper.

The proof of Lemma 3.2 uses induction on n. If n � 1, then, for all x � I, C1( x, t) �
�Z( x)� and V( x) � I Z2( x) dx, where the measure is generalized by the unique variable
t1 � x. This yields that �uZ( x)� � uCZ � 1 for all x and the statement of the lemma
follows from Proposition 3.3 by substituting f � uZ.

Now consider a generic n. First notice C1( x, t) � ��(Z�t1 � x)� does not depend on
t. Consequently, V1(t) � I C1

2( x, t) d1x is a constant and we can set V1 � V1(t).
Let �� be the (n � 1) dimensional subcube spanned by t2, . . . , tn. For each x � I,

consider the following function from �� to �

Zx�t�� 	 Z�x, t2, . . . , tn� � ��Z�t1 	 x�.

By definition, Zx(t�) has mean 0, for any x � I. Moreover, VZx
� VZ � V1. By the

induction hypothesis

����euZx� � eu2�VZx� � eu2�VZ�V1�.

On the other hand, by Fubini’s theorem

���euZ� 	 �����
I

euZxeu��Z � t1�x� d1x�
	 �

I

eu��Z � t1�x�����e
uZx� d1x

� �
I

eu��Z � t1�x�eu2�VZ�V1� d1x

	 eu2�VZ�V1� �
I

eu��Z � t1�x� d1x.

Set f( x) � u�(Z�t1 � x). By the assumption on u, f( x) satisfies the conditions of
Proposition 3.3, so

�
I

eu��Z�t1�x� d1x 	 �
I

ef�x� d1x � eI f 2�x� d1x 	 eu2V1,

completing the proof. �
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4. NEW CONCENTRATION RESULTS

4.1. The First Result

In [40] (see also [8], Chapter 7), J. H. Kim and the present author proved the first result
on the concentration of polynomials. This result was originally formulated and proved as
a lemma to the solution of a long standing question of Segre in finite geometry [41] (see
Section 8.4 for more details). However, as it turned out to be of independent interest, we
published it in a separate paper.

The setting of the result is as follows. Consider a hypergraph H � (V, E), where V �
{1, 2, . . . , n} is the set of vertices and E is the set of edges. We assume that each edge
in E contains at most k vertices. Let ti, i � V, be mutually independent indicator random
variables with expectation pi. Consider the following polynomial:

Y 	 �
e�E

we �
i�e

ti,

where we are positive coefficients. We allow e � A in which case �i�e ti � 1 by
convention.

H is called the underlying hypergraph of Y, and we shall exploit its structure to extract
information about the concentration of Y.

For each vertex set A with at most k elements, we define a polynomial YA as follows.
For each monomial �i�e ti in Y with A � e replace it by �i�eA ti and delete all other
monomials. For instance, if Y � 3t1t2 � 4t1t4 � 5t3t5 and A � {1}, then YA � 3t2 �
4t4. If A is the empty set, then YA � Y.

Now comes the crucial definition. Set �j(Y) � maxA,�A��j�(YA), for all j � 0, 1, . . . ,
k. Here and throughout the paper, �j(Y) can be heuristically interpreted as the maximum
average effect of a group of at least j atom variables on Y. In this setting, �1(Y) is our
candidate for the “average” Lipschitz coefficient.

Theorem 4.1. For any k there are positive numbers ak and bk depending only on k such
that with �j(Y) defined as above

Pr��Y � ��Y�� � ak�
k��0�Y��1�Y�� � bke

��/4��k�1�log n. (9)

Remark. In the above theorem, one can set ak � 8kk!1/ 2 and bk � 2e2. By increasing
ak, one can replace �/4 in the exponent by � and remove bk for a better-looking bound
(this applies for all later theorems). However, as it is more convenient to prove Theorem
4.1 (and other theorems) in this form, we stay with it.

Assume that k is a constant. From the statement of the theorem and the definition of the
�j(Y)’s, one can conclude that if �0(Y) � �(Y) � �1(Y) log2k n, i.e., the expectation of
Y exceeds the average effect of any group of at most k atom variables by a factor
�(log2kn), then Y is strongly concentrated. Indeed, in such a case one can choose � �
�(log n) so that the bound bke���(k�1)log n is super polynomially small while the tail
ak�k	�0(Y)�1(Y) is still negligible compared to �(Y).

The proof of Theorem 4.1 uses an inductive argument on k, the maximal size of an
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edge in the underlying hypergraph H. From this, the reader may gain some intuition about
why we need to consider �(YA) for every plausible set A of size at most k.

To show the power of Theorem 4.1, let us apply it to obtain a bound on the probability
considered in (2). To start, observe that the number of triangles in the random graph G(N,
p) can be written as a polynomial of degree 3 as follows:

Y 	 �
1�i
j
l�N

tijtjltil,

where tij is the binary variable representing the choice of the edge ij. To this end, we
understand that tij and tji denote the same random variable.

For p � �(N�3/4), the expectation of Y is �(N3p3) � �(N3/4). Assume that A �
{ij}; then

YA 	 �
l�i,j

tjltil.

Trivially,

��YA� 	 O�Np2� 	 o�1�.

If A has two elements, then YA is either 0 or tij, for some i and j. Finally, if A has three
elements, then YA is either 0 or 1. It follows that

�1�Y� 	 max
�A��1

���YA�� 	 1,

and

�0�Y� 	 max
�A��0

���YA�� 	 ��Y�.

Setting � � cN1/8, where c is a positive constant chosen such that a3�3	�(Y) �
��(Y), Theorem 4.1 yields (recall that n � (2

N))

Pr��Y � ��Y�� � ���Y�� � b3e
��/4�2 log n 	 e���N1/8�. (10)

An alert reader might have recognized that under the current circumstances, YA is
exactly the partial derivative of Y with respect the ti, i � A. This is not at all accidental.
The Lipschitz coefficient of Y can also be defined as the maximum value of a first partial
derivative of Y. Thus, in order to find an “average” Lipschitz coefficient, it is natural to
consider the expectation of partial derivatives. It has turned out, interestingly, that to
define this average Lipschitz coefficient properly, one has to look at not only the partial
derivatives of the first order, but of all orders (see Section 4.6 for a discussion of this
point).

Theorem 4.1 has several deep and surprising applications [40, 41, 80]. On the other
hand, a reader who is familiar with the theory of concentration might find the term �k a
little bit ad hoc and might wonder whether it can be improved. A “natural” desire is,

274 VU



perhaps, to replace �k by �1/2. In the case this could be done, one would obtain not only
a more powerful inequality, but also a far more natural one. Our experience shows that in
many cases, the quantity �0(Y)�1(Y) matches the variance of Y, so an inequality with �1/2

(instead of �k) would imply that

Pr��Y � ��Y�� � �� Var�Y�� � e�c�,

which means that Y has a desirable sub-Gaussian tail distribution (see, for instance,
Section 6.4).

It has turned out recently that this �1/2 replacement is, to some extent, possible.
Moreover, we have also found out that the binary assumption, which plays certain role in
the original proof of Theorem 4.1 in [40], is unnecessary. Together, these lead to a
strengthened and generalized version of Theorem 4.1, which is the subject of the next
subsection.

4.2. A More General Result

In this subsection, we consider independent random variables t1, . . . , tn with arbitrary
distributions on the interval [0, 1]. A polynomial Y is normal if its coefficients are between
0 and 1. We define two parameters ck and dk recursively as follows: c1 � 1, d1 � 2, ck �
2k1/ 2(ck�1 � 1), dk � 2(dk�1 � 1).

Assume that Y has degree k; for a multiset A of size at most k, �AY denotes the partial
derivative of Y with respect to A. For instance, if Y � t1

2t2
2t3 � t4

5 and A1 � {1, 2}, A2 �
{1, 1, 3}, then �A1

(F) � 4t1t2t3 and �A2
(F) � 2t2

2, respectively. If the set A is empty,
then �AY � Y. Finally, for all 0 � j � k, let

�j�Y� 	 max
�A��j

���A�Y��,

Mj�Y� 	 max
t��,�A��j

�AY�t�.

The reader should notice that the above definition of �j(Y) is a generalization of the
definition given in the previous subsection.

Theorem 4.2. Let Y be normal polynomial of degree k and assume that �j(Y)’s and
Mj(Y)’s are defined as above. For any integer 1 � k̃ � k such that Mk̃(Y) � 1 and any
collection of positive numbers �0 � �1 � . . . � � k̃ � 1 and � satisfying

• �j � �j(Y), 0 � j � k̃ � 1,
• �j/�j�1 � � � 4j log n, 0 � j � k̃ � 1,

the following holds:

Pr��Y � ��Y�� � ck���0�1� � dke
��/4. (11)

Notice that an integer k̃ satisfying Mk̃(Y) � 1 always exists given that Y is normal (for
instance, k̃ � k satisfies the requirement).
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The proof of Theorem 4.2 again uses an inductive argument on k. However, due to the
definition of k̃, when we consider the k̃th step, all functions in concerned are (roughly) the
partial derivatives of order k̃ and hence bounded by a constant. Thus the induction
hypothesis becomes trivial, and we could end the induction process at this point, reducing
the number of steps from k to k̃. This usually results in a stronger bound if k̃ 
 k and the
reconsideration of the triangle counting problem will provide such an example.

There are two natural ways to apply Theorem 4.2. If � is given, one can find the
smallest tail by optimizing �0�1. If the tail is given, one can find the best deviation bound
(with respect to our theorem) by optimizing �.

The reader might notice that there is no restriction on k in Theorems 4.1 and 4.2, so in
general k may depend on n. However, due to the term �k and the fact that ak, bk, ck, dk

are large (order ek log k), the tails in these theorems are small (compared to the mean) only
when k is sufficiently small. Typically, our theorems give a reasonable bound for k up to
O(log n/log log n). In all applications considered in this paper, k is a constant.

The power of Theorem 4.2 relies on the flexibility of choosing k̃ and the sequence �j.
This will be made more clear in the next subsection, where a few corollaries are derived.
To conclude this subsection, let us reconsider the triangle counting problem (see Sections
2.2 and 4.1) and compare the performance of Theorem 4.2 on this problem with that of
Theorem 4.1.

Again let Y denote the number of triangles in G(N, p). By the calculation in the
previous subsection, a partial derivative of order at least 2 of Y is either tij for some i, j
or 0 or 1. Therefore,

M2�Y� 	 max
t��,�A��2

�A�Y�t�� 	 1.

To apply Theorem 4.2, we choose k̃ � 2 (thus k̃ 
 k � 3) and set �0 � �(Y), �1 �
	�(Y), �2 � 1, and � � a	�(Y), where a is a positive constant chosen so that
conditions of Theorem 4.2 are met and the tail c3

	��0�1 is at most ��(Y). Theorem 4.2
then yields

Pr��Y � ��Y�� � ���Y�� � d3e
�� 	 e���N3/8�, (12)

which is a significant improvement over (10).

4.3. Corollaries

In this subsection, we derive several corollaries of Theorem 4.2, which are somewhat
more handy in applications.

Notice that ck is e�(k log k), so if � � ck log k, for some sufficiently large constant c
(which does not depend on k), then we can get rid of the parameter dk by slightly
increasing ck. The assumption � � ck log k is immediate in most applications, where k
is a constant and � � �(1).

Corollary 4.3. There is a constant c such that for each k there is a number ck such that
the following holds. For any positive numbers �0 � �1 � . . . � �k̃ � 1 and � � ck
log k satisfying
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• �j � �j(Y), 0 � j � k̃ � 1,
• �j/�j�1 � � � 4j log n, 0 � j � k̃ � 1,

one has

Pr��Y � ��Y�� � ck���0�1� � e��/4, (13)

where �j(Y)’s are defined as in Theorem 4.2.

In certain applications, one can set the �j’s so that the product �0�1 is the same (up
to a constant factor) as the variance of Y. In such a case, (13) yields that Y has
sub-Gaussian tail distribution, namely,

Pr��Y � ��Y�� � �� Var�Y�� � e�����, (14)

in some range of �.
In a general situation, we may not assume that Y is normal, and so the index k̃ with the

property that Mj(Y) � 1 for all j � k̃ may not exist. One can easily overcome this obstacle
by scaling down Y in a natural way.

Corollary 4.4. For any positive numbers �0 � �1 � . . . � �k and � satisfying

• for all 0 � j � k, �j � �j(Y),
• for all 0 � j � k � 1, �j/�j�1 � � � 4j log n,

the following holds:

Pr��Y � ��Y�� � ck���0�1� � dke
��/4,

where �j(Y)’s are defined as in Theorem 4.2.

Proof. We have, by definition, that

Mk�Y� 	 �k�Y� � �k.

Set k̃ � k, �j � �j/�k for all j and define Z � Y/�k. Apply Theorem 4.2 for Z and
the sequence �0, . . . , �k. �

To conclude, let us derive Theorem 4.1 from Corollary 4.4, using a particular setting
of the parameters �j’s. Recall that �1(Y) � maxj�1�j(Y). Set �k � �1(Y), �i �
�i�1(� � 4i log n) for all i � 1, . . . , k � 1 and �0 � �0(Y) �i�0

k�1 (� � 4i log n),
we have

�0�1� 	 ��0�Y��1�Y� �
i�0

k�1

�� � 4i log n� �
i�1

k�1

�� � 4i log n�.
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As (� � 4i log n)(� � 4(k � 1 � i)log n) � (� � 2(k � 1)log n)2, it follows that

��0�1� � ��� � 2�k � 1�log n�2k�0�Y��1�Y�.

Corollary 4.4 implies

Pr��Y � ��Y�� � ck�� � 2�k � 1�log n�k��0�Y��1�Y�� � dke
��/4, (15)

which is equivalent to (9). It should be clear that the previous choice of �j’s is far from
optimal. In most cases (e.g., the triangle counting problem), Theorem 4.2 or Corollaries
4.3 and 4.4 give stronger bounds than Theorem 4.1.

4.4. Concentration of Polynomials with Small Expectations

In this subsection, we consider polynomials with rather small expectations (of order
polylog(n), say). In this case, Theorem 4.2 and its corollaries are not very effective. Let
us assume, for instance, that �(Y) � O(log n) and the parameter k̃ in Theorem 4.2 is at
least 2. To satisfy the lower bound of the ratios �j/�j�1, �0 should be �(log2n) and �1

should be �(log n). Thus, the tail in Theorem 4.2 is �(log3/2n). Although Theorem 4.2
still gives something, it is not particularly useful because we usually require the tail to be
smaller than the mean of Y. It should be obvious that the situation is even worse with
Theorem 4.1, due to the term �k.

In a recent paper [78], the present author proved several results in order to handle this
situation, and in the rest of this subsection we shall describe these results. To this end, we
shall consider only binary random variables. Every monomial of binary random variables
can be reduced to a product of different variables (for instance, t1

2t2
3 � t1t2

2 � t1t2). We
say that a polynomial is simplified if its monomials are reduced. It is obvious that every
polynomial has a unique simplification.

Define a function f as follows: f(K) � max{1, (K/k!)1/k � 1}. Furthermore, let

r�k, K, n, �� 	 � log2

1

�� nk� f�K/2�/2

f �K/2�!
� ��/K8�1/8k log 1/�.

It is useful to notice that if � is a negative power of n (with constant degree), then for
any fixed k and �, there is a number K(k, �) such that for all K � K(k, �), r(k, K, n,
�) � n��.

Given a normal polynomial Y, define h(k, K, n, �) recursively in the following way:

h�1, K, n, �� 	 0; h�k, K, n, �� 	 h�k � 1, K, n � ��Y�, �� � nr�k, K, n, ��.

Given a set A, we denote by �*AY the polynomial obtained from the partial derivative
�AY by subtracting its constant coefficient. Define �*j(Y) � max�A��j�(�*AY). From the
definitions, it is clear that if Y has degree k, then �*k(Y) � 0.

Theorem 4.5. Let Y be a simplified normal polynomial of degree k. Suppose that there
are positive numbers � and K satisfying K � 2k, �*1(Y) � � � 1, and 4kK� � �(Y).
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Then

Pr��Y � ��Y�� � 2��kK��Y�� � 2ke��/4 � h�k, K, n, ��.

The following two corollaries of Theorem 4.5 are easier to apply when �(Y) falls into
certain range. Notice that if Y is homogeneous (that is, every monomial has the same
degree), then, for any set A with cardinality at most k � 1, �*AY � �AY.

Corollary 4.6. For any positive constants k, �, �, � there is a constant Q � Q(k, �,
�, �) such that the following holds. If Y is a normal positive homogeneous polynomial of
degree k, n/Q � �(Y) � Q log n and �(�A(Y)) � n�� for every nonempty set A of
cardinality at most k � 1, then

Pr��Y � ��Y�� � ���Y�� � n��.

Corollary 4.7. Assume that Y is a normal positive homogeneous polynomial of degree
k and the expectation of Y is g log n, where 0 
 g � 1 can be a function depending on
n. Assume, furthermore, that, for all A, 1 � �A� � k � 1, �(�A(Y)) � n�� for some
positive constant �. Then there are positive constants c � c(�, k) and d � d(�, k) such
that for any 0 � � � 1,

Pr��Y � ��Y�� � ���Y�� � de�c�2��Y�.

In Corollaries 4.6 and 4.7, Y does not need to be simplified and this proves convenient
in certain applications (see Section 7). The reader can try to deduce both corollaries from
Theorem 4.5 as an exercise or check [78] for a proof.

The proof of Theorem 4.5 is actually more complicated than that of Theorems 4.1 and
4.2. This proof combined our general method (see Section 3) with the following result.

Theorem 4.8. Let � be a positive number at most 1. Suppose that Y is normal and
�*0(Y) � �. Then for any K � 0

Pr�Y � K� � 2
b�k, n��f�K/ 2�/ 2

f�K/ 2�!
� ��1/8/K�1/8k log 1/�,

where b(k, n) � ¥i�1
k (i

n).

Here is the reason why we need this theorem. When Y has small expectation, we
usually have to set the quantity C (see Section 3.3) be a constant. So, following (6), we
need to bound Pr(Wi � C), where Wi is a polynomial and C is a constant. Unfortunately,
for such a small tail, our general inductive argument does not work anymore and we need
to prove Theorem 4.8 using different arguments. These arguments are purely combina-
torial and strongly require the binary assumption on the atom variables. It remains an
interesting question whether Theorems 4.5 and 4.8 can be extended to atom variables with
arbitrary distributions in the unit interval.

Theorem 4.8 yields the following corollary.

Corollary 4.9. For any positive constants � and � and a positive integer k, there is a
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positive constant K � K(k, �, �) such that if Y is normal of degree k and �*0(Y) � n��,
then Pr(Y � K) � n��.

To conclude this subsection, let us mention a result of a little bit different flavor. This
result was needed in the proof of Theorem 4.8 and proved useful in several other situations
(see [8] or Section 7, for instance). The proof is simple and can be found in Chapter 8
of [8].

Consider a polynomial Y which is a sum of different monomials with coefficient 1.
Two monomials of Y are disjoint if their supports are disjoint. At a point t, we say that
a monomial is alive if it is not zero. We denote by Disj(Y(t)) the maximum number of
pairwise disjoint alive monomials of Y at t.

Proposition 4.10. For Y as above and any positive integer K

Pr�Disj�Y� � K� � ��Y�K/K!.

4.5. Concentration of More General Functions

While our results focus on polynomials, it is worth mentioning that our method is not
restricted to these functions. In fact, the proofs for Theorems 4.1 and 4.2 use the maximum
degree of the monomials as an index function, but never use the fact that these monomials
are products of the atom variables in an essential way. It is thus very easy to modify these
proofs to obtain results for a larger class of functions and below we provide two examples.
These examples are, by no mean, exclusive, and we believe that the emergence of new
applications will naturally lead to many other extensions.

The writing of this subsection was inspired by a recent paper of S. Janson and A.
Ruciński [34], who proved several bounds for the upper tail probability Pr(Y � �(Y) �
T) under various general assumptions, using the so-called deletion lemma combined with
an inductive argument similar to ours. Their bounds are more or less equivalent to ours in
all applications found so far, perhaps due to the similarity between the inductions.

In the first example, we consider a more general setting of Theorem 4.1. Again we have
an underlying hypergraph H whose edges are of size at most k. On each edge e �
{i1, . . . , il}, consider a nonnegative, monotone increasing (in every variables) function
Ze which depends only on the random variables ti1

, . . . , til
. (If Ze is a multiple of the

product of these random variables, then we obtain a polynomial.) Our objective function
Y is the sum of the Ze’s.

Next, we slightly modify the definition of �j(Y)’s. It will be useful to keep in mind that
we want �j(Y) to be the maximum average effect of a group of at least j variables.
Similarly to Section 4.1, for each vertex set A of at most k elements, we define a function
YA as follows. In all Ze, where e contains A, we substitute 1 for every random variable
ti where i � e and let YA be the sum of these new functions. (Also notice this is a
generalization of the definition of YA in Section 4.1.) Because of monotonicity, this
assignment makes �(YA) the largest among all possible assignments. Now we can define
�j(Y) the same way as before: �j(Y) � maxA,�A��j�(YA).

We can also take into account the quantity k̃ defined in Section 4.2. Let Mj �
maxt,�A��jYA(t) and assume that there is an index 1 � k̃ � k such that Mk̃(Y) � 1.

The following theorem can be proved using essentially the proof of Theorem 4.2.
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Theorem 4.11. With �j(Y)’s defined as above and the numbers ck and dk as in Theorem
4.2 the following holds. For any collection of positive numbers �0 � �1 � . . . � � k̃ �
1 and � satisfying

• �j � �j(Y), 0 � j � k̃ � 1,
• �j/�j�1 � � � 4j log n, 0 � j � k̃ � 1,

we have

Pr��Y � ��Y�� � ck���0�1� � dke
��/4. (16)

Remark. Theorem 4.11 still holds (with a modification on the definition of �j) if we only
assume that the Ze’s are monotone, but not necessarily increasing in each coordinate. (See
Section 5.3 for more about this remark.)

In the second example, we show that one can even give up monotonicity, provided that
each atom variable ti has discrete support consisting of not too many points. This later
assumption is satisfied in most combinatorial applications, where the ti’s are typically
binary.

Assume that the support of ti contains at most L points, for all i. We again consider a
hypergraph H as before but now Ze can be an arbitrary nonnegative function depending
on the variables with indices in e. To define the quantities �j(Y)’s, we now need to be a
little bit more technical. Since the functions Ze’s are no longer monotone, we cannot
uniformly set the value of the random variables in A to one as before, but rather have to
consider all possible assignments. Technically speaking, for a set A � {i1, . . . , il} and
a vector x � ( x1, . . . , xl), where xj is a vertex in the support of tij

, we first need to define
YA, x by setting the value of tij

to xj and summing over all Ze where A � e. Next, we define
�j(Y) � maxA, x;�A��j�(YA, x).

Let Mj � maxt, x,�A��jYA, x(t) and assume that there is an index 1 � k̃ � k such that
Mk̃(Y) � 1.

Theorem 4.12. With �j(Y)’s and Mj(Y)’s defined as above and the numbers ck and dk

as in Theorem 4.2 the following holds. For any collection of positive numbers �0 � �1

� . . . � � k̃ � 1 and � satisfying

• �j � �j(Y)0 � j � k̃ � 1,
• �j/�j�1 � � � 4j log(nL), 0 � j � k̃ � 1,

we have

Pr��Y � ��Y�� � ck���0�1� � dke
��/4. (17)

The only formal difference between this theorem and Theorems 4.2 and 4.11 is that
here we have log(nL) in the second condition instead of log n. This does not change the
bound significantly when � � �(log n) and L is upper bounded by a fixed power of n.

It looks plausible that if we consider only the upper tail or lower tail probability
(Pr(Y � �(Y) � T) or Pr(Y � �(Y) � T), respectively, then we may omit the
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assumption that the ti’s have discrete supports (and correspondingly L from the theorem).
Details will appear elsewhere.

4.6. Partial Derivatives of the First Order Are Not Sufficient

As we have pointed out in Section 4.1, the definition of �j’s involves partial derivatives
of all order. A natural question is whether this is necessary. The following example shows
that this is indeed the case.

Assume that n is divisible by 4 and set l � n/4. Let t1, . . . , tn by i.i.d. binary random
variables with mean n�1/ 2. Consider the following polynomial

Y 	 � �
i�1

l

t2i�1t2i�� �
j�2l�1

n

tj� .

A straightforward calculation shows that the expectation of Y is n1/ 2/8 and the
expectation of any first-order partial derivative of Y is at most 1/2. On the other hand, Y
is not at all concentrated! It is easy to see, using Chernoff’s bound, that with probability
1 � o(1), ¥j�2l�1

n tj is at least n1/ 2/4. Moreover, ¥i�1
l t2i�1t2i is either 0 or at least 1.

Therefore, Y is, almost surely, 0 or at least twice its expectation!
Variants of the above example also rule out the possibility of defining average

smoothness using partial derivatives up to any fixed order.

4.7. The Polynomial Method

In several applications, the function we are interested in might not be a positive polyno-
mial. In such a case, we can use the following method, which will be later referred to as
the polynomial method.

Given a function X from a product space � generated by independent variables
x1, . . . , xm to �. In order to show that X is strongly concentrated, we first find two
polynomials Y1 and Y2 of small degree such that

Y1�x� � X�x� � Y2�x�, for all x � �,

��Y1� � ��X� � ��Y2�.

Once Y1 and Y2 are found, all we need is to show that both polynomials are strongly
concentrated. Since X is sandwiched between the two, X itself should also be strongly
concentrated.

There are several variants of this method; for instance, if we only need a upper tail
bound on X, then it is sufficient to find Y2 such that X � Y2 and �(X) � �(Y2).

A very convenient way to find polynomial approximation is to truncate the Taylor
series of X (if it has one). This approach works remarkably well in several applications
(see Section 8.2, for instance).

4.8. Questions

In this subsections we present few questions which we think are important and may
stimulate further research in the area.
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Let us start with a specific question concerning the general version of the triangle
counting problem considered in Section 2.2. For a fixed graph H, let YH be the number
of copies of H in G(N, p). Let � denote the expectation of YH and let � be a fixed small
positive constant. We want to find a sharp estimate for

Pr��YH � �� � ���.

This problem is interesting by several reasons. First, in itself it is an old and fairly
well-known problem in the theory of random graphs. Second, it seems to be a good toy
problem for developing new ideas which can be applied to a more general setting (such
as polynomials or the settings in Section 4.5). For instance, the study of this problem
reveals the possibility of using different indices for the same function (see Section 6.6 and
the last paragraph of Section 3.3).

The most recent lower bound and upper bound on the above probability can be found
in [76] (see also Section 6.6). Particularly interesting is the lower bound, which involves
the fractional independent number of H and thus gives the problem more combinatorial
flavor. This bound turns out to be sharp for certain graphs and seems to be a good
candidate even for most graphs.

A more general problem is to study the sharpness of our theorems presented in this
section. Perhaps a solution to the above specific question will also shed some light on this
matter. We know very little about the lower bounds for the probabilities considered in our
theorems. The most useful ones are those obtained by using the argument of the lower
bound in the subgraph counting problem [76].

The parameters ak, bk, ck, dk in our results are fairly generous, and we have not made
any attempt to optimize them, as these parameters can always be ignored in our applica-
tions so far. However, it is still desirable to know how much could one reduce these
parameters.

We also find it very interesting to have a more analytical proof for Theorem 4.2, which
exploits more the properties of partial derivatives. Such a proof may easily lead to a new
method and further developments.

5. PROOFS OF THEOREMS 4.2, 4.11, AND 4.12

In the first two subsections, we prove Theorem 4.2. The proofs of the other two theorems
follow fairly easily in the last subsection.

5.1. Choice of Wi and W

We start by defining functions Wi(t)’s and W(t) such that Wi(t) � Ci( x, t) for all i, x and
t and ¥i�1

n I Ci( x, t) dix � W(t) for all t, following the plan described in subsection
3.3 [see the paragraph prior to (6)].

Notice that Y is nonnegative and monotone, so

Ci�x, t� 	 ���Y�t1, . . . , ti�1, ti 	 x� � ��Y�t1, . . . , ti�1�� � ��Yi�t1, . . . , ti�1, ti 	 1�,

(18)
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where Yi is the sum of all monomials containing ti (for the other two theorems Yi � ¥i�e

Ze). Thus we can set Wi(t) � �(Yi�t1, . . . , ti�1, ti � 1). Next, notice that

Ci�x, t� 	 ���Y�t1, . . . , ti�1, ti 	 x� � ��Y�t1, . . . , ti�1��

� ��Yi�t1, . . . , ti�1, ti 	 x� � ��Yi�t1, . . . , ti�1�,

which yields

�
i�1

n �
I

Ci�x, t� dix � �
i�1

n �
I

���Yi�t1, . . . , ti�1, ti 	 x� � ��Yi�t1, . . . , ti�1�� dix

	 �
i�1

n

�1 � pi���Yi�t1, . . . , ti�1�,

For convenience, we replace (1 � pi) by 2 and set W(t) � 2 ¥i�1
n �(Yi�t1, . . . , ti�1).

It is clear, by definition, that the Wi’s and W are polynomials with degrees at most k �
1. Moreover, it is fairly easy to show

Lemma 5.1. We have

(A) �j(Wi) � 2�j�1(Y) for j � 0, . . . , k � 1 and any i,
(B) Mj(Wi) � 2 for all j � k̃ � 1 and any i,
(C) �j(W) � 2k�j(Y) for j � 0, . . . , k � 1 and any i,
(D) Mj(W) � 2k for all j � k̃ and any i.

To give the reader a feeling about this lemma, let us consider the special, but important,
case when Y is multilinear. In this case, one can easily verify that Wi(t) can be obtained
by substituting all variables tj ( j � i) in the first partial derivative of Y with respect to
ti with their expectations (this is the only place we use the multilinear assumption). It
follows immediately that the expectation of any partial derivative of order j of Wi is at
most the maximum expectation of a partial derivative of order j � 1 of Y. This implies
�j(Wi) � �j�1(Y), proving (A) (even without the factor 2 on the right-hand side). The
proof for (B) is similar. To verify the statement in (C) (for j � 0, say), simply notice that
each monomial of Y has at most k nonvanishing first-order partial derivatives and hence
can appear at most k times in W.

The factor of 2 in (A) and (B) is due to the presence of atom variables with higher
degrees when Y is not multilinear. (This constant factor never plays an essential role
anyway.) The formal proof of the lemma is given in the appendix at the end of the paper.

5.2. The Completion of the Second Step

We use induction on k to show

Pr��Y � ��Y�� � ck���0�1� � dke
��/4.
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To start, consider k � 1. Since we assume that k̃ � 0, k̃ should be 1. Set C � �1 and
V � �0�1. By definition, CY � C and VY � V, and the bad set � is empty. Moreover,
4V/C2 � �; thus, Lemma 3.1 applies and yields that

Pr��Y � ��Y�� � ���0�1� � 2e��/4,

completing the proof.
We now consider a generic k � 1. Set C � 2(ck�1 � 1)�1 and V � 4k(ck�1 �

1)2�0�1. A simple calculation yields that V/C � 2k(ck�1 � 1)�0 and 4V/C2 � �0/�1 �
�. Define Y� and � with respect to these parameters. Due to Lemma 3.1 and the recursive
definition of dk, it suffices to show that

Pr��� � 2dk�1e
��/4. (19)

Taking into account the definitions of C, V, ck, and dk, inequality (19) is a straightforward
consequence of the following two claims and inequality (6) in Section 3.3. The proofs of
both claims require only a formal verification of the conditions of the induction hypoth-
esis.

Claim 5.2. For all i � 1, . . . , n

Pr�Wi�t� � 2�1�ck�1 � 1�� � dk�1e
��/4�log n.

Claim 5.3. We have

Pr�W�t� � 2k�ck�1 � 1��0� � dk�1e
��/4.

Proof of Claim 5.2. We distinguish two cases: k̃ � 1 and k̃ � 1.
If k̃ � 1, then by (B) of Lemma 5.1, Wi(t) � 2 for all t. On the other hand, 2k(ck�1 �

1)�0 � 2. Thus, the claim is trivial.
Assume that k̃ � 1. Let Xi(t) � Wi(t)/ 2, �� � � � 4 log n, ��j � �j�1. By (A)

and (B) of Lemma 5.1, Xi satisfies the following:

• �j(Xi) � �j�1 � ��j,
• Mj(Xi) � 1, for all j � k̃ � 1,
• ��j/��j�1 � �� � 4j log n.

Since Xi(t) is a polynomial of degree k � 1, the induction hypothesis applies and yields

Pr��Xi � ��Xi�� 
 ck�1�����0��1� � dk�1e
���/4 	 dk�1e

��/4�log n.

On the other hand, since k̃ � 1, ��0/��1 � �1/�2 � ��. Thus, the tail is at most ck�1�1.
Because �(Xi) � �1, the claim follows. �

Proof of Claim 5.3. Set X(t) � W(t)/ 2k. Since k̃ � 0, we have �0/�1 � �. By the last
two statements of Lemma 5.1, we have
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● �j(X) � �j,
● Mj(X) � 1, for all j � k̃.

The induction hypothesis, applied for X(t), yields

Pr��X � ��X�� � ck�1���0�1� � dk�1e
��/4.

As ��0�1 � �0
2 we obtain

Pr�X � ��X� � ck�1�0� � dk�1e
��/4.

Since �(X) � �0 and X(t) � W(t)/ 2k, the claims follows. �

5.3. Proofs of Theorems 4.11 and 4.12

Notice that in the previous proof, the only place where properties of polynomials are used
is the proof of Lemma 5.1 (in fact, we do not use much about polynomials in this proof,
either). On the other hand, this lemma is straightforward in the setting of Theorem 4.11,
due to the new definition of �j(Y)’s. Thus Theorem 4.11 follows without any modification.

To prove Theorem 4.12, we apply inequality (7) from Section 3.3, taking into account
the fact that the support of each ti has at most L elements. The most trivial choice for
Wi, x(t) is, perhaps, Wi, x(t) � �(Yi�t1, . . . , ti�1, ti � x) � �(Yi�t1, . . . , ti�1). With this
choice of Wi, x(t), we can apply the induction hypothesis to bound Pr(Wi, x(t) � C) for
every pair i, x. Compared to the proof of Theorem 4.2, the only technical difference is that
now we have (at most) nL functions instead of n functions. Therefore, in Claim 5.2, we
need to change log n to log(nL). This results in the appearance of the term log(nL) in the
statement of Theorem 4.12. For W(t) we can still use the same definition as in the proof
of Theorem 4.2 and Claim 5.3 also remains the same.

Finally, we discuss the remark following Theorem 4.11. If a function Ze is monotone,
but not necessarily increasing in each coordinate, then for each i, we need to consider two
functions Wi,0 � �(Yi�t1, . . . , ti�1, ti � 0) and Wi,1 � �(Yi�t1, . . . , ti�1, ti � 1) and
use the trick in the proof of Theorem 4.12. Instead of n functions Wi’s, we now need to
consider 2n functions and this only results in a slight change of ck.

6. APPLICATIONS TO RANDOM GRAPHS

In this section, we describe some applications of our results to the classical subgraph
counting problem. Through these applications, we rediscover important notions such as
balanced and strictly balanced graphs. Several results are new, and we are not aware of
any other method which could produce the same results.

6.1. Introduction

Fix a small graph G with m vertices and k edges, XG counts the number of subgraphs of
G(N, p) isomorphic to G. The ratio k/m is the density of G, and we call G balanced if
its density is not smaller than that of the subgraphs. If the density of G is larger than the
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density of every subgraph, then we call G strictly balanced. The study of XG is a classical
topic in the theory of random graphs, and we refer the reader to [11] and [34] for the
background.

In this section, we use our concentration bounds to prove several properties of the
distribution of XG. As a warm-up, we give a new proof for a classical theorem of Erdős
and Rényi on the threshold probability of XG for the case G is strictly balanced. Next, in
Section 6.3 we prove a new exponential concentration bound on XG, improving a bound
given in [40]. This bound also generalizes the bound shown for the triangle problem in our
principal example. In Section 6.4, we show that, for sufficiently large p, XG has
sub-Gaussian tail distribution in a large interval around its mean. It has been known for
a long time that the normalized version of XG tends to the Gaussian distribution in
probability, but little has been known about the speed of convergence. In relation to this
problem, our last result is quite interesting, since it, in a sense, implies that the normalized
version of XG assumes a sub-Gaussian behavior very fast. Section 6.5 describes various
extensions and other problems. Section 6.6 discusses the possibility of choosing different
indices which lead to better bounds.

Although the distribution of XG has been studied intensively for decades, we are not
aware of any other method which would provide the results of the last two applications.
Another interesting feature is that, in the proofs, the notions of balanced and strictly
balanced graphs emerge in a natural way, through the context of polynomials.

To start, notice that XG can be expressed as a polynomial of degree k as follows

XG 	
1

�Aut�G�� �
x1, . . . ,xm��N�

�
i�Gj

txixj
,

where i �G j means i and j are adjacent in G. It is more convenient to work with YG �
¥x1, . . . , xm�[N] �i�Gj txixj

, ignoring the constant factor �Aut(G)��1. It is clear that

��YG� 	 ��Nmpk�.

For any set A of at most k edges, let v( A) denote the number of vertices in A.
Furthermore, set v( j) � minA,�A��j v( A). A simple consideration shows that

���A�YG�� 	 ��Nm�v �A�pk��A��, (20)

which implies

�j�YG� 	 max
h�j

��Nm�v�h�pk�h�. (21)

(21) yields the following vital fact, which underlines most proofs in this section

��YG�/�j�YG� 	 ��min
h�j

�Nv�h�ph��. (22)

Observe that the right-hand side of (22) is (up to a constant factor) exactly the
minimum expectation of the number of copies of a subgraph of H with at least j vertices.
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6.2. Threshold Probability

In their seminal paper [19], which founded the theory of random graph, Erdős and Rényi
proved the following result on the threshold probability of YG.

Theorem 6.1. Assume that G is strictly balanced. Then

Pr�YG 	 0� 	 1 � o�1� if p

N�m/k,
Pr�YG 
 0� 	 1 � o�1� if p��N�m/k.

The first statement is trivial by a first moment argument and we now give a short proof
for the second statement. For p � N�m/k, �(YG) � �(1). Since the probability Pr(YG �
0) is increasing in p, we can assume, without loss of generality, that �(YG) � g(n)log N,
where 0 
 g(n) � 1. We next apply Corollary 4.7. To apply this corollary, we need the
following claim.

Claim 6.2. If G is strictly balanced and �(YG) � No(1), then �(�A(YG)) � N�� for
some constant � and all A, k � 1 � �A� � 1.

Proof of the Claim. By (20)

���A�YG�� 	 ��Nm�v �A�pk��A�� 	 ����YG��N�v �A�p��A�.

We need to show that �(YG)) N�v( A)p��A� is bounded from above by a negative power
of N. Here the strictly balance assumption emerges naturally. For any set A of edges which
forms a proper subgraph of G, the density �A�/v( A) is less than k/m, the density of G;
therefore, v( A)/�A� � m/k. Moreover, since the expectation of YG is No(1), Nm/kp �
No(1). Therefore, there is a positive constant � so that �(�A(YG)) � N��. �

Corollary 4.7 yields

Pr�YG 	 0� � Pr��YG � ��YG�� � ��YG�� 	 O�e�c��YG�2
� 	 o�1�,

proving the theorem. �

6.3. Exponential Concentration Bounds

Let us reconsider the question posed in our principal example:
Bound

Pr��XG � ��XG�� � ���XG��.

The case when �(XG) is small (of order polylog(N)) was treated in earlier papers (see
[28] and its references). So here we address the case of larger �(XG) only. For the sake
of simplicity, we think of � as a small positive constant, although our arguments apply for
arbitrary �.

We would like to apply Theorem 4.2 with k̃ � k. Set � � aNv/kp and �j � (b�)k�j,
where a, b are positive constants to be chosen. It is clear that the condition �j/�j�1 �
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� � 4j log n is satisfied with any b � 1, since � � log n. Moreover, we can set a
sufficiently small so that the tail ck

	��0�1 is at most ��(YG). The only condition we
need to check is whether �j � �j(YG). Assume that b is sufficiently large, to guarantee
that �j � �j(YG) it is enough to have

�Nm/kp�k�j � Nm�v �h�pk�h, (23)

for any h � j. By finding a necessary and sufficient condition for (23), we will see that
the notion of balanced graphs arise in a natural way. In (23), assume that h � j, then the
inequality becomes

�Nm/kp�k�j � Nm�v � j�pk�j, (24)

which is satisfied if and only if m/k � (m � v( j))/(k � j). The latter is equivalent to
k/m � j/v( j). This simply means that the density of G should be at least as large as that
of any subgraph, that is, G should be balanced.

The condition G is balanced is not only necessary, but also sufficient for (23). Indeed,
if G is balanced then for any h, k/m � h/v(h) which implies m/k � (m � v(h))/(k �
h). On the other hand, since Nm/kp � 1 and k � j � k � h, it follows that

�Nm/kp�k�j � �Nm/kp�k�h � �N�m�v�h��/�k�h�p�k�h 	 Nm�v�h�pk�h.

Thus, Theorem 4.2 implies the following corollary.

Corollary 6.3. If G is balanced and �(YG) � logkN, then for any positive constant �,
there is a positive constant c such that

Pr��YG � ��YG�� � ���YG�� � e�c��YG�1/k
.

Remarks. For certain G and p, Corollary 6.3 can be furthered improved by choosing a
smaller k̃ (see the treatment of triangles in subsection 3.3, where k̃ � 2 and k � 3).
Corollary 6.3 strengthens an earlier result in [40]. Prior to our method, we were not aware
of any other general method which could provide bounds of comparable strength for an
arbitrary graph G, although there are several ad hoc arguments which work for certain
graphs (see [34], Chapter 2).

6.4. Sub-Gaussian Distribution

A significant part of the research on the distribution of YG focus on the limit distribution
of the normalized version of YG. For instance, a typical result is the following, proven by
Ruciński [57]:

If 1/ 2 � p � n�1/m(G), where m(G) is the maximal density of a subgraph of H, then

YG 	
YG � ��YG�

Var1/ 2�YG� tends to the normal distribution N(0, 1) in distribution.
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This is more or less equivalent to saying that for any positive constant �

Pr��YG � ��YG�� � �� Var�YG�� � exp��c��,

where one can set c � 1/ 2 � o(1). A question of great importance is the speed of the
convergence and here very little has been known. In particular, it is not clear that whether
the bound above holds for � tending to infinity together with N. Using Theorem 4.2, we
could prove that with a different constant c this is the case, provided that p is sufficiently
large.

Corollary 6.4. For any fixed graph G and any p � N��, where � 
 1/m�(G), where
m�(G) � max2�j�k( j � 1)/(v( j) � 2), there are positive constants c, �, � such that
for any N� � � � �

Pr��YG � ��YG�� � �� Var�YG�� � e�c�.

Proof. In this range of p, the expectation of every subgraph of G is at least a positive
constant power of N. By Claim 6.2, there is a positive constant � such that for any
j � 1

��YG�/�j�YG� � N�.

For any j � 2, consider

Rj 	 Nv � j�p j/N2p 	 Nv � j��2p j�1 	 N��v � j��2�/� j�1����� j�1�.

By the condition on �, there is a positive constant � such that for any j � 1, Rj is at
least N�. It follows that maxj�1�j(YG) � �1(Y) � �(�(Y)/N2p). Now set �0 � a�(YG),
�j � b(� � 4j log n)1�j�(YG)/N2p for all 1 � j � k � 1 and �k � 1. There is a
positive constant � such that for all k log k � � � N� one can find positive constants a
and b so that the conditions of Corollary 4.3 hold. This corollary implies that for some
positive constant c

Pr��YG � ��YG�� � ���0�1� � e�c�.

It is well known (and easy to verify) that

Var�YG�) 	 ����YG�max
j�1

�j�YG��

(see [11, 34], for instance). In our case, maxj�1�j(YG) is attained at j � 1. Therefore,
Var(YG) � �(�0�1) � �(�0�1), and this completes the proof. �

6.5. Variations

Counting Extensions and the Zero–One Law. Let L be a graph with vertices labeled
by r1, . . . , rl, v1, . . . , vm, where R � {r1, . . . , rl} is a special subset, called the roots.
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The vj are free points, and an edge with at least one free endpoint is called a free edge.
The pair (R, L) will be dubbed as a rooted graph. Let H be a graph on [N] and identify
R with a set of l points in H (to simplify the notation, we also call these points r1, . . . ,
rl). In a rooted graph we pay no attention to the edges between the roots.

Consider a subgraph L� of H on {r1, . . . , rl} � W, where �W� � m. We say that this
subgraph is an extension if one can label the vertices of W as w1, . . . , wm so that

● wi � wj if and only if vi � vj,
● wi � rj if and only if vi � rj.

In other words, (R, L�) is a copy of (R, L). Consider G(N, p); we denote by Y(R,L)

the number of extensions corresponding to a given pair (R, L) and a fixed set of vertices
r1, . . . , rl. If l � 0 (i.e., there is no root), then Y(A, L) � YL is the number of copies
of L. Therefore, the problem of counting extensions can be seen as a generalization of the
problem of counting subgraphs considered in the previous subsection. We denote by
�(Y(R,L)) the expectation of Y(R,L) in G(N, p); it is clear that �(Y(R,L)) � �(Nmpk),
where m is the number of free vertices and k is the number of free edges.

The investigation of the number of rooted subgraphs is motivated by a theorem of
Shelah and Spencer on zero–one laws. In [61] Shelah and Spencer proved the following
important result

Theorem 6.5. If p � N�� for � irrational, then p satisfies zero–one law.

We omit the (rather involved) definition of zero-one laws and refer to [61]. Consider a
rooted graph (R, L) with m free vertices and k edges. The ratio k/m is the density of
(R, L). Similar to the case of graphs, we say that (R, L) is balanced if its density is not
smaller than the density of any proper subgraph; if the density of (R, L) is definitely larger
than that of any proper subgraph, then we say that (R, L) is strictly balanced. We say that
p is safe if the expectation of Y(R,L) in G(N, p) is lower bounded by a positive constant
power of N.

A key tool in the proof of Shelah and Spencer’s theorem is a concentration result on
the number of rooted subgraphs. This concentration result was later strengthened by
Spencer in another paper [63] to the following:

Theorem 6.6. If p is safe and (R, L) is strictly balanced, then for any positive con-
stant �

Pr��Y�R,L� � ��Y�R,L��� 
 ���Y�R,L��� 	 o�n�r�.

We use Theorem 4.2 to improve Theorem 6.6 by giving a sharper bound and weak-
ening the assumption that (R, L) is strictly balanced. Notice that if p is safe than
�(Y(R,L))

1/k � log N. The proof of the following corollary is similar to that of Corollary
6.3 and is omitted.

Corollary 6.7. If p is safe and (R, L) is balanced, then for any positive constant � there
is a positive constant c(�) such that
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Pr��Y�R,L� � ��Y�R,L��� 
 ���Y�R,L��� � exp��c�����Y�R,L��
1/k�.

One can also prove an analog of Corollary 6.4, and we leave it to the reader as an
exercise.

Counting Induced Subgraphs. Our results can also be used to derive strong concen-
tration results on the number of induced subgraphs. For instance, the number of induced
paths of length 2 can be expressed as follows:

Y 	 �
x,y,z

txytyz�1 � txz�.

The term 1 � txz is needed to guarantee that there is no edge between x and z; in other
words, the path is induced. Although Y is not positive, we can write it as the difference
of 2 positive polynomials Y1 and Y2, where Y1 has degree 2 and Y2 has degree 3. Then
apply our concentration results to Y1 and Y2. An alternative way is to use Theorem 4.11
or 4.12 and think of txytyz(1 � txz) as a function Ze.

Counting Number of Pairs of Fixed Distance. One can use the same idea to prove the
strong concentration of the numbers of more complicated objects. For instance, consider
the number of pairs of vertices of distance 2 in a random graph. This number can be
written as

Y 	 �
x,y

�1 � txy��1 � �
z

�1 � txztyz�� .

The term 1 � txy equals 1 if and only if x and y are not adjacent. The more complicated
term (1 � �z (1 � txxtyz)) equals 1 if there is a vertex z adjacent to both x and y and
0 otherwise. Now we exploit the polynomial method. In certain range of p, Y can be very
well approximated by the polynomials consisting of low degree terms of Y. A strong
concentration result on these polynomials yields a strong concentration result on Y. Again
one can also use Theorem 4.11 or 4.12 as suggested for the previous problem.

Generalization. Our method is not restricted to G(N, p). There are several directions
to generalize the results derived in this section.

1. Our concentration results do not require the random variables ti to be identically
distributed. Thus, we can consider more general models where the edges can have
different distribution.

2. We can also consider more general random structures. For instance, instead of G(N,
p), we can study the random hypergraph H(r, N, p), where the edges are random
subsets of size r chosen independently with probability p. All results derived for
G(N, p) still hold without a slightest modification.

6.6. Better Bound with a Different Induction

The proof of Theorem 4.2 used induction on the degree of the polynomial. In the case of
subgraph counting, it means that we use induction on k, the number of edges of the graph
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in question. In [76], the present author observed that one can also use induction on m, the
number of vertices. Since m is typically smaller than k, this reduces the number of
induction steps and results in a stronger bound. For instance, we have shown [76]

Theorem 6.8. If H is balanced and �2�(YH)1/(m�1) � �(log n), then there is a positive
constant c � c(K, H) such that

Pr�Y � �1 � ����YH�� � e�c�2��YH�1/�m�1�
.

This theorem provides a better bound than Corollary 6.3 for most graphs. More
interestingly, the bound turns out to be sharp (up to a logarithmic term in the exponent)
for certain graphs. It is a tantalizing question to obtain a sharp bound for Pr(Y � (1 �
�)�(YH)) for an arbitrary graph H. Some progress has been made, very recently, on this
problem by J. H. Kim and the present author, using a variant of Lemma 3.1 combined with
a refinement of the first step in the proving scheme presented in Section 3.

Among others, the paper [76] also provides a nontrivial lower bound for the probability
in Theorem 6.8 and a variant of Theorem 6.8 for counting extensions.

7. APPLICATIONS IN ADDITIVE NUMBER THEORY

7.1. Introduction

In additive number theory, one often asks whether or not there exists a sequence with
certain properties. One of the essential ways to obtain an affirmative answer is to use the
probabilistic method, established by Erdős. To show that a sequence with some property
� exists, it suffices to show that a properly defined random sequence satisfies � with
positive probability. The power of the probabilistic method has been justified by the fact
that in most problems solved by this method, it seems almost impossible to come up with
a constructive proof.

In this section, � denotes the set of positive integers. One usually defines a random
sequence by choosing each x from � with some probability px, independently. We will
use the binary random variable tx to represent this choice. The probability space we are
talking about is the (infinite dimension) product space spanned by the atom variables tx’s.

Quite frequently, the property � requires that for all sufficiently large n � �, some
relation �(n) holds. The general strategy to handle this situation is the following. For each
n, one first shows that �(n) fails with a small probability, say s(n). If s(n) is sufficiently
small so that ¥n�1

� s(n) converges, then by Borel and Cantelli’s lemma, �(n) holds for
all sufficiently large n with probability 1 (see, for instance, [31], Chapter 3).

The main issue in the above argument is to show that for each n, �(n) holds with high
probability. It turns out that in many problems, this is equivalent to showing that a
properly defined polynomial Yn (with variables tx, x � n) is strongly concentrated and
this is where our concentration results appear very useful.

In the next subsection, we shall present several results on additive bases which can be
proved using our bounds in a rather canonical way. These include an answer to a 20 years
old question of Nathanson on the existence of thin Waring bases.
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7.2. Thin Bases

A subset X of � is a basis of order k if every sufficiently large number n � � can be
represented as a sum of k elements of X. The notion of bases is fundamental in additive
number theory. It is clear that � itself is a basis of any order. On the other hand, the most
interesting bases are, perhaps, the set of all rth powers, for arbitrary r � 2. The famous
Waring’s conjecture (proved by Hilbert, Hardy-Littlewood, Vinogradov, and many other
by the beginning of the last century) asserts that for any fixed r and sufficiently large k,
�r, the set of all rth powers is a k basis.

An important question is how to measure the quality of a basis. The most obvious way
is to look at the density. We might want to say that a basis is better if it has smaller density.
A finer measurement is to look at the number of representations of each number n � �.
If X is a basis of order k, we denote this number by RX

k (n). We say that X is thin if, for
each n, RX

k (n) is positive, but small. The study of thin bases was started by Rohrbach and
Sidon back in 1930s and has since then attracted considerable attention from both
combinatorialists and number theorists (see [15, 31, 25] and their references).

Now let us take a look at the classical bases �r (including the case r � 1). These bases
are very far from being thin, due to the following deep theorem of Vinogradov [70].

Theorem 7.1. For any fixed r � 1, there is a constant k(r) such that if k � k(r), then,
R�k

k (n), the number of representations of n as a sum of k rth powers satisfies

R�r
k �n� 	 ��nk/r�1�,

for every positive integer n.

It is natural to ask whether �r contains a thin subbasis. The very first case is r � 1 and
k � 2. Sidon, in the 1930s, conjectured that � has a 2-basis such that R2(n) � no(1) for
all large n. Twenty years later, Erdős confirmed this conjecture by showing [15] the
following:

Theorem 7.2. There is a subset X � � such that RX
2 (n) � �(log n), for all sufficiently

large n.

In 1990, Erdős and Tetali [23] generalized Theorem 7.2 to arbitrary k (still r � 1).

Theorem 7.3. There is a subset X � � such that RX
k (n) � �(log n), for all sufficiently

large n.

The case r � 2 appears much more difficult. For many years, researchers focused on
a simpler question that whether �r contains a subbasis of small density. This question has
been investigated intensively for r � 2 [18, 13, 82, 83, 81, 63]. Choi, Erdős, and
Nathanson proved in [13] that �2 contains a subbasis X of order 4, with X(m) � m1/3��,
where X(m) denotes the number of elements of X not exceeding m. Improving this result,
Zöllner [82, 83] shows that for any k � 4 there is a subbasis X � �2 of order k satisfying
X(m) � m1/k�� for arbitrary positive constant �. Wirsing [81], sharpening Zöllner’s
theorem, proved that for any k � 4 there is a subbasis X � �2 of order k satisfying
X(m) � O(m1/klog1/k m). It is easy to see, via the pigeon-hole principle, that Wirsing’s
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result is best possible, up to the log term. A short proof of Wirsing’s result for the case
k � 4 was given by Spencer in [63]. For r � 3, much less was known. In 1980,
Nathanson [53] proved that �r contains a subbasis with density o(m1/r). In the same
paper, he raised the following question.

Question. Let r � 2 and k be fixed, positive integers, where k is sufficiently large
compared to r. What is the smallest density of a subbasis of order k of �r? Can it be
m1/k�o(1)?

It is clear that the conjectured density m1/k�o(1) is best possible up to the o(1) term. Very
recently, we succeeded to prove the extension of Theorem 7.3 to �r for arbitrary r [77].

Theorem 7.4. For any fixed r � 2, there is a constant k(r) such that if k � k(r), then
�0

r contains a subset X such that

RX
k �n� 	 ��log n�,

for every positive integer n � 2 and RX
k (1) � 1.

This theorem implies, via the pigeon hole principle that X has density O(m1/klog1/km),
settling Nathanson’s question.

In the rest of this section, we first use our concentration results to give a simple and
short proof for a slightly more general version of Theorem 7.3. Next, based on the frame
work presented in this proof, we sketch the ideas behind the proof of Theorem 7.4.

7.3. Thin Linear Bases

In this section, we extend Theorem 7.3 by allowing a representation to be a linear
combination with fixed coefficients.

Fix k positive integers a1, . . . , ak, where gcd(a1, . . . , ak) � 1. Let QX
k (n) be the

number of representations of n of the form n � a1x1 � . . . � akxk, where xi � X. We
shall prove:

Theorem 7.5. There is a subset X � � such that QX
k (n) � �(log n), for all sufficiently

large n.

The proof of Theorem 7.5 is based essentially on the scheme developed for the more
difficult Theorem 7.4 in [77]. However, since the proof of Theorem 7.5 is much simpler,
we present it first in order to give the reader a better understanding of our method.

The assumption gcd(a1, . . . , ak) � 1 is necessary, due to a simple number theoretic
reason. Theorem 7.3 follows from Theorem 7.5 by setting all ai � 1.

To start the proof, we use Erdős’s idea and define a random set X as follows. For each
x � �, choose x with probability px � cx1/k�1log1/kx, where c is a positive constant to
be determined. Let tx be the indicator random variable of this choice; thus, tx is a {0, 1}
random variable with mean px.

Fix a number n, and let Qn be the set of all k-tuples ( x1, . . . , xk), where xi are positive
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integers and ¥i aixi � n. The number of representations of n using elements from the
random sequence X can be expressed as a random variable in the following way

Yn 	 �
�x1, . . . ,xk��Qn

tx1 · · · txk
. (25)

It is obvious that Y is a polynomial of degree k in t1, . . . , tn. We now show that with
probability close to 1, Yn is �(log n) for any sufficiently large n. It is easy to show that
�(Yn) is of the right order, namely log n. Next, we want to make use of Corollary 4.6. The
main obstruction here is that Yn, as a polynomial, does have partial derivatives with large
expectations which violate the condition of Corollary 4.6. For instance, consider the
representation a1K � a2x2 � . . . � akxk, where K is a constant. The partial derivative
with respect to tx2

, . . . , txk
has expectation pK � �(1). However, we could easily

overcome this obstruction by splitting Yn into two parts, as follows. Set a � 0.4 (0.4 can
be any small constant) and let Qn

[1] be the subset of Qn consisting of all tuples whose
smallest element is at least na and Qn

[2] � QnQn
[1]. We break Yn into the sum of two terms

corresponding to Qn
[1] and Qn

[2], respectively:

Yn 	 Yn
�1� � Yn

�2�,

where

Yn
�j� 	 �

�x1, . . . ,xk��Qn
�j�

tx1 · · · txk
.

Intuitively, Yn
[1] should be the main part of Yn, since in most solutions of ¥i�1

k aixi � n,
all xi � �(n). The theorem follows immediately from the following two statements and
Borel-Cantelli’s lemma.

(A) �(Yn
[1]) � �(log n) and Pr(�Yn

[1] � �(Yn
[1])� � �(Yn

[1])/ 2) � n�2.
(B) For almost every sequence X, there is a finite number M(X) such that Yn

[2] � M(X)
for all sufficiently large n.

(A) and (B) confirm our intuition. The main part of Yn indeed comes from Yn
[1] as Yn

[2]’s
contribution is bounded by a constant.

In order to apply Corollary 4.6 to verify (A), we first need the following lemma, which
asserts that �(�AYn

[1])’s are sufficiently small.

Lemma 7.6. For all nonempty multisets A of size at most k � 1,

���AYn
�1�� 	 O�n�a/2k�.

Proof. Consider a (multi-) set A of k � l elements y1, . . . , yk�l. For a permutation � �
Sk (where Sk denotes the symmetric group on {1, 2, . . . , k}), let Qn,l,�

[1] be the set of
l-tuples ( x1, . . . , xl) of positive integers satisfying xi � na for all i and
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�
i�1

l

a��i�xi 	 n � �
j�1

k�l

a��l�j�yj.

A simple consideration shows that

�A�Yn
�1�� � b�k� �

��Sk

�
�x1, . . . ,xl��Qn,l,�

�1�

tx1 · · · txl
,

where b(k) is a constant depending on k. By symmetry, it now suffices to verify the
following:

�� �
�x1, . . . ,xl��Qn,l,�0

�1�

tx1 · · · txl� 	 O�n�a/2k�,

where �0 is the identity permutation. Without loss of generality, we can assume that xl �
max( x1, . . . , xl). Set m � n � ¥j�1

k�l al�jyj; since ¥i�1
l aixi � m and the ai’s are fixed

numbers, it follows that xl � �(m/l ). Using the fact that ¥x�1
m x1/k�1 � 1

m z1/k�1 � z �
m1/k, we have

�� �
�x1, . . . ,xl��Qn,l,�0

�1�

tx1 · · · txl� 	 O� �
�x1, . . . ,xl��Q1,l,�0

px1 · · · pxl�
	 O�log n� �

na�min�x1, . . . ,xl�
a1x1� · · · �alxl�m

x1
1/k�1 · · · xl

1/k�1

	 O���
x�1

m

x1/k�1�l�1

�m/l�1/k�1log n�
	 O�m�l�1�/k�m/l�1/k�1log n�

	 O�m�l�k�/klog n�

	 O�n�a/2k�,

since k � l � 1 and m � na by the definition of Q1,l,�. This ends the proof of the lemma.
�

The last step in the previous calculation explains the restriction min( xi)i�1
k � na. This

assumption guarantees that every partial derivatives of Yn
[1] has small expectation.

From the above calculation, it follows immediately (by setting l � k and m � n) that
�(Yn

[1]) � O(log n). Moreover, a straightforward argument shows that if c 3 �, then
�(Yn

[1])/log n 3 �. Indeed, there are at least �(nk�1)) k-tuples ( x1, x2 . . . , xk) in Qn
[1],

where xi � �(n) for all i � k, where the constants in the �’s depend only on k and the
ai’s. On the other hand, each such tuple contributes at least ckn1�klog n to �(Yn

[1]).
Therefore, by increasing c, we can assume that �(Yn

[1]) satisfies the condition of Corollary
3.6. Corollary 3.6 then applies and implies (A).

Before continuing with the proof of (B), let us pause for a moment and show why we
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could not apply Azuma’s inequality to prove (A). The reason is that the Lipschitz
coefficient of Yn

[1] is way too large. It is clear that there is a number x which appears in
�(nk�2) tuples in Qn

[1] (in fact, most number x do so). For such an x, changing tx, in the
worst case, might change Yn

[1] by �(nk�2). Thus, the Lipschitz coefficient of Yn
[1] is

�(nk�2). This coefficient is clearly too large for Azuma’s inequality to deliver a
non-trivial bound.

Now we turn to the proof of (B), which is purely combinatorial. We say that a l-tuple
( x1, . . . , xl) (l � k) is an l-representation of n if there is a permutation � � Sk such that
¥i�1

l a�(i)xi � n. For all l 
 k, let QX
l (n) be the number of l-representations of n. With

essentially the same computation as in the previous lemma, one can show that
�(QX

l (n)) � O(n�1/klog n) � O(n�1/ 2k). Proposition 4.10 then implies that for a
sufficiently large constant M1, with probability 1 � O(n�2), the maximum number of
disjoint representations of n in QX

l (n) is at most M1. By Borel and Cantelli’s lemma, we
conclude that for almost every random sequence X there is a finite number M1(X) such
that for any l 
 k and all n, the number of disjoint l-representations of n from X is at most
M1(X).

Using a computation similar to the one in the proof of Lemma 7.6, one can deduce that
�(Yn

[2]) � O(n(a�1)/klog n) � O(n�1/ 2k). Indeed, since x1 � na, instead of (¥x�1
n

x1/k�1)k�1, one can write ¥x�1
na

x1/k�1(¥x�1
n x1/k�1)k�2 and the bound follows. So, again

by Proposition 4.10 and Borel and Cantelli’s lemma, there is a constant M2 such that,
almost surely, the maximum number of disjoint k-representations of n in Yn

[2] is at most
M2 for all large n. From now on, it would be useful to think of Yn

[2] as a family of sets
of size k, each corresponds to a representation of n.

We say that a sequence X is good if it satisfies the properties described in the last two
paragraphs.

To finish the proof, it suffices to show that if X is good, then Yn
[2] is bounded by a

constant. This follows directly from a well-known combinatorial result of Erdős and
Rado’s [21], stated below. A collection of sets A1, . . . , Ar forms a sun flower if the sets
have pair-wise the same intersection. Erdős and Rado have shown:

Lemma 7.7. If H is a collection of sets of size at most k and �H� � (r � 1)kk!, then
there are r sets forming a sun flower.

Set M(X) � (max(M1(X)k!, M2))kk!. Assume that n is sufficiently large. It is clear
that if Yn

[2] � M(X), then by Erdős and Rado’s sunflower lemma, Yn
[2] contain a M3 �

max(M1(X)k!, M2) � 1 sunflower. If the intersection of this sunflower is empty, then the
petals form a family of M3 disjoint k-representations of n. Otherwise, assume that the
intersection consists of y1, . . . , yj, where 1 � j � k � 1. By the pigeonhole principle,
there is a permutation � � Sk such that one can find M1(X) � 1 (k � j)-representations
of m � n � ¥i�1

j a�(i)yi among the sets obtained by the petals minus their common
intersection. These M1(X) � 1 sets are disjoint due to the definition of the sun flower.
Therefore, in both cases we obtain a contradiction. �

Remark. One can prove a statement similar to Theorem 7.5 when QX
k (n) is required to

be �( g(n)), for any “reasonable” function g(n) � log n [reasonable here means that one
should be able to set px so that the expectation of QX

k (n) is g(n)]. In fact, in such a case,
one can easily show that QX

k (n) is asymptotically g(n), since now in the proof of (A) one
can have a deviation tail o( g(n)).
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7.4. Thin Waring Bases

Here we sketch the proof of Theorem 7.4, using the framework provided in the previous
subsection. To start, we define a random subset of �r as follows. Choose, for each x �
�, xr with probability px � cx�1�r/k log1/kx, where c is a sufficiently large positive
constant. Again let tx denote the characteristic random variable representing the choice of
xr: tx � 1 if xr is chosen and 0 otherwise. Similar to (25), the number of representations
of n (not counting permutations), restricted to X, can be expressed as follows

RX
k �n� 	 �

x1
r� · · · �xk

r�n

�
j�1

k

txj
	 Y�t1, . . . , tn1/r�. (26)

Given the framework of the previous proof, the remaining difficulty is to estimate the
expectations of Y and its partial derivatives. In the following, we shall focus on the
expectation of Y. Notice that

��Y� 	 �
x1

r� · · · �xk
r�n

ck �
j�1

k

xj
�1�r/klog1/kxj.

To see that the right hand side has order �(log n), one may argue as follows. A typical
solution ( x1, . . . , xk) of ¥j�1

k xj
r � n should satisfy xj � �(n1/r), for all j. Thus, a

typical term in the sum has order �(n�k/r�1log n). On the other hand, by Vinogradov’s
theorem, the number of terms is �(nk/r�1), and we would be done by taking the product.
The trouble is that there could be many nontypical solutions with larger contribution. For
instance, assume that x � ( x1, . . . , xk) is a solution where 1 � xj � Pj and some of the
Pj’s are considerably smaller than n1/r (for example, P1 � n� with � � 1/r). The
contribution of the term corresponding to x is at least �(�j�1

s Pj
�1�r/k), which is

significantly larger than the contribution of a typical term.
To overcome this trouble, we need an upper bound on the number of solutions of the

equation ¥j�1
k xj

r � n, restricted to a box of type which is the product of s intervals [1,
Pj] ( j � 1, . . . , s), for arbitrary positive integers P1, . . . , Pk. Denote this number by
Root(P1, . . . , Pk). We proved the following lemma, which generalizes the lower bound
in Vinogradov’s theorem.

Lemma 7.8. For a fixed positive integer r � 2, there exists a constant kr such that the
following holds. For any constant k � kr, there is a positive constant � � �(r, k) such
that for every sequence P1, . . . , Pk of positive integers

Root�P1, . . . , Pk� 	 O�n�1 �
j�1

k

Pj � �
j�1

k

Pj
1�r/k��� ,

for all n.

The proof of this lemma requires a sophisticated application of the Hardy and

CONCENTRATION OF NON-LIPSCHITZ FUNCTIONS 299



Littlewood’s circle method and is beyond the scope of this paper. The reader may consult
[77] for the full proof.

8. THE SEMIRANDOM METHOD

To prove that a certain object exists, it is enough to show that one can obtain one with
positive probability as an output of a random process. This original observation of Erdős
has become one of the most powerful methods in combinatorics, the so-called “probabi-
listic method.”

A typical application of the probabilistic method is usually an “one-round” argument,
in which one first generates a proper random space, and next shows that the set of desired
objects has positive measure in this space. Quite frequently, this measure is close to 1,
namely, the set of desired objects is abundant. Some examples of this type have already
been presented in the last section.

The semirandom method is a sophisticated version of Erdős’s argument which enables
us to prove the existence of a very rare object by showing that such object can be obtained
with positive probability as the output of a randomized algorithm running in many rounds.
This powerful method has been the backbone of several breakthrough developments in
combinatorics in the last two decades (see next subsection).

In this part of the paper, we first provide a description of the semirandom method,
following [41]. Next, via a proof of a refinement of a theorem of Pippenger, we show how
our polynomial method can be used to analyze a semirandom process in a convenient and
robust way. The most appealing about this analysis is that polynomials not only naturally
arise, but they also capture the heart of the problem, and give a quantitative explanation
about the condition in the theorem. We conclude by describing two other results which can
be proven using the combination of the semirandom method and the polynomial method.
The first is a general result on list-coloring locally sparse graphs. The second is the
solution to an old question of Segre in finite geometry. This latter result is, perhaps, the
deepest application so far of our method. It is also the problem which motivated our
development on concentration of polynomials; our first result on polynomials, Theorem
4.1, was originally proved as a lemma in order to complete this result.

8.1. Description of the Semirandom Method

Assume that we want to construct an object with certain structural constrains (such as a
matching in a hypergraph or a proper coloring of a graph), random greedy construction is
considered a natural way to generate it: Randomly order all possible elements of the
desired object and select each of them one by one in the order if and only if it together with
already selected ones causes no conflict, i.e., no violation to the given constrains. Here we
mean by “select” that we choose and permanently add it to the desired object being
constructed. We may discard at each step all elements that cause any conflict with already
selected ones and then randomly select a nondiscarded one. This is an equivalent
construction and will be called RGC which stands for random greedy construction. For
example, the RGC of a matching in a hypergraph is the following. Initially, the matching
being constructed is empty. At each step, consider the set M of selected edges and select
one new edge among those which do not intersect any edge in M uniformly at random.

The semirandom method, or dynamic random construction using nibble (DRC), is an
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approximated version of RGC. DRC has been initiated by a seminal paper of Ajtai,
Komlós, and Szemerédi [2] to construct a large independent set in a triangle-free graph
and become well known to combinatorialists by Rödl [56], who used the construction to
settle the Erdős-Hannani conjecture regarding Steiner systems in design theory (see
subsection 8.2). It has been developed and become more sophisticated and powerful to
solve intriguing combinatorial problems regarding packings and edge-colorings of hyper-
graphs or multigraphs ([55, 36, 37]), chromatic numbers of sparse graphs ([38, 35]),
Ramsey numbers ([39]), and some general graph coloring problems ([52]).

Rather than select one element at each step, DRC randomly and independently choose
elements, not select yet though, with certain probability so that a bunch of elements are
chosen together. This is called a nibble. The size of a nibble is the number of chosen
elements or sometimes its expectation. Since the set of chosen elements may violate the
constrains, we take a subset of it satisfying the constrains. Elements of this subset are
called selected in the above meaning. Though the way constructing this subset varies
depending on problems and/or for the sake of simplicity, chosen elements contribute no
conflicts with other chosen ones are usually selected. We discard each unchosen element
that may cause any new conflict if it were added to chosen elements regardless what the
selected elements are. Since not all chosen elements are selected, some elements are
unnecessarily discarded but the set of remaining, i.e., nondiscarded unchosen, elements is
defined with respect to randomly and independently chosen elements so that the structure
of the set might be well understood. After a step, we continue if the remaining structure
still looks like random. The proof consists of showing that with a proper choice of the size
of the nibbles, one has a positive chance to continue the algorithm until the desired object
is found.

To carry out the above plan, the most crucial issue is to show that after each step, with
positive probability, the remaining structure looks like a random substructure of the
original one. Usually, it suffices to show that few important parameters behave essentially
as their expectations predict. This, in turn, requires strong concentration results and here
is the point where our results become ultimately useful.

8.2. Nearly Perfect Matchings in Hypergraphs

Let us start with the celebrated conjecture of Erdős and Hanani [16]. A partial Steiner
system S(t, r, m) is an r-uniform hypergraph on m vertices so that every set of t vertices
is contained in at most one edge. Steiner systems are fundamental objects in design theory,
an independent branch of discrete combinatorics (see [12] and its references).

From the definition, it is obvious that any partial Steiner system has at most (t
m)/(t

r)
edges. In the 1960s, Erdős and Hanani [16] made the following famous conjecture:

Erdős and Hanani’s Conjecture. Assume that t and r are fixed and m3 �; then there
is a S(t, r, m) partial Steiner system with (1 � o(1))(t

m)/(t
r) edges.

This conjecture was confirmed by Rödl in a seminal paper [56], which formalized the
semi-random method. Later, Pippenger [54] (see also [27]) realized that Rödl’s theorem
is a special case of a more general statement. Given a hypergraph H, we denote by
codeg(H) the maximum number of edges sharing two points in common, and by �(H)
the minimum number left uncovered by a matching. Pippenger showed:
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Theorem 8.1. Assume that H is an r-uniform and D-regular hypergraph on n vertices
and codeg(H) � C � o(D), then there is a matching which covers all but o(n) vertices,
i.e., �(H) � o(n).

To see that Pippenger’s theorem generalizes Rödl’s result, define a special hypergraph
H in the following way. H has n � (t

m) � �(mt) vertices, where each vertex represents
a t-tuple of a ground set of m elements. An edge of H consists of those t-tuples which are
subsets of the same r set. Thus H is (t

r)-uniform and (r�t
m�t)-regular. Moreover, the

codegree of H is (r�t�1
m�t�1) � C � o(D). To conclude, notice that a large partial Steiner

system corresponds to a large matching in H.
Theorem 8.1, however, does not supply an explicit estimate for the error term o(n). For

instance, it is not clear how C and D contribute in �(H). Sharpening this error term,
motivated by applications from diverse areas, is a challenging problem which attracted the
attention of several researchers (see [29, 30, 5, 43, 79] and their references).

In [79], we successfully combined the semirandom method with our concentration
results to prove the following theorem, which gives the strongest explicit bound known for
�(H), under the assumption of Theorem 8.1. This bound improves upon an earlier bound
obtained by Kostochka and Rödl [43], and generalizes a bound obtained by Alon, Kim,
and Spencer [5].

Theorem 8.2. Let k be a fixed positive integer which is at least 3. If H is a (k �
1)-uniform, D-regular hypergraph on n vertices with codegree C, then ��H�
	 On�D

C�1/klogc/kD, where c is a positive constant not depending on k.

In the rest of this subsection, we sketch the proof of this theorem in order to illustrate
our ideas. While Pippenger result gives a very elegant generalization to Rödl’s result, it
is not so clear why the codegree is the right parameter to look at. Our analysis gives a nice
explanation for this question and also opens a new direction for further improvements.

To start, let us describe a randomized algorithm to generate a large matching. Pick each
edge in the hypergraph independently with probability p � �/D, where � is a small
number to be determined. An edge is lonely if it is chosen and does not intersect any other
chosen edge. The set of lonely edges form a matching by definition. Remove from the
hypergraph all vertices covered by the chosen edges, and repeat the operation on the
remaining (induced) subhypergraph.

Here is a rough analysis of this process. Consider the first step. A vertex is dead if it
is covered by a chosen edge (and then removed by the end of the step); otherwise, it
survives. Clearly, a vertex survives if none of the edges adjacent to it was chosen. This
happens with probability

psur 	 �1 � p�D � e�pD � 1 � �.

So after the first step, we expect that the number n� of surviving vertices be about n(1 �
� ). Next, let us consider the degrees in the remaining hypergraph. Fix a vertex v, we say
that an edge e adjacent to v remains v-active if all vertices in ev survive.

Assume, for a moment, that the survival events are independent. Under this assump-
tion, we expect that for a fixed pair v and e, e remains v-active is
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pact 	 psur
�ev� 	 psur

k � �1 � ��k.

Thus, in the new hypergraph, one may expect that the new degrees are roughly Dpact �
D(1 � � )k.

Now let us check how big a matching has been extracted at this step. Since each edge
is chosen with probability p and there are nD/(k � 1) edges, we have chosen about
pnD/(k � 1) � �n/(k � 1) edges. For any edge e, the probability that no edges adjacent
to e are chosen is (1 � p)(k�1) D � (1 � p(k � 1) D) � 1 � (k � 1)�. Therefore, with
this probability, a chosen edge would be lonely. Together, we would have

M 	
�n

k � 1
�1 � �k � 1���,

lonely edges.
In general, after the ith step, we expect to obtain a hypergraph on ni � n(1 � � )i

vertices, in which every vertex has degree roughly Di � D(1 � � )ki, and a set of Mi

	
�ni�1

k � 1 (1�(k�1)�)��ni�1

k�1 (1�O(�)) lonely edges. (Here we understand that n0 � n.)
Let T be an integer so that DT � C logcn, for some appropriately chosen constant c.

(Perhaps we can set c � 1, but we do not want to optimize it at this point.) Thus, (1 �
� )kT � (C/D)logcn. After step T, the hypergraph has nT � n(1 � � )T � (C/D)1/kn
logc/kn vertices. Moreover, up to this point, we obtained a matching of size approximately

M 	 �
i�1

T

Mi 	 �
i�1

T
�ni�1

k � 1
�1 � O����.

Recall that ni � n(1 � � )i, arithmetic shows that the last sum is approximately

n

k � 1
�1 � O����.

This matching covers n(1 � O(� )) vertices. So the number of vertices uncovered is

�C/D�1/kn logc/k n � O��n�.

Set � small ((C/D)1/klogc/kn), say), one may conclude that there are only O((C/D)1/kn
logc/kn) vertices left uncovered.

To make the above analysis rigorous, it is essential to show that with positive
probability, the parameters ni, Di, and Mi behave almost as expected. Before starting to
prove this, let us notice that the survival events are not independent as we assumed, but
rather positively correlated. If v is adjacent to u, then the fact that v survives seems to
increase the probability that u also survives.

In the following, let us show how one can handle the situation in the first and typical
step. To each edge e, define a binary atom variable te as follows: te � 1 if e is chosen
and 0 otherwise. Obviously, the te’s are independent and have mean p.

The number of survival vertices n� is relatively easy to handle, based on the following
observation: n�, as a function in the te, has bounded Lipschitz coefficient. Indeed,
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changing any te from 0 to 1 or vice versa could change n� by at most k � 1, the size of
one edge. Thus, one can use a Azuma or Talagrand type inequality to show that n� is
strongly concentrated around its mean, which is approximately n(1 � � ). The size of the
lonely set can be dealt with almost the same way (see [79] for details).

The harder part of the proof is to deal with D�. There are two main obstacles. First, the
previous estimate D(1 � � )k on the expectation is not rigorous, since the assumption that
the survival events are independent is false. Second and more crucially, D�, as a function
in the te’s, does have a large Lipschitz coefficient which kills the possibility of applying
a Azuma or Talagrand type inequality. To see this, assume that u and v share C edges in
common, then the choice of any edge containing u may effect the degree D�v of v by as
much as C. Quite amazingly, it has turned out that our polynomial method could be used
to handle both obstacles at the same time in a simple and robust way, which, in addition,
is easy to adapt to other problems. The purpose of the next few paragraphs is to show how
this can be achieved.

For a fixed point v, we first write the number of v-active edges as a function in the atom
variables. It is clear that a point u survives if and only if no edges adjacent to u were
chosen. So the indicator function I(u survives) of this event can be expressed as

I�u survives� 	 �
u�f

�1 � tf�.

On the other hand, an edge e adjacent to v is v-active if all k vertices in the set ev � ev
survive. Therefore,

I�e v-active� 	 �
u�ev

I�u survives� 	 �
u�ev

�
u�f

�1 � tf�.

Now the number of v-active edges is

D� 	 �
v�e

I�e v-active� 	 �
v�e

�
u�ev

�
u�f

�1 � tf�.

Needless to say, D� is a polynomial in the atom variables. However, D� is not positive and
its degree is high. The key tool here is the polynomial method, described in Section 4.7.
Using this method, we first approximate D� by lower degree polynomials. As already
pointed out, the most natural to do this is to consider the polynomials formed by the low
degree terms of D�.

It is very useful to notice that for binary variables ti, the following inequalities hold

1 � �
i�1

M

ti � �
i�1

M

�1 � ti� � 1 � �
i�1

M

ti � �
1�i
j�M

titj.

Therefore, we can sandwich D� between two polynomials Y1 and Y2 (Y1 � D� � Y2

everywhere), where
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Y1 	 �
e�v

�1 � �
u�ev

�
f�u

tf� ,

Y2 	 Y1 � �
e�v

�
u,u��ev

�
f�u, f ��u�

tf tf � 	 Y1 � X.

In a term tf tf �, f and f � are not necessarily different. But it turns out that the number of
terms tf tf �, where f � f � is negligible, so in the following we will assume, for the sake
of convenience, that f � f�. Consequently, �(tf tf �) � p2.

Next, we verify that the expectations of Yi are close to each other. Indeed,

��Y1� 	 D�1 � kDp� 	 D�1 � k��,

��Y2� 	 ��Y1� � ��X� � D�1 � k�� � Dk2D2p2 	 D�1 � k� � k2�2�.

With a proper choice of �, we can afford an error term O(�2). So it suffices to show that
with high probability, both Y1 and Y2 are in the range D(1 � k� � O(�2)).

What does high probability mean? Recall that we want D� to behave nicely at every
vertex v. On the other hand, the number of vertices in the hypergraph does not depend on
the degree D, so it is obvious that we cannot use a straightforward union bound to achieve
our goal, but rather need to invoke the Lovász Local Lemma to show that there is a
positive probability that all degrees behave as expected. Here is the description of this
lemma.

Consider a set of events A1, . . . , Am. The dependency graph of A1, . . . , Am is a graph
on {1, . . . , m} such that Ai is mutually independent of all events Aj where i is not
adjacent to j. Let di be the degree of i. One of the variants of the famous Lovász Local
Lemma [17, 8] is the following

Lemma 8.3. If the probability that Ai holds is at least 1 � 1/4di for all i, then there
is a positive probability that all of the Ai hold.

In our setting, at each vertex v, we consider the event that D�v is sandwiched between
D(1 � k� � O(�2)) and D(1 � k� � O(�2)). It is clear that if the hypergraph distance
between u and v is at least 5, then any choice of an edge that affects D�v cannot affect D�u.
Therefore, in the setting of the Local Lemma, each event has degree O(D4). To apply the
Local Lemma, it suffices to show that each event holds with probability at least 1 �
o(1/D4).

Now it remains to show that for some constant K, the probability that Y1 and Y2 deviate
from their means by more than K�2D is o(1/D4). The proof for Y1 is simple, since Y1 is
a sum of independent variables. All we need now is to show that X is strongly concen-
trated.

Claim 8.4. There is a constant K such that

Pr�X � K�2D� � e�5 log D.

Recall that

CONCENTRATION OF NON-LIPSCHITZ FUNCTIONS 305



X 	 �
e�v

�
u,u��ev

�
f�u,f ��u�

tf tf �,

and �(X) � k2�2D. To apply our concentration results, let us compute �j(X), for j � 1
and 2. Denote by Sf the set of f � such that tf tf � appear in X

�tf X 	 �
f ��Sf

tf �.

So �(�tf
X) � p�Sf �. To estimate �Sf �, notice that f � � Sf if and only if there are two nodes

u � f and u� � f � such that u, u� are contained in some edge e adjacent to v. Since f is
fixed, there are (k � 1) ways to choose u. Choose and edge e containing both u and v.
Once e is fixed, there are k ways to choose u�, and with each u� there are D� ways to
choose f �.

But how many e can we choose? This number is exactly the codegree of u and v and
can be at most C. Therefore,

�Sf � � �k � 1�CkD 	 k�k � 1�CD.

It follows that

���tf X� 	 p�Sf � � k�k � 1��C.

Next, we consider a second-order partial derivative of X with respect to tf and tf �. Assume
that f � f �, then the partial derivative is the coefficient of tftf �. This coefficient is the
number of ways we can choose u � f and u� � f � and an edge e through u, u� and v.
Since the number of edges through u, u� and v is at most C, we obtain

��tf,t f ��X � �k � 1�2C.

Together, we have that both �1(X) and �2(X) are at most (k � 1)2C. We can now apply
Corollary 4.4 to settle the claim. Let

� 	 � �2D

�k � 1�2C
,

and �j � KD�2/(2�)j for j � 0, 1, 2, where K is a properly chosen constant. Recall that
� � (C/D)1/klogc/kn) and k � 3, so provided that D/C � logcD for an appropriate
constant c, we have � � log D. For K sufficiently large, the conditions of Corollary 4.4
are met and it implies

Pr�X � K�2D� � Pr��X � ��X�� �
1
2 K �2D� � e�� � e�5 log D,

which is our desired bound. This completes the proof of the claim. �

At this point, we hope that the reader has obtained an idea of how polynomials arise,

306 VU



and of how our results can be applied. The really fascinating fact here is how well the
concentration result captures the essence of the problem. First, it tells how we could use
the bound C on the codegrees. More importantly, it also tells that why this parameter is
the one to look at.

There are several technical tricks one needs to use in order to make the above sketch
a complete proof. However, the role of polynomials remains crucial. The interested reader
is referred to [79] for the complete proof.

The idea presented above can be further refined to obtain a more general result. As we
have seen, we need to terminate the process once the degrees of the hypergraph more or
less match its maximum codegree. The reason is that at this point, the expectation of a
partial derivative of X becomes too large compared to the expectation of the polynomial.
Moreover, in principle, there are hypergraphs with large codegree which do not have any
large matching.

The source of further improvement is the following simple observation: If we repeat the
analysis of D(v) to codeg(u, v), we can see that codeg(u, v) also decreases until it
matches the maximum triple codegree (the maximum number of edges containing the
same three vertices). In general, denote by Cj(H) the maximum number of edges in H
sharing a set of j vertices, it is possible to show that for any j, Cj(H) decreases, given that
Cj�1(H) satisfies a proper bound. Thus, if we have bounds on the codegrees of not only
2, but also of 3, 4, . . . , s vertices, then we may be able to use them to obtain better
estimate of �(H). The following theorem, proved in [79], quantified this intuition.

Theorem 8.5. Let H be a (k � 1)-uniform, D-regular hypergraph on n vertices. Assume
that for some s � k � 1 there are D1 � D � D2 � . . . � Ds � 0 and x � 0 such
that

(1) For every j 
 s, Cj(H) � Dj,
(2) For every j � s, Cj(H) � Ds,
(3) x3 � Dj/Dj�1 for all j � s � 1,
(4) xk�s�2 � Ds�1/Ds.

Then �(H) � Õ( x�1n).

It is a routine to verify that Theorem 8.5 implies Theorem 8.2. In several applications
(such as Erdős and Hanani’s problem), where the higher codegrees are easy to compute,
Theorem 8.5 does provide a significant improvement upon Theorem 8.2. Due to space
limitation, we do not discuss this matter here and refer the interested reader to [79] for
more details.

In a recent paper by N. Alon, B. Bollobás, J. H. Kim, and the present author [4], we
extended Theorem 8.2 in a different way by allowing k to tend to infinity together with
n. This extension also has a more exact log term in the bound compared to Theorem 8.2.
More interestingly, it has few quite surprising and nontrivial geometrical applications. For
instance, we used it to obtain an asymptotic answer to the following question: How many
lines do one need to separate n random points dropped in the unit square?

It also seems that Theorem 8.5 holds as k tends to infinity with n. Such an extension
is motivated by another geometrical problem (work in progress with J. H. Kim and B.
Sudakov) and details will appear in a future paper.
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8.3. List Coloring of Locally Sparse Graphs

For a graph G, d(G) denotes the maximum degree in G. In this subsection, we always
assume that d(G) is sufficiently large and the asymptotic notations is used under the
assumption that d(G) 3 �.

Given a graph G, the choice number of G is defined as follows. Assign to each vertex
v in the graph a list Lv of k colors (different vertices may have different lists), a list
coloring is a coloring in which every vertex is colored by a color from its own list. The
choice number (or list chromatic number) �l(G) of G is the least number k such that there
exists a proper list coloring for every assignment of lists of size k to the vertices. If we
require that all the lists are the same, then we obtain the classical definition of the
chromatic number.

The choice number was introduced by Erdős, Rubin, and Taylor [22] and indepen-
dently by Vizing [71], as a natural extension of the chromatic number. The problem of
bounding the choice number, using structural properties of the graph, becomes an exciting
research topic in the last ten years, leading to many fascinating results and questions (see
[3, 69] for surveys).

Despite the similarity in their definitions, the choice number and the chromatic number
differ at a very crucial point. Consider a graph G on the vertex set V and partition V
arbitrarily into V� and V�. Let G� and G� be the induced subgraphs spanned by V� and V�,
then �(G�) � �(G�) � �(G). In other words, the chromatic number is subadditive. This
property, unfortunately, does not hold for the choice number. For instance, the complete
bipartite graph Kn,n has list chromatic number �(log n) (see [22, 3]). It is thus clear that
to bound the choice number by a number K it is not sufficient to find K independent sets
to cover the vertex set. Therefore, one needs to find another way to upper bound the choice
number.

A natural approach is to use the greedy algorithm. With the standard greedy algorithm,
it is simple to show that �l(G) � d(G) � 1. Consider a step of the greedy algorithm when
it arrives at a vertex v. The algorithm looks at the neighbors of v, and color v by a color
not used in this neighborhood. In the worst case, the neighbors of v could have used up
to d(G) colors (for instance, if the neighbors of v form a clique and all of them are exposed
prior to v). This worst case forces the list of v to have at least d(G) � 1 colors. On the
other hand, if the neighbors of v do not span too many edges, then it seems plausible that
a color could be used several times and probably this fact could be exploited to reduce the
size of the list of v. Therefore, one would hope that if the graph is locally sparse, then a
bound significantly better than d(G) � 1 might hold.

Recently, this idea has been worked out at different levels in several papers [38, 51, 35,
74, 79], improving the trivial bound d(G) � 1. Most proofs made use of the semi-random
method. In [51], Molloy and Reed showed that for every positive constant �, there is a
positive constant � so that if the neighborhood of any points has at most d(G)2(1 � �)/ 2
edges then �l(G) � d(G)(1 � �). A stronger bound was obtained when the graph is
triangle free, that is, every neighborhood is empty. In a beautiful paper [35], Johansson
showed:

Theorem 8.6. If G is triangle free then �l(G) � O(d(G)/log d(G)).

Johansson’s theorem solves the first case of the famous Brooks’ conjecture on coloring
Kr-free graphs and strengthens an earlier theorem of Kim [38], which proved the same
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bound under a stronger assumption. In a recent paper [80], we managed to extend
Johansson’s result to the following:

Theorem 8.7. Given a graph G and a number f � 1 such that in any neighborhood
subgraph of G, the number of edges is at most d(G)2/f. Then �l(G) � O(d(G)/log f ).
This bound is sharp up to a constant factor.

Theorem 8.7 was inspired by a result of Alon, Krivelevich, and Sudakov [6], who
proved the same bound for the chromatic number. However, their proof used the
subadditivity and cannot be extended for the list-chromatic number.

Theorem 8.7 implies that if for any edge, the two end points have at most d(G)1��

common neighbors, then � . . . (G) � O(d/log d). This result was proved earlier in [74],
motivated a question from Theoretical Computer Science. As an application, let us
consider the random graph G(N, p) with p � O(N��); this random graph satisfies the
assumption almost surely. Indeed, in expectation, the number of common neighbors of any
two points is O(N1�2�). Thus, a.s., this number is of order O(N1�2� � log N). Moreover,
d(G(N, p)) � O(Np) a.s. Therefore, one could conclude that �l(G(N, p)) � O(Np/
log(np)) � O(�(G(N, p)), for any p � N��, where � is a positive constant less than 1
(the last equality is a well known fact in the theory of random graph [11, 34]. So we can
conclude that for these p, the choice number and the chromatic number of a random graph
are of the same order of magnitude, a rather interesting fact given that for several simple
graphs (such as Kn,n) these two quantities are rather far apart. A result of the same nature
but with a smaller range of p was obtained in [5] and together they motivate further
investigation on the choice number of random graphs and hypergraphs. Several new and
exciting results obtained recently in this direction can be found in [7, 44, 74, 75, 80,
45, 46].

Another application of Theorem 8.7 involves the strong chromatic index. Given a graph
G, construct a graph L1(G) as follows: The vertex set of L1(G) is the edge set of G, and
two vertices are adjacent if the corresponding edges have graph distance at most 1. The
strong chromatic index of G is the chromatic number of L1(G) and can be interpreted as
the minimum number of induced matchings one needs to cover G. Erdős and Nes̆etr̆il
conjectured that

��L1�G�� � 5d�G�2/4

(see [26] for the history of this conjecture).
It seems plausible that the bound Erdős–Nes̆etr̆il conjecture also holds for �l. Theorem

8.7 confirmed that this is the case when G is locally sparse. It is easy to show that if any
two vertices in G have at most d(G)/g common neighbors (for any 1 
 g � �), than any
neighborhood in L1(G) has at most O(d(G)3 � d(G)4/g) edges. Thus, it follows from
Theorem 8.7 that:

Corollary 8.8. If every two vertices in G has at most d(G)/g common neighbors, then

��L1�G�� � �l�L1�G�� 	 O�d�G�2/log g�.
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Corollary 8.8 strengthens an earlier bound of Faudree, Gyárfás, Schelp, and Tuza [26]
and generalizes a result Madhian [49] on �l(L1(G)).

The proof of Theorem 8.7 is more complicated than that of Theorem 8.2, but again it
is based on our combination of the semi-random method and the polynomial method. The
basic idea is to color the graph in a random manner in several steps. In each step, we
generate randomly a small set of colors from the union of the lists. Each color has a tag
attached to it indicating the list it comes from. A particular color, say Red, may appear
with different tags. If a color c with tag v is chosen, and no other c color was chosen with
a tag adjacent to v, then we can color v with c. Having done this, a small subset of vertices
get colored. The colors chosen, but not used are discarded. In order to avoid conflicts in
future steps, we look at each uncolored vertex v, and remove a color c from its lists, if c
is already used to color a neighbor of v. Thus, after each step, the graph shrinks and the
lists also shrink. The key observation is that if the small set of colors is properly generated,
then with positive probability, after the first few steps, the graph will shrinks faster than
the lists and then at some point, each list will contain more colors than the maximum
degree of the remaining graph. At this point, we end the random process and finish the
coloring using the trivial greedy algorithm.

Similar to the proof of Theorem 8.2, the essential part of this proof is to show that the
lists and the degrees of the graph shrink at the desired speeds. The task of controlling the
degrees was done with the polynomial method, in a way similar to the proof presented in
the previous subsection. The degrees of the vertices can be approximated by polynomials
of low degrees, and our concentration results finish the job. We refer the interested reader
to [80] for details.

8.4. Segre’s Conjecture in Finite Geometry

Let us end this paper with our favorite, and perhaps, deepest application. This application
essentially settles a long-standing problem in finite geometry, posed by Segre in the late
1950s.

A finite projective planes of order q consists of a set of q2 � q � 1 points and a set
of q2 � q � 1 lines, each line contains exactly q � 1 points and every two points lie
in exactly one line. From this definition, it is easy to derive that every two lines intersect
in exactly one point, and each point is contained in q � 1 lines.

The most important plane is the so-called Galois plane, PG(2, q), constructed as
follows. Consider a 3-dimensional vector space V over the finite field GF(q). The points
and the lines of PG(2, q) are the 1- and 2-dimensional subspaces of V, respectively. A
line l contains a point p if p is a subspace of l. It is known that there are infinite number
of projective planes not isomorphic to PG(2, q), as q 3 �. For more information about
these planes, we refer to [14, 32].

In the 1950’s, B. Segre (see [59, 60]), one of the founders of the italian school of finite
geometry, introduced the notion of arcs. An arc in a finite projective plane is a set of
points with no three on a line. Maximal arcs under the set inclusion are called complete
arcs. A line containing two points of an arc is called a secant. By definition, an arc is
complete if and only if its secants cover the whole plane. Since Segre’s introduction, the
study of complete arcs has become a main research topic in finite geometry (see, for
instance, the survey of Szőnyi [65] or [32] and their references).

One of the key problems concerning complete arcs is to determine the minimum size
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of a complete arc in a given plane. Given a plane P of order q, we denote by n(P) the
minimum size of a complete arc in P.

Shortly after Segre’s introduction, two other Italian geometers, Lunelli and Sce [48],
gave a lower bound (2q)1/ 2 for n(P). Their argument is very simple: Since the union of
all secants of a complete arc covers all q2 � q � 1 points of a plane and each secant
(which is a line) covers q � 1 points, a complete arc must have at least (q2 � q �
1)/(q � 1) � q secants. To have q secants, at least (2q)1/ 2 points are required. The only
improvement on this trivial lower bound obtained in the last fourty years was due to
Blokhuis [10] and Ball [9], who used a nontrivial algebraic consideration to improve
Lunelli and Sce’s bound to (3q)1/2 for PG(2, q), given q is a prime or the square of a
prime, respectively. It is thus widely believed that q1/2 is close to the truth. However,
this conjecture resisted a number of attacks by several geometers for more than forty
years.

Not totally accidentally—constructing a small complete arc is indeed a very difficult
task. To illustrate this, let us point out that it is already quite involved to construct a
complete arc having �q points, for a small constant �. The first important result in this
direction was a construction of a complete arc of size roughly q/3 in the Galois plane
given by Abatangelo [1], whose proof made use of a deep theorem of Weil in algebraic
geometry. Korchmáros [42] improved the bound to q/4 by similar arguments. For bounds
better than �(q), one needs more sophisticated algebraic techniques which have been
developed in a sequence of papers [47, 72, 73, 58, 65, 66]. The best construction for the
Galois plane PG(2, q) due to Szőnyi [66] yields n(PG(2, q)) � cq3/4. This bound is still
far from q1/ 2. For a general plane, nothing better than a trivial upper bound O(q) was
known prior to 1998.

In 1998, J.H. Kim and the present author achieved a significant improvement on the
upper bound of n(P) [41]. We were able to prove, using the combination of the
semirandom method and the polynomial method, that Lunelli and Sce’s lower bound is at
most a polylogarithmic term from the truth. Furthermore, our result holds for any plane of
order q, with no restriction to the Galois plane.

Theorem 8.9. There is a positive constant c such that the following holds. Every
projective plane of order q contains a complete arc of size at most q1/ 2logcq.

The proof of Theorem 8.9 is fairly long (50 pages) and truly complicated. The
semirandom method was used to produce an arc of size O(q1/ 2). This arc is not yet
complete, but its secants cover all but O(q1/ 2logcq) points. The existence of such an arc
immediately implies the theorem. This critical near-complete arc was built in several
steps, basically as follows. Star with the empty set. At each step we add few (random)
points to the current arc, and remove from the plane all points covered by the secants of
the new arc. The essential part of the proof is, again, to show that after each step, several
parameters (such as the number of surviving points on a line) of the remaining structure
behave almost as their expectations predict. In other words, we need to show that these
parameters, as outputs of our random process, are strongly concentrated around their
means. Due to the complexity of the algorithm, at the time being, no classical tools were
powerful enough to carry out the task. This motivated us to develop our own tool and this
was the way our first result on polynomials, Theorem 4.1, was born.
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APPENDIX

Proof of Lemma 5.1. Consider a polynomial Y of degree k. For all 1 � i � n, we can
write Y as follows

Y�t� 	 �
j�0

k

ti
jYi, j�t�,

where the polynomials Yi, j(t), j � 0, 1, . . . , k, do not depend on ti. Set Y� i, j(t) �
�(Yi, j�t1, . . . , ti�1). It is easy to verify that with pi, j � I ti

jdti

Wi�t� 	 �
j�1

k

Y� i, j�t�

W�t� 	 2 �
i�1

n �
j�1

k

pi, jY� i, j�t�.

(A) We write X(t) � X�(t) if X�(t) � X(t) is nonnegative for all t. Since Y is a positive
polynomial,

�
m�1

k

Yi,m � �
m�1

k 1

m!

�mY

�mti
.

Consequently, for any set A not containing i,

�
m�1

k

�AYi,m � �
m�1

k 1

m!
�i�m��AY,

where i[m] means that the index i has multiplicity m. It follows that

�j�Wi� � �j� �
m�1

k

Yi,m� � �j�1�Y� �
m�1

k 1

m!
� 2�j�1�Y�.

(B) The proof is similar to the previous one, using the relation

Mj�Wi� � Mj� �
m�1

k

Yi,m� .

(C) First notice that

���A�pi,mY� i,m�� � ���A�ti
mYi,m��.
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Indeed, if A contains i, then the left-hand side is 0. Otherwise the inequality holds since
�(ti

m) � pi,m by definition. Summing up over i � 1, . . . , n and m � 1, . . . , k, we
obtain

���AW� 	 2 �
i�1

n �
m�1

k

���A�pi,mY� i,m�� � 2 �
i�1

n �
m�1

k

���A�ti
mYi,m��.

On the other hand, since Y is positive and has degree k

�
i�1

n �
m�1

k

ti
mYi,m � kY,

which implies that

���A�W�� � 2k���AY�.

This completes the proof.
(D) The proof of (D) is similar to that of (C) and omitted. �
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