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2. ARNOSTI, NICK

We first describe the game Dominion. Each player begins with a deck of 10 cards:
seven coppers, worth 1 coin each, and three estates, which are worthless. Each turn,
players draw a hand of five cards and purchase a new card to add to their deck; at the
end of their turn, all cards used.... As there are 7 coins in the original deck and the entire
deck is drawn in two turns, the first turn determines the second, and the first two turns
will either consist of a turn with 3 coins and a turn with 4 coins or a turn with 2 coins
and a turn with 5 coins. This is because, in our first turn, we can have at most 3 estate
cards, and thus have either 2, 3, 4 or 5 coins on the first pick, and therefore the second
pick has the remaining, i.e., 5, 4, 3 or 2 coins. Thus the number of coins in the two turns
are either {2, 5} or {3, 4}.

Exercise 2.1. What is the probability of a 4/3 (or 3/4) split? In other words, what is
the probability that a player will have at least three coppers in each of their first two
hands?

Solution: Observe that ℙ(4/3 split) = 1−ℙ(5/2 split), and that ℙ(5 coppers on first turn)
= ℙ(3 estates on second turn). There are

(
10
3

)
ways to order the ten cards (counting

each estate as identical and each copper as identical). Of these,
(
5
3

)
have three es-

tates in the second hand. Thus, ℙ(5 coppers on first turn) = (53)
(103 )

= 1
12

. By symmetry,

ℙ(5 coppers on second turn) is the same. Thus, ℙ(4/3 split) = 1− 2 ⋅ 1
12

= 5
6
.

Remark 2.2. We give another proof. We add labels to each type of card so that they can
be distinguished (perhaps we add a color). There are

(
10
5

)
ways to choose 5 cards from

the 10. If we want a hand of 5 with 3 estates, there are
(
3
3

) (
7
2

)
ways (we must choose

all three estates, and then 2 of the coppers). Thus the probability of having a 5/2 split
is
(
3
3

) (
7
2

)
/
(
10
5

)
= 1/12, the same answer as above! This is a common feature, where

frequently we may count the same problem many different ways.

When purchasing cards, the possibilities are silver, which costs three copper to add
to your deck and is worth 2 coin, and gold, which costs six copper to add to your deck
and is worth 3 coin. After purchasing a card, it, along will ALL cards from your hand
(including those used to purchase it) are placed in your discard pile. When your deck
runs out, you shuffle the discard pile and draw from it.

Exercise 2.3. Suppose a player purchases only silver (when possible), and let X be a
random variable representing the first turn that a player can afford gold. What is the
distribution function for X?

Solution:

3. ATKINSON, BEN

Exercise 3.1. The Yankees have been on a winning streak, and they have won 3 of their
last 4 games. Assume, however, that their true winning percentage is p > 1/2, and all
games are independent of each other. What is the probability the Yankees have more
wins than losses in their last 7 games?
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Solution: There are two ways to solve this. The possible outcomes of their last four
games are

WWWL,WWLW,WLWW,LWWW.

So long as they have won one of the remaining 3 games, they will have more wins
than losses; equivalently, by the Law of Total Probability we just need to compute the
probability that they have won none of these three games. The probability they lost all
three games is (1− p)3, and thus the probability that they won at least one of the games
(and thus have won more than half of the last 7 games) is 1− (1− p)3.

Alternatively, we could say that the only outcomes for their past five games are

LWWWL,WLWWL,WWLWL,WWWLL.

The reason this might be true is that if they had won five games ago, we would have said
they’ve won 4 out of 5. In fact, such logic would eliminate WWWLL, as in this case
we would just say they have won three in a row. Regardless, in all these situations they
are 3−2 in the last 5 games, and hence the only way they could have more losses than
wins is to have lost the two previous games, which happens with probability (1 − p)2.
Thus the probability that they have more wins than losses is 1− (1− p)2.

Exercise 3.2. The Yankees must have a 25 man roster, however due to their enormous
payroll and the fact that many ballplayers want to play for a team with such a dis-
tinguished history, let us assume that they have 30 players of equal talent who should
make the team. Therefore, they devise the following scheme to determine who makes the
roster. A bag contains 5 black marbles and 25 white marbles, and each player chooses,
without replacement, a ball from the bag. The 5 players who choose black marbles are
off the roster for the next week. The order of choosing rotates each week, and each
player loses 1 spot (i.e. pick 1 goes to 2, 29 goes to 1, etc.). Given that a player has the
number 2 choice, what is the probability he sits 2 weeks in a row?

Solution: There are a lot of red herrings in the statement of this problem. A red herring
is shorthand for facts in the problem that are not relevant to the solution. For this
exercise, all that matters is that each player (by symmetry) has a 5/30 = 1/6 chance
of sitting out each week. Therefore the odds of sitting out two weeks in a row is just
(1/6)2 = 1/36. It doesn’t matter when they pick; however, the solution would be
different if we were told what ball the people with higher picks chose.

4. BERRY, JACK

Exercise 4.1. From a standard deck of 52 cards, you deal yourself 5 cards:

A♦ 4♣ 8♠ A♥ 2♣
You are now allowed to exchange any number of cards in your hand for the same number
of cards from the deck. You decide to exchange the 4♣, 8♠, and 2♣ for three new cards.
What is the probability that you will get three of a kind or better?

Solution: The number of ways to draw 3 cards from the remaining 47 cards is
(
47

3

)
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The number of ways to draw the remaining 2 aces is(
2

2

)(
45

1

)

Finally, there are (
2

1

)(
45

2

)

ways to choose 1 ace. Thus, the probability of getting three or four aces is(
2
2

) (
45
1

)
+
(
2
1

) (
45
2

)
(
47
3

) ;

note, however, that this is not the answer to the question asked. We want to find all
hands that are at least as good as three of a kind. We could also have a full house
from drawing three cards with the same denomination (for example, three Jacks). The
number of ways of drawing three of a kind is complicated, depending on whether or not
it is a 2, 4 or 8. For those three denominations, there is only one way to do it (as one of
each of these cards is out of play). For the remaining 9 denominations (3, 5, 6, 7, 9, 10,
Jack, Queen and King), there are

(
4
3

)
= 4 ways. Thus the number of ways of getting

three of a kind is (
3

1

)(
3

3

)
+

(
9

1

)(
4

3

)
,

so the probability of getting at least three of a kind is(
2
2

) (
45
1

)
+
(
2
1

) (
45
2

)
+
(
3
1

) (
3
3

)
+
(
9
1

) (
4
3

)
(
47
3

) =
688

5405
≈ .127.

Exercise 4.2. In Texas Holdem’ Poker, each player is dealt two private cards, and must
make a 5 card poker hand combining these two cards and a selection of cards from a 5
card community. In the following hand, four out of the five community cards have been
revealed:

A♣ 2♦ J♦ A♦
You know your private cards are:

2♠ K♦
Your only remaining opponent bets aggressively, telling you that there is a 0.8 probabil-
ity that he has three of a kind or better. In addition, based on the betting of other players
earlier in the hand, you estimate that there is a 0.4 probability that another player had
an Ace (but he has since folded) What is the probability that you will win this hand?

Solution: Not surprisingly, the solution to a problem like this is quite difficult. Even
if we know our opponent has three of a kind or better, this could mean he has three of
a kind, a straight, a flush, a full house (three of a kind and a pair), four of a kind or a
straight flush. Further, his hand could also improve with the additional dealt card. If his
three of a kind is coming from holding an ace, that is going to be tough to beat. It seems
our best bet to win is to go for a flush (if he has a pair, then even if an ace is turned
then we might both have a full house, and almost surely if so his pair would beat our
pair of 2’s). Of course, the probability of a flush in diamonds depends on whether or
not our opponent (as well as those who folded) have diamonds. If we assume there are
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k diamonds remaining in the deck, then our probability of getting a flush in diamonds
is k/N , where N is the number of remaining cards.

5. BINDER, ARI

Exercise 5.1. Assume that there are ® tables in the Paresky cafeteria. In a choice
between tables T and U , where T has t spots empty and U has u spots empty, and
u ≥ t, a student is 2u−t times more likely to choose table T over table U (this extends
to more than two tables: for instance, if there are three tables, with 2, 1, and 1 spots
left, the student will choose the first table with probability 1/2 and the other two with
probability 1/4 each). Further, assume each table seats four students, and that right
now, the cafeteria is empty. A group of four students enters the cafeteria, and the
students choose places to sit, one by one. What is the greatest alpha for which the
probability that all four end up at the same table remains above 1 percent?

Solution: Solving .01 = 2
®+1

⋅ 4
®+3

⋅ 8
®+7

for ® and taking the floor of the result yields
® = 14. We arrive at this solution as follows: after the first student chooses a table at
which to sit, we must calculate the probability the second student joins the first. There
are ® tables, and the student is twice as likely to choose the table at which the first
student is sitting as one of the other tables. Thus, the probability that the second student
joins the first is 2

®+1
. This is because the probability the student chooses one of the

®− 1 other tables has shrunk from 1
®

to 1
®+1

, reflecting the fact he is more likely to join
his friend than sit alone. Similarly, the probability that the third student joins the first
two is 22

®−22+1
= 4

®+3
, because the third student is four times more likely to join his two

friends than to sit alone. The probability that the fourth student joins the first three is
23

®−23+1
= 8

®+7
, because he is eight times more likely to join his three friends than to sit

alone.

Exercise 5.2. Now assume each table seats ¯ people, k students come upon an empty
cafeteria and they choose places to sit, one by one again. What is the minimum k, in
terms of ® and ¯, such that the probability that the last two students sit at the same
table is at least 1/k?

Solution: Maybe choosing a fixed value, in terms of ® and ¯, instead of 1/k, will make
things more tractable.

6. BROWN, CHAD

Exercise 6.1. There are m players playing a game of Texas hold’em. Before the first
round of betting, each player is dealt two cards face down. What is the probability that
each player is dealt a unique pair (called a "pocket pair")?

Solution: We assume m ≤ 13, as otherwise the problem is trivial. Let A1, A2, . . . , Am

be the event that player 1, 2, . . . , m is dealt a unique pocket pair. We would like to
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calculate ℙ(A1 ∩ A2 ∩ ... ∩ Am).

ℙ(A1 ∩ A2 ∩ ⋅ ⋅ ⋅ ∩ Am) = ℙ(A1 ∩ (A2 ∩ A3 ∩ ⋅ ⋅ ⋅ ∩ Am))

= ℙ(A1) ∗ ℙ(A2 ∩ A3 ∩ ⋅ ⋅ ⋅ ∩ Am∣A1)

= ℙ(A1) ∗ ℙ(A2 ∩ (A3 ∩ ⋅ ⋅ ⋅ ∩ Am)∣A1)

= ℙ(A1) ∗ ℙ(A2∣A1) ∗ ℙ(A3 ∩ ⋅ ⋅ ⋅ ∩ AM ∣A1 ∩ A2)

...

= ℙ(A1) ∗ ℙ(A2∣A1) ∗ ℙ(A3∣A1 ∩ A2) ∗ ⋅ ⋅ ⋅ ∗ ℙ(Am∣A1 ∩ A2 ∩ ⋅ ⋅ ⋅ ∩ Am−1)

= (1)(
3

51
) ∗ (48

50
)(

3

49
) ∗ (44

48
)(

3

47
) ∗ ⋅ ⋅ ⋅ ∗ (52− 4m

52− 2m
)(

1

52− 2m− 1
)

=
m∏

n=1

52− 4n

52− 2n

1

52− 2n− 1
.

Remark 6.2. I don’t believe the analysis here is correct. What does it mean for one
person to be dealt a unique pair?

Solution: How many ways are there to deal cards? It makes a big difference whether
or not order matters. There are

(
52
2m

)
ways to choose 2m cards where order does not

count, and there are
(

52
2m

)
(2m)! ways to choose 2m cards so that order counts. If we

choose the cards with order mattering, then the first two cards go to the first person,
the next two to the second person, and so on. There are

(
13
1

) (
4
2

)
2! ways to assign a

pair to the first person, with order mattering. The second person has
(
12
1

) (
4
2

)
2! ways

(as they cannot have the same pair). Continuing we find the number of ways is just
m!

(
13
m

)
(2

(
4
2

)
)m, so the probability is m!

(
13
m

)
(2

(
4
2

)
)m/(

(
52
2m

)
(2m)!).

Exercise 6.3. The previous problem wasn’t so bad. However, what if we try to calculate
the probability of each player being dealt ANY pocket pair. Now, for example, both
player 1 and player 2 could have a pair of aces. This problem is much harder because
we now have to keep track of which pairs are left. If the player 1 has a pair of aces, it
is now less likely that player 2 will be dealt a pair of aces than, say, a pair of kings.

Solution:

7. BUSTARD, TODD

Exercise 7.1. Determine the probability that a 5 card poker hand will be three of a kind
or a full house (three of a kind and a pair).
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Solution: As there are
(
52
5

)
ways to pick 5 cards, it is natural to say that the probability

is just

ℙ (three of a kind or full house) = ℙ (exactly three cards with the same number)

=

(
13
1

) (
4
3

) (
48
2

)
(
52
5

)

=
94

4165
≈ .022569,

where
(
13
1

)
arises from having to choose one of the 13 values, then there are

(
4
3

)
ways

to choose three cards from this value, and then
(
48
2

)
ways to choose two remaining

cards. The key word is exactly – we want to make sure we do not have four of a kind.
It doesn’t matter if we have three of a kind or a full house (three of a kind and a pair);
that is why the last factor is

(
48
2

)
, as it does not matter whether or not the two remaining

cards are equal to each other.
Whenever doing problems such as this, the best way to avoid making mistakes is to

split the counting based on how often we have each key value. For us, we need to either
have three of a kind and two different cards (from each other and the three of a kind),
or three of a kind and a pair. The probability is

(
13
1

) (
4
3

) (
12
2

) (
4
1

) (
4
1

)
+
(
13
1

) (
4
3

) (
12
1

) (
4
2

)
(
52
5

) =
94

4165
≈ .022569.

We are calculating the same quantity two different ways; the first way is faster and
better. The argument generalizes, and if we had a deck of 4N cards with N denomi-
nations, we would still have agreement. It is a nice exercise to show this. If we want
to calculate the probability that our hand has at least three cards with the same number,
that would be (

13
1

) (
4
3

) (
48
2

)
+
(
13
1

) (
4
4

) (
48
1

)
(
52
5

) =
19

833
≈ .022809;

note this is close to, but not the same as, the probability above.

Exercise 7.2. Determine the probablility that a hand in Texas Holdem’ Poker will be a
full house. Note that in Texas Holdem’, there are seven cards (2 in your hand, and 5
community cards).

Solution: There are
(
52
7

)
ways to choose 7 cards from 52. There are two ways of

interpreting this question: either the best hand we can form is a full house, or we can
form at least a full house. We shall adopt the latter interpretation. There are three ways
this can be done: (1) we can have three of a kind twice and then another card; (2) we
can have three of a kind once and two different pairs; (3) we can have one three of a
kind, one pair, and then two different cards. The number of ways of doing these are:
(1): we first choose two of the thirteen numbers, then for each of these choose 3 of the
four, and then choose one of the remaining 44, for

(
13
2

) (
4
3

) (
4
3

) (
44
1

)
ways; for (2) it is(

13
1

) (
4
3

) (
12
2

) (
4
2

) (
4
2

)
, while for (3) it is

(
13
1

) (
4
3

) (
12
1

) (
4
2

) (
11
2

) (
4
1

) (
4
1

)
. The solution

is found by adding the three and dividing by
(
52
7

)
.
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8. CHO, JAEHONG

Exercise 8.1. A fair coin is tossed 5 times. If a head comes up for a given toss, I win
the amount that I bet and if a tail comes up then I lose the amount bet. Assume I bet a
dollar on the first toss„ two dollars on the second toss and so on and so forth. What is
the probability that I will make a profit of more than three dollars?

Solution: There are a total 32 possible outcomes. If we cared about how much we
expect to make on average then we would have to analyze each in detail; however, the
analysis is simplified because we only care about how often we make more than $3.

(1) There is
(
5
0

)
possible cases of 5 tails.

(2) There are
(
5
1

)
possible cases of 1 heads and 4 tails

(3) There are
(
5
2

)
possible cases of 2 heads and 3 tails

(4) There are
(
5
3

)
possible cases of 3 heads and 2 tails

(5) There are
(
5
4

)
possible cases of 4 heads and 1 tail

(6) There is
(
5
5

)
possible cases of 5 heads

We clearly make no money in case (0). In all the subcases of (2) and (3), the maximum
profit that can be generated comes from (T,T,T,H,H), in which case the profit is less than
3. Among all the possible subcases in (4), (5) and (6) the following lists all the cases in
which the ending profit is greater than 3

∙ (HTTHH), with a profit of 5
∙ (THHTH), with a profit of 5
∙ (THTHH), with a profit of 7
∙ (TTHHH), with a profit of 9
∙ (HHHHT), with a profit of 5
∙ (HHHTH), with a profit of 7
∙ (HHTHH), with a profit of 9
∙ (HTHHH), with a profit of 11
∙ (THHHH), with a profit of 13
∙ (HHHHH), with a profit of 15.

Therefore, the probability we win more than three dollars is 10/32.

Exercise 8.2. Consider a game of Texas Hold em, which is played as follows. There are
a total of 4 players at a table. A neutral and proficient dealer shuffles the deck M times
using the same shuffling technique before handing the cards out. In our game, there is
no betting and the person with the best hand wins the hand. For simplicity, the numbers
in the following discussion refers to the order in which each card was placed after the
shuffling has occurred. Each player receives two cards. The topmost card and the 5th
card is dealt to Player 1, the 2nd and the 6th card is dealt to Player 2, the 3rd and 7th
to Player 3 and the 4th and 8th to Player 4. After the hands are dealt to the respective
players, the 9th card in the original deck gets burnt and the next three (10th, 11th, and
12th) flops are shown on the table. The dealer then burns the another card, the 13th,
and shows the turn (14th). The dealer then burns yet another card (15th) and shows the
river (16th). The 5 cards of flops, turn and river (i.e., the cards not burned but turned
over) are community cards, meaning that all four players share those 5 cards. At the
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end of the game, a player’s hand is the best possible combination of 5 cards out of the
total of 7 cards (the 5 community cards and their two cards).

Initially we start with a new deck. We assume it is ordered as follows: all four aces
are on the top, then all four twos, and so on and so forth, with all four kings at the very
bottom. The order of suits is as follows: Clubs, Diamonds, Hearts and Spades.

After each game, the dealer collects the played cards in order such that the order of
the deck, before they were dealt, is preserved.

The dealer only uses the the Riffle shuffle after each hand to randomize the deck for
the next round. There are two steps in a Riffle shuffle. (1) The dealer splits the deck in
half, the top half goes to his left hand and the bottom half goes to his right. (2) Starting
from the bottom, each card on the right hand will be placed on top of the left hand. For
example, after the first shuffle, the order of cards will look like this (starting from the
top, with numbers indicating the original position before the shuffle):

1, 27, 2, 28, 3, 29, . . . , 51, 26, 52.

What is the smallest possible number M such that when the dealer shuffles the deck
M times before each game, the probability that each player wins the hand is equal in
the long run. Of course, we assume that we can play the game infinitely often. (Note
that unlike the conventional Texas Hold em, suits matter in our case, so a pair 9♠ 9♥
beats the pair 9♦ 9♣).

Solution:

9. CITRO, BRIAN

Exercise 9.1. Consider three buckets labeled A, B, and C. Bucket A contains 2 red
balls, bucket B contains 2 blue balls, and bucket C contains 1 red ball and 1 blue ball.
A bucket is randomly selected, and a ball is randomly selected from that bucket. The
chosen ball happens to be red. Given this information, what is the probability that the
ball was chosen from bucket A?

Solution: By the rules of conditional probability, we know that P (A∣R) = P (A∩R)
P (R)

.
P (A∩R) = 1/3, since P (A) = 1/3 and if A is selected, the ball must be red. P (R) =
1/2, since there are 3 red balls and 3 blue balls, and each is equally likely to be chosen.
Therefore, P (A∣R) = 1/3

1/2
= 2/3.

Exercise 9.2. One popular Roulette strategy is the Labouchere system. In this system,
the player first chooses the amount of money x that they are trying to win. They then
write a list of numbers which sum to x. Each time they place a bet, the player bets
an amount equal to the sum of the first and last numbers on the list on either red or
black. If the player wins, they cross off the two numbers on the list and move to the next
numbers. If they lose a bet, they add a new number to the end of the list equal to the
amount lost in the bet. When the player has crossed off every number on the list, he has
won $ x.

Assume a player is attempting to win $100, so he writes down a list of ten $10s. What
is the probability that he will complete the list and win? Assume an American roulette
wheel, with 18 black numbers, 18 red numbers, and 2 green numbers; assume a table
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limit (maximum bet) of $500; and assume that if the player ever reaches a point where
he has to make a bet above $500 he gives up.

Solution:

10. FISH, CROSBY

Exercise 10.1. Given a randomly shuffled standard deck of playing cards, what is the
probability that the first four cards are of the same suit?

Solution: There are
(
4
1

)
ways to choose the suit. There are

(
13
4

)
ways of choosing four

cards from a given suit, and
(
52
4

)
ways of choosing four cards. Thus the probability is

just
(
4
1

) (
13
4

)
(
52
5

) =
44

4165
≈ .0105642.

We could also calculate this by counting how many ways we can construct such a hand,
where the order in which the cards is drawn matters. In this case, the probability is just

4
13

52
⋅ 12
51

⋅ 11
50

⋅ 10
49

= 4 ⋅ 13!48!
9!52!

=

(
4

1

)
13!

9!4!

48!4!

52!
=

(
4
1

) (
13
4

)
(
52
4

) ,

which is just what we had before.
It is interesting to calculate the probability that the four cards are all in different suits.

That is

ℙ(All different suits) =

(
52
1

) (
39
1

) (
26
1

) (
13
1

)

52 ⋅ 51 ⋅ 50 ⋅ 49 =
2197

20825
,

which is about .105498. This is interesting, meaning that the probability of getting four
cards in the same suit is almost the same as getting four cards in four different suits.

Exercise 10.2. Given a randomly shuffled standard deck of playing cards, what is the
probability that somewhere in the deck there are at least 4 consecutive cards of the same
suit?

Solution: One way to attack this problem is to use binary indicator random variables
and Chebyshev’s theorem. We can compute the expected number of times we have four
cards in a suit easily. Let X1, . . . , X48 be the random variables where Xi = 1 if cards i
through i+3 are the same suit, and 0 otherwise. We know E[Xi] = 44/4165, and so by
linearity of expectation we have the expected number of times we have four consecutive
cards in a suit is

E[X1] + ⋅ ⋅ ⋅+ E[X48] = 48 ⋅ 44

4165
≈ .507083,

which is almost exactly between 0 and 1. To compute the variance requires us to under-
stand the correlations between the Xi’s.
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11. FORD, AARON

Exercise 11.1. Your 12 red checker pieces are randomly placed, one by one, onto your
8 × 8 checker board’s eligible squares (in other words, they are placed only on the 32
black squares). What is the probability that they are placed in a legitimate opening
configuration (in other words, that they are all in the first three rows or all in the last
three rows)?

Solution: We give two solutions. For the first, we assume the 12 pieces are distinguish-
able, and calculate the probability that the checkers end up in the 12 squares in the first
three rows; multiplying by 2 gives the answer. The first piece has a 12

32
chance of being

placed onto a correct square. The next piece has a 11
31

chance, the next a 10
30

chance,
and so on, down to a 1

21
chance for the final piece, if all of the previous ones are set up

correctly. So the probability is equal to

2 ⋅ 12!
32!
20!

≈ 8.858 ⋅ 10−9

For the non-distinguishable case, we either fill up the three bottom or the three top
rows. There are only two ways of doing so, and the number of ways of choosing 12
squares from 32 is

(
32
12

)
= 32!/12!20!. Thus the probability is 2/

(
32
2

)
, which after some

algebra we note is the same as 2 ⋅ 12!/(32!/20!).
Exercise 11.2. Let’s say that you are playing blackjack at a casino where the dealer is
using an infinite number of decks of cards, and each card has an equal probability of
being drawn. Let’s say that you must keep hitting, or asking for another card, until you
hit 21 or go over. What is the chance that you land on 21?

Solution: The natural way to interpret this is that, at each draw, we are equally likely
to get any card. We need to look at how many ways there are to get exactly 21 or bust.
As the largest denomination of a card is 10, if we bust we must have had somewhere
between a 12 and a 20, and we end somewhere between a 22 and a 30, given that we
were never at 21. It is already a difficult problem just calculating how many ways we
can add up to exactly 21. This is equivalent to solving the following equation:

1x1 + 2x2 + 3x3 + ⋅ ⋅ ⋅+ 9x9 + 10x10 + 10x11 + 10x12 + 10x13 = 21,

where xi ≥ 0 is the number of cards we have with the value i (unless i ∈ {11, 12, 13}
in which case it is 10). This is an example of a Diophantine equation; in general these
are very hard to solve (and this is just one case of what we need!).

12. GROVER, MICHAEL

Exercise 12.1. Let F (x, y) = xy where 0 ≤ x, y ≤ 1 What is the marginal distribution
function of X?

Solution: If we let y take its maximum value, 1, F (x, y) = x. This is the marginal
distribution function of X .
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Exercise 12.2. Suppose a consumer lives for an infinite number of periods. The con-
sumer is endowed with 1 unit of the only good at period zero. The consumer has pref-
erences represented by the following utility function:

u(x0, x1, x2, . . . ) =
∞∑
t=0

¯t log(xt)

Assume the consumer has access to a market that provides a return. Specifically, if
amount k of the good is not eaten in period t, it turns into (1+ri)k of the good in period
t + 1 with probability pi where i ∈ ℤ+ is finite. Characterize the consumption stream
as a function of pi and ri. Note that although the consumer’s utility function dictates
risk aversion, he will still invest some money in the market as long as

∑
i xipi > 0.

Solution:

13. JACKSON, STEVEN

Consider a bounded random walk in [0, 1] starting at x ∈ [0, 1] and returning after
n steps of fixed size. Furthermore, suppose that the number and type of nonzero steps
that are taken affect some later calculation.

Exercise 13.1. Suppose the fixed step sizes are {0,±1
2
}. How many ways are there to

return to the start while taking k positive steps?

Solution: Except for the special case of x ∈ {0, 1/2, 1}, each choice of x determines a
unique first step, and then the next nonzero step must be in the opposite direction. For
simplicity, suppose x ∈ (0, 1/2), so that the first nonzero step will be 1/2, and the next
nonzero step will be −1/2. If we take k steps to the right, we will have k such paired
steps.

The only thing left to figure out is how to distribute the zeros among these. The
easiest way to look at this is to say that we are choosing n − 2k of the n spots to be
zeros, hence there are

(
n

n−2k

)
=

(
n
2k

)
ways to have a walk with k steps to the right while

returning to the starting point x ∈ (0, 1/2), where 0 ≤ k ≤ n/2.

Exercise 13.2. Suppose the fixed step sizes are {0,± 1
2ℓ
,± 2

2ℓ
, . . . ,±2ℓ−1

2ℓ
}, for ℓ ∈ ℕ.

Now how many ways are there to return to the start while taking k1 steps of + 1
2ℓ

, k2
steps of + 2

2ℓ
, . . . , k2ℓ−1 steps of +2ℓ−1

2ℓ
, and k−1 steps of size − 1

2ℓ
, etc.?

Solution: (Actually, Partial Solution.) We can apply the same trick as in the first ques-
tion to a rather small subset of the possible walks, where we just alternate positive and
negative steps of a given magnitude. There are also certain cases of mixing that are
relatively easy to analyze, but calculating the number for a completely general walk is
fiendishly difficult.

14. KOLOGLU, MURAT

Exercise 14.1 (Thursday Dice Fever). Two Williams students, M and N , decide to
have a Thursday night probabilistic contest–first of many to come. They have in their
possession one m sided and one n sided fair dice, where m ≥ n. M rolls the m sided
die and N rolls the n sided die. The higher roll wins and in the case of a tie they reroll
until either one wins. What is the probability that N wins in terms of n and m?
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Solution: Consider N ’s roll first. He has a 1/n probability of rolling each number from
1 to n. Assume he rolls some number r. Now M has a r−1

m
chance of rolling less than

r and thus losing and a 1/m probability of tying. Now, if M rolls an r, they reroll and,
since the rolls are independent the probability that N wins is the same probability as in
the initial case. Let us count these probabilities over r. Now any r itself has probability
1/n, so

ℙ(N wins) =
1

n

n∑
r=1

r − 1

m
+

1

m
ℙ(N wins)

Bringing the probability that N wins to the left hand side, we find

m− 1

m
ℙ(N wins) =

1

n

n∑
r=1

r − 1

m

ℙ(N wins) =
m

n(m− 1)

n∑
r=1

r − 1

m

=
1

n(m− 1)

n∑
r=1

(r − 1)

=
1

n(m− 1)

(n− 1)n

2

=
n− 1

2(m− 1)
,

where we used
∑K

i=0 i = K(K + 1)/2.
As a corollary, we have that the probability M wins is, after some algebra,

ℙ(M wins) =
2m− n− 1

2(m− 1)
.

Exercise 14.2. Let X be a continuous random variable with uniform density function
1/n for 0 < x ≤ n where n ∈ ℤ+ and 0 otherwise. What is the probability that the
ntℎ digit of ¼X is prime? Another version would be, what is the probability that the ntℎ

digit of ¼n is prime where n ∈ ℤ+?

Solution:

15. KUNG, ANDREW

Exercise 15.1. In the Mega Millions lottery game, players pick six numbers from two
separate pools of numbers - five different numbers from 1 to 56 and one number from
1 to 46. You win the jackpot by matching all six winning numbers in a drawing. There
are also smaller prizes for matching some of the six winning numbers. What is the
probability of winning the $10,000 prize by matching four of the numbers from 1 to 56
and the one number from 1 to 46?

Solution: To win the $10,000, you must match four of the five numbers from 1 to 56
and match the one number from 1 to 46, while not matching five numbers from 1 to 56.
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The total number of possible number combinations is 175,711,536 (thus the probability
of winning the Jackpot is 1 in 175,711,536):

(
56

5

)(
46

1

)
= 175, 711, 536.

The number of combinations that satisfy the $10,000 condition can be thought of this
way: to match four of the five numbers from 1 to 56, you must get one number wrong.
For this wrong number, there are 56 - 5 different numbers you can have instead of the
right number, since there are 56 total numbers. Thus there are

(
5
4

) (
51
1

)
= 255 ways to

get four of the five correct, and thus the probability of winning the $10,000 is

225

175, 711, 536
,

or about 1 in 689,065.

Exercise 15.2. From a probabilistic standpoint, which chance-based casino game offers
the greatest payout (or smallest loss) for players given optimal betting strategy and
standard house limitations: slots, roulette, craps, or baccarat? That is, if you were to
take $N to a casino to start, which game would offer the most play before you run out
of money, assuming you are betting the same unit every time you play a game?

Solution:

16. LIU, ANDREW

Exercise 16.1. You are playing European Roulette, with 36 numbers and 1 zero, with
the payout for each number being 1:35. Assume no maximum bet limits and that you
have $122400. Under what circumstances would you win $100 with at least 99% prob-
ability?

Solution: If you placed a $100 bet on 34 of 37 spots, you lose with a probability of
3/37. Then, if you place a bet of $3500 on 34 of 37 spots, you lose with a probabil-
ity of 3/37. Thus, the probability of losing both since they are independent events is
(3/37)2, so the probability of winning at least one is 1 − (3/37)2 = 0.9934. If you
won in either case, you would win $100. This was inspired by the following blog post:
http://gregmankiw.blogspot.com/2009/06/was-keynes-
really-savvy-investor.html The problem with this method, of course, is
what happens when you lose? You either lose big or you lose enormous! All the small
little wins are not enough to make up for the one gigantic loss - if it occurs, it can be
devastating.

Exercise 16.2. You are playing Texas Hold ’Em and your two cards are a King and a
seven. Assume no blinds (i.e. pot starts at $0) and that your opponent will always call
your bet. How much should you bet if you want to have an expected winnings of $100
after this round?

Solution:
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17. LORENZO, ANTIONIO

Exercise 17.1. A color blind goat is grazing on wild flowers. There are five different
colored flowers for the goat to choose from: blue, red, green, yellow, and orange. What
is the probability the goat will eat a red flower given there are twenty flowers of each
color and the goat is equally likely to eat any of them?

Solution: The probability is 20
100

= 1
5
.

Exercise 17.2. You are one of four players at a table playing Texas Hold ’em poker.
What is the probability your best hand after the flop is four of a kind while the three
other players do not have a hand better than a pair?

Solution:

18. MOORE, DAVID

Exercise 18.1. In a game of Texas Hold Em poker, you are dealt the king and ace of
spades. What is the probability that you will be able to make a royal flush in spades?
(In Texas Hold Em, each player is dealt two cards, and then five cards are dealt face up
on the table; each player chooses the best five-card poker hand out of the seven cards
they can see. In this case, getting a royal flush would specifically require the ten, jack,
and queen of spades to be among the face-up five cards.)

Solution: There are three cards we are interested in seeing dealt, namely the ten, jack,
and queen of spades. The number of ways to get these three cards and then two others
is just

(
3
3

) (
47
2

)
; as there are

(
50
5

)
ways to choose five cards from the remaining 50, we

see the probability is just
(
3
3

) (
47
2

)
/
(
50
5

)
, or 1/1960.

Exercise 18.2. Suppose we have n monkeys typing at n typewriters. The typewriters are
fed by infinite rolls of paper and there is no limit to how long the monkeys can continue
typing. At each discrete time step, beginning at t = 1, each of the monkeys types a single
key on their typewriter, selected uniformly at random and independently of the other
monkeys, from a set of 50 possibilities characters (consisting of letters, numbers, and
punctuation). One freely available edition of Hamlet contains 157,929 characters. A
monkey is said to have typed Hamlet if any consecutive sequence of 157,929 characters
on their paper corresponds to the 157,929 characters of Hamlet. As a function of n,
what is expected number of time steps until at least one monkey has typed Hamlet?

Remark 18.3. My suspicion is that knowledge of the actual text of Hamlet is required
in order to solve this problem exactly. It is easy to calculate the probability of any
single trial of 157929 characters being precisely those of Hamlet, but a single monkey
can be said to go through many such trials – beginning with characters 1 to 157929,
then 2 to 157930, 3 to 157931, etc. – which are highly dependent on each other and
presumably also on the desired text. Obviously we can get an upper bound by simply
ignoring overlapping characters and taking 1 to 157929, 157930 to 315858, etc. as our
trials along the lines of the “Murphy’s Law” proof, but I would be interested to know if
there is a tractable general method for getting an exact solution.

Solution:
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Exercise 18.4. Consider a graph with n nodes and, initially, no edges. Choose a pair
of nodes uniformly at random from the set of all pairs of nodes which do not already
have an edge connecting them directly, and add an edge between the two nodes. Repeat
the previous step until there are n edges in the graph. What is the probability that the
graph is connected?

Solution:

19. PEGADO, SEAN

Exercise 19.1 (Playing Weatherman). The Williams College Mountain Day Committee
is trying to decide which of the first three Fridays in October to declare Mountain Day,
and it is the Thursday before the first Friday of October. The committee wants to make
the decision that gives the best chance of sunny skies.

As of this first Thursday, there is a 30% chance of rain for the first Friday. The fore-
cast predicts a 30% − 50% chance of rain for the second Friday; there is a degree of
uncertainty in the forecast because the second Friday is currently a week away. Simi-
larly, the third Friday of the month has a current forecast of 5%− 45%, with even more
uncertainty because it is two weeks away.

If the committee does not declare the first Friday Mountain Day, it has up until the fol-
lowing Thursday to make a decision. Each Thursday brings a decrease in the weather’s
uncertainty, so by the second Thursday the forecast for the second Friday will not have
uncertainty (that is, it will be a specific probability between 30% and 50%), and the
forecast for the final Thursday will be some 20% range between 5% and 45% (for ex-
ample, it could be between 15% and 35%, or it could be between 5% and 25%).

If the committee does not declare one of the first two Fridays Mountain Day, the third
Friday will be automatically chosen. Assume when given an uncertain forecast that
every percentage is equally likely to be the correct forecast.

Which Friday in October should the committee declare Mountain Day in order to
minimize the chance of rain and maximize the chance of sunny skies?

Solution:

Question 19.2. What is the difference between the two formulations? Is the new version
clearer than the original?

Exercise 19.3 (Sweet decisions.). Once Mountain Day has been decided, the commit-
tee must order doughnuts and warm apple cider for the celebrations. There are three
different types of doughnuts: plain, sugar coated, and glazed. There is a budget for
800 doughnuts, and the committee must purchase at least 100 of each type. How many
Mountain Days would it take to exhaust every possible combination of doughnuts?

Solution: It will take as many Mountain Days as there are combinations. Since we
must have at least 100 of each of the three types of doughnuts, we purchase those 300
doughnuts and ask a simpler question: how many ways can we buy 500 doughnuts of
three different varieties?

Think of all 500 of our doughnuts as plain and being sorted into three different boxes.
One box will remain plain, one will add sugar to all the doughnuts inside, and one will
add a glaze to every doughnut. We now wish to calculate the number of ways we can
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put our 500 doughnuts into these three boxes. Since the doughnuts are identical before
being placed in the boxes, and each box is distinguished, we know from combinatorics
that there are

(
500+3−1

3−1

)
=

(
502
2

)
= 125, 751 ways this can happen. Thus it would take

125, 751 Mountain Days to exhaust every possibility; not a task soon accomplished if
Mountain Day remains an annual event.

20. PHAM, VINCENT

Exercise 20.1. Given a monic quadratic polynomial f(x) = x2 + ax+ b where a, b are
independent uniform random variables on [−1, 1], what is the probability that f has
two real roots?

Solution: Our polynomial has real roots when a2 − 4b ≥ 0, which means a2/4 ≥ b.
We break the analysis into different cases, depending on the value of b. This is always
true if b ≤ 0, while if b > 1/4 then this never holds. We are thus left with b such that
0 ≤ b ≤ 1/4. For such b, the probability we choose an a sufficiently large is just, by
the law of total probability, the probability that ∣a∣ ≤ 2

√
b. Thus the probability the two

roots are distinct is just
∫ 0

−1

1

2
db ⋅ 1 +

∫ 1/4

0

1

2
2
√
bdb =

1

2
+

1

3

(
1

4

)3/2

Exercise 20.2 (The 21-card Poker). A game of 21-card Poker consists of 4 tens, 4 Jacks,
4 Queens, 4 Kings and 1 Joker (a wild card that can represent any of the other 20 cards).
The hand rankings are the same with normal Poker except now there is a five-of-a-kind
hand that triumphs over all. There are two players playing against one another in this
game. At the begin of each game, the dealer shuffles the desk then lets each player
choose a number of cards to be cut. Those cards are moved to the bottom of the desk
and then the dealer deals out five cards to each player. There are two round of betting.
Between those two rounds, each player can choose to discard any number of cards in
their hands for new cards. Also, let us assume that the players are professional poker-
player and play the game with their best interest and to the best possible strategy.

(1) Assume that you got the Joker in your initial hand. Which one has the higher
chance of winning now? Can we calculate that chance?

(2) Assume that your opponent is psychic and he knows the exact location of the
Joker in the desk before the cuts so that he always cuts in order for the Joker to
come to him. Now assume also that no one gets the Joker in their initial hands.
Which one has the higher chance of winning now?

(3) How the answer in a) and b) change if those discarded cards are shuffled back
into the desk?

(A win is when you have the better hand regardless of whether you or your opponent
decide to flush or not during the betting round.)

Solution:

21. SATOPÄÄ, VILLE

Exercise 21.1. First roll a fair die. Then flip a fair coin as many times as shown by the
face of the die. Let X be the number of heads. What is E[X]?
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Solution:

E[X] =
1

6

6∑
i=1

i

2
=

1

6
⋅ 21
2

=
21

12
= 1.75.

Exercise 21.2. Two computers play Tic-tac-toe on a 3 × 3 grid. They take turns. Both
computers decide to use the Random Tic-tac-toe Strategy: place the next mark randomly
in the remaining free spaces. What is the probability that the starting computer wins?

Solution:

22. SHEA, MEGHAN

Exercise 22.1. Consider this gamble. You are asked to flip a coin 5 times. If the coin
lands on heads, you win 100 dollars but if it lands on tails, you lose 100 dollars. What
is the probability that you walk away a winner (i.e., you made money on the gamble)?

Solution: We give two solutions. Since each flip is independent and therefore one
flip does not depend on the result of the other, you can think of it as 5 independent
gambles. The probability of winning each gamble is 1/2 and therefore the probability
of losing each gamble is also 1/2. In order to finish with a net gain, you need to
win a majority of the flips so since there are 5 total flips, you need to win at least 3.
Therefore if let X denote the number of heads, we want to find P (X ≥ 3), which is
just P (X = 3) + P (X = 4) + P (X = 5). So

P (X ≥ 3) =

(
5

3

)
1

2

31

2

2

+

(
5

4

)
1

2

41

2

1

+

(
5

5

)
1

2

51

2

0

P (X ≥ 3) =
5!

(3!)(2!)(32)
+

5!

(4!)(32)
+

5!

(5!)(32)

Therefore the probability of walking away a winner is

10

32
+

5

32
+

1

32
=

16

32
=

1

2
.

For the second solution, as we are equally likely to have a tail as to have a head, the
probability we win must be 1/2 by symmetry. We gave the first proof as we must argue
along those lines if the probability of winning is not 1/2, as then these techniques break
down.

Exercise 22.2. Now consider this same gamble as above, but with with n tosses. The
game now ends when there are five tosses in a row with the same outcome, that is either
5 heads in a row or 5 tails in a row ends the game. Now what is the probability that you
walk away a winner?

Solution: For a fair coin, we are just as likely to have 5 heads in a row as 5 tails, and so
again the probability is just 1/2.
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23. SHIN, GEA

Exercise 23.1. How many different ways are there to arrange 20 people around a round
table (all seats are equivalent)? Assume that there is one couple among 20 people. What
is the probability that the couple sits next to each other?

Solution: This is a very interesting question. The first guess might be 20!. But this
counts the same arrangements of people around the table for multiple times. The clever
way to solve this question is to artifically give orders to the people by a simple trick.
For instance, make one person to sit on any chair around a table. Whichever chair he
sits on, they are all equal cases. But after making one person to sit, we now have an
order. If a second person sits two seats to the right of the first person, we now have the
order between the first and the second person. Thus, after putting the first person to a
seat, the problem now became just ordering 19 people in a straight line, which is simply
19!.

Now, let us think about the probability that the couple sits next to each other. Since
the couple would always sit next to each other, we can treat them as a one person. Then,
using the logic from the previous paragraph, it seems that there are 18! ways for them
to sit next to each other. But we actually have to think about the couple changing seats
within themselves. Thus, we should multiply by 2!, and the probability comes out as
2∗18!
19!

= 2
19

.

Exercise 23.2. You are playing 5 card poker with 3 other people. It is the last round of
betting and the pot is $1000, of which you have contributed $250. Another player bets
$100, the other two players call, and it is finally your turn to call (pot is $1300), but
your hand is not ideal. You have a pair Kings (clubs and diamonds), a Queen of spades,
and a 2 of clubs, as well as a 5 of clubs. Suppose that you call when the probability of
your winning is greater than 1

2
but you fold otherwises, should you call or fold?

24. SHIRKOVA, TERESA

Exercise 24.1. Suppose you have an n2 × n2 Sudoku board, where n ≥ 2 is a positive
integer (1 × 1 Sudoku is very well understood!). We place an integer m ∈ {1, . . . , n}
randomly on two distinct squares subject to the rules of Sudoku, namely that the two
m’s are not in the same row, column or n× n box. Let ℓ ∈ {1, . . . , n} be distinct from
m: find the probability that ℓ is in the same row or column as one of the m’s, as well as
the probability that it is in the intersetion of a row and a column of the two m’s.

Solution: There are n4 squares on the Sudoku board, n2 squares in each row and n2 in
each column. Thus to be in the same row or column as one of the m’s means we must
be in one of 2(n2− 1) squares. As there are exactly two squares that are in a row of one
of the m’s and a column of the other, there are 4(n2−1)−2 squares that are in a row or
column of one of the m’s. Thus the probability that we place the ℓ in the same row or
column as one of the m’s is just 4(n2−1)−2

n4−2
= 4n2−6

n4−2
(since there are n4 − 2 squares still

open on the board), and the probability that it is in the intersection of a row and column
is 2

n4−2
.

Exercise 24.2. A jar contain 5 pencils and 7 pens. We pull out two objects, with all
pairs equally likely to be chosen. Assume any pencil works with probability 1/7, and
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pens only work if they are paired with a pencil that doesn’t work. What is the probability
that at least one object picked out of the jar works?

Solution: If we pull two pens, which happens with probability
(
7
2

)
/
(
12
2

)
, then neither

works as there is no pencil. If we pull two pencils, which happens with probability(
5
2

)
/
(
12
2

)
, then each pencil works with probability 1/7, so the probability at least one

works is 1− (6/7)2. If we pull one pencil and one pen, which happens with probability(
5
1

) (
7
1

)
/
(
12
2

)
, then the exactly one of the two work. Thus the probability that at least

one object works is
(
5
2

)
(
12
2

) ⋅
Ã
1−

(
6

7

)2
)

+

(
5
1

) (
7
1

)
(
12
2

) ⋅ 1 =
615

1078
≈ .570501.

25. XIE, ZOE

Exercise 25.1. Suppose there are 200 possible essay questions on a standardized test.
Every test contains two questions randomly selected from the pool of 200, and a test
taker has to choose one of the two questions to answer. If someone prepares 20 out
of these 200 questions, then what is the probability that he will have one of these 20
questions on the actual test?

Solution: With each of the 20 questions, there are a number of ways to include at
least one of these 20 questions. Without loss of generality we can number the 200
questions 1 to 200 and the 20 prepared questions 1 to 20. Not to double count we have
Q1 (1, 2) (1, 3) (1, 4) . . . (1, 200) 199 ways
Q2 (2, 3) (2, 4) (2, 5) . . . (2, 200) 198 ways

. . .
Q20 (20, 21) (20, 22) (20, 23) . . . (20, 200) 180 ways

ℙ(at least one prepared question on the test)

=
pairs with at least one of the 20 prepared questions

total number of possible pairs

=
199 + 198 + ⋅ ⋅ ⋅+ 180(

200

2

)

≈ 19.05%

Alternative (and quicker) answer to question 1

ℙ(at least one prepared question on the test)
= 1− ℙ(no prepared question on the test)

= 1− ways to choose 2 Qs from outside the 20 prepared Qs
total ways to choose the 2 questions

= 1−

(
180

2

)

(
200

2

)

≈ 19.05%
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Exercise 25.2. A box has three drawers; one contains two gold coins, one contains
two silver coins, and one contains one gold coin and one silver coin. Assume that one
drawer is selected randomly and that a randomly selected coin from that drawer turns
out to be gold. What is the probability that the chosen drawer is one that contains two
gold coins?

Solution: Let A be the event that the draw contains two gold coins, and B be the
event that a randomly selected coin is gold. Note ℙ(A) = 1/3, ℙ(B) = 1/2 and
ℙ(A∣B) = ℙ(A ∩ B)/ℙ(B); however, A ∩ B = A, so ℙ(A∣B) = 1/3

1/2
= 2

3
, and of

course ℙ(A∣B) is the probability that we have selected the draw with two gold coins
given that we see a gold coin.

26. XIONG, WENTAO

Exercise 26.1. If we randomly choose 3 of the 8 vertices of a cube, what is the proba-
bility that these 3 points form an isosceles right triangle?

Solution: The number of possible ways to choose 3 vertices on a cube is
(
8
3

)
= 8!

3!5!
=

56.
To form a right isosceles triangle, we must choose three vertices on the same face.

There are
(
6
1

)
ways to choose a face, and then

(
4
3

)
ways to choose three vertices on that

face, for
(
6
1

) (
4
3

)
= 24 possibilities. Thus the probability is just 24/56, or about 42%.

Exercise 26.2. We again choose 3 of the 8 vertices of our cube to form a triangle. What
is the probability that two randomly chosen triangles formed this way are in the same
plane? Assume all triangles are equally likely to be chosen, and we are not allowed to
choose the same triangle twice.

Solution: The total number of triangles is
(
8
3

)
= 56. There are

(
56
2

)
= 1540 ways to

choose two different triangles. If our two triangles are in the same plane, they must
be in one of the planes that contain 4 of 8 vertices of the cube. In each such plane,
there are

(
4
3

)
= 4 possible ways to form a triangle, and thus

(
4
2

)
= 6 possible ways

to select 2 out of the 4 triangles on each plane. There are 6 + 6 = 12 such planes in a
parallelepiped, and thus 12 ∗ 6 = 72 possible ways that two randomly-chosen triangles
formed this way are n the same plane. Therefore, the probability is 72

1540
, or about 4.7%.

27. ZHANG, LIYANG

Exercise 27.1. If you roll a fair die 6n times, what is the probability that each number
occurs the same number of times?

Solution: The solution involves the multinomial coefficient. The probability we have
each number exactly n times is

(
(6n)!
n!⋅⋅⋅n!

) (
1
6

)n ⋅ ⋅ ⋅ (1
6

)n, where we have n! six times in
the bottom of the multinomial coefficient, and six factors of (1/6)n.

Exercise 27.2. If you roll a fair dice 6n times, what is the probability that the average
number is exactly a 4?
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Solution: Let X1, . . . , X6n denote the outcomes of the 6n rolls. For the average to be
exactly 4, we need

X1 + ⋅ ⋅ ⋅+X6n = 4 ⋅ 6n = 24n.

While this problem is very similar to the birthday problem, it is complicated by the fact
that each Xi is at most 6.

28

Exercise 28.1. We start at the origin and every minute move right one unit with proba-
bility p and left one unit with probability 1− p. What is the probability of being 5 units
to the right after 10 steps? After 11 steps?

Solution: To be 5 units to the right, we must have taken 5 more steps to the right than
to the left. If L is the number of steps to the left and R to the right, then R + L = 10
and R−L = 5; solving gives R = 15/2, which is impossible. If now R+L = 11, then
solving gives R = 8 and L = 3. In this case, the probability is just

(
11
8

)
p8(1− p)3.

Exercise 28.2. There are n lights with binary switches. Each minute one has to pick
one light to turn on or off, and every light is equally likely to be picked. After m times,
what is the probability that there are exactly k lights on? Assume initially all lights are
off.

Solution:

29

Exercise 29.1. There are five Fridays in October 2009. One of these Fridays will be
Mountain Day, when all Williams’ classes are canceled and everybody is supposed to
climb up the mountain and drink hot cider together. Assume that the probability that
the weather is good for climbing is 0.6 and the probability that each Friday will be
Mountain Day is 0.2. The probability that they will run out of hot cider on the mountain
is 0.1. Mr. Lazy loves climbing up the mountain and loves drinking hot cider; however,
he always gets up late. The probability that he may get up too late on Mountain Day is
0.35. What is the probability that Mr. Lazy can make it to the top of the mountain and
get to drink hot cider given that the second Friday is Mountain Day?

Solution: The probability is just .65 ⋅ .6 ⋅ .9, which comes from the probability he gets
up early enough times the probability it is good climbing weather times the probability
there is enough cider. (Note several assumptions are made in computing this probabil-
ity!)

Exercise 29.2. There is a wedding tradition in Thailand that the groom has to pay some
dowry to the bride’s parents as a thank you present for raising. Mr. Handsome currently
has a Thai girlfriend and wants to get married to her anytime before he turns 30. His
girlfriend’s parents are quite conservative and will not let him marry her unless he
holds the wedding in the traditional Thai style in Thailand. Therefore, he plans to start
saving $1000 a month to pay for the dowry, the wedding party, and the plane ticket to
Thailand. Similar to other couples, Mr. Handsome has a 30% probability of quarreling
with his girlfriend each month. If the quarrel happens, there will be a 50% chance that
it is his fault, in which case he has to spend $250 to buy her a big bouquet of flowers
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and bring her to a fancy restaurant for an apology. In other words, if there is a quarrel
and it is Mr. Handsome’s fault, he only saves $750 in that month. If he still does not
have enough money after he is 30, he will feel upset and hopeless, and thus decide to
break up with his girlfriend. Suppose that now he is 23 years old and he needs to save
$75,000 dollars. What is the probability that he will marry his girlfriend? Assume all
dollar amounts are fixed for the seven years.

Solution: There are 8 years to save the $75,000. Each month he saves at least $750,
which comes to $72000; thus he only needs to save an additional $3000. Every month
where he is not responsible for a quarrel means he saves an additional $250, so he only
needs 12 months (out of the 96 months) where he is not responsible for a quarrel. For
each month, the probability that there is a quarrel which is his fault is .15. Thus the
probability that he saves enough money is equal to the probability that there are at most
84 months where the quarrel is his fault. This is a binomial problem, where n = 96 and
p = .15; the probability of at most 84 months with a quarrel that is his fault is

84∑

k=0

(
96

k

)
.15k(1− .15)96−k,

which is extremely close to 1 (the odds are less than 1 in 1050 that he won’t save enough
money).

30. START OF SECOND SET OF PROPOSED PROBLEMS
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31. ARNOSTI, NICK

Exercise 31.1. In the game of Settlers of Catan, each player rolls two standard dice
to begin their turn. All players then receive resources based on the outcome of the roll
and the locations of their cities. If a seven is rolled, any player with over 7 resources
must discard half of their hand, and then the player who rolled the seven may steal a
resource from one of the other three players. Suppose that a player receives resources
in the following quantities: one on a roll of 4, 5, or 10, two on a roll of 3, three on a
roll of 6, and zero otherwise. If this player ends his turn with two resources, what is the
probability that after four rolls he will have had to discard due to the roll of a 7?

Solution: The player cannot have over seven cards until after the second roll. Thus, the
third roll is the first that can cause him to discard. He discards on the third roll if and
only if he gained six or more cards on the first two rolls and the third roll is a seven.
This can occur in only one way: rolls of 6, 6, 7, which has probability ( 5

36
)2 ⋅ 1

6
= 25

7776
.

He discards on the fourth roll if and only if he gained six or more resources on the
first three rolls and the fourth roll is a seven. He can gain six or more resources on
three rolls in the following ways (in the vector (x1, x2, x3), xi represents the number
of resources gained on roll i): (1, 2, 3); (0, 3, 3); (1, 3, 3); (2, 2, 3); (2, 3, 3); (3, 3, 3) and
permutations of these. On a given roll, ℙ(1 resource) = ℙ(4)+ℙ(5)+ℙ(10) = 10

36
= 5

18
,

ℙ(2 resources) = ℙ(3) = 1
12

, ℙ(3 resources) = ℙ(6) = 5
36

, and ℙ(0 resources) =

1− 5
18

− 1
12

− 5
36

= 1
2
. Thus,

ℙ (discard on roll 4) = ℙ (six or more resources on first three rolls)
⋅ ℙ (7 on fourth roll)

=
[
3! ⋅ 5

18
⋅ 1

12
⋅ 5

36
+ 3 ⋅ 1

2
⋅
(

5

36

)2

+ 3 ⋅ 5

18
⋅
(

5

36

)2

+ 3 ⋅
(

1

12

)2

⋅ 5

36
+ 3 ⋅ 1

12
⋅
(

5

36

)2

+

(
5

36

)3 ]
⋅ 1
6

=
3485

279936
.

As a player cannot discard on both the third roll and the fourth roll, the answer is
3485

279936
+ 25

7776
= 4385

279936
, or about 1.57%.

Exercise 31.2. Suppose that if a Math-Science Resource Center (MSRC) tutor is help-
ing a group of n students on a problem, the amount of time it takes to work through it is
ln (n+ 1) minutes (thus the more students present the longer it takes as there are more
people with potential questions; however, the time cost of each additional student is
getting smaller and smaller). Suppose further (and idealistically) that any students who
are in the MSRC and have not worked on a given problem come to the tutor as a group,
and that students who have not worked on either problem do them in order. Assume that
when students come to the tutor as a group, he works exclusively with them until they
understand the problem, and then moves on to the next group of students (if any). The
probability of N students entering in a given minute is e1−N

e−1
, and each has probability
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p1 of having a question on problem 1 and independent probability p2 of having a prob-
lem on question 2. Let wi denote the time that student i must wait before understanding
both problems. Is the average of wi over all students finite?

32. ATKINSON, BEN

Exercise 32.1. Consider a standard 52 card deck, with 4 suits each encompassing 13
cards numbered 2, 3, . . . , 10, J , Q, K, A. What is the probability that a hand of 5 cards
contains all cards of the same suit (a flush)?

Solution: The first card can be anything, and then the remaining must be in that suit.
One way to compute the answer is

52

52

12

51

11

50

10

49

9

48
=

33

16660
≈ 0.00198079.

In our counting for this solution, order matters. Another way is to say there are
(
4
1

)
ways to choose the suit, and then

(
13
5

)
ways to choose 5 cards in that suit. As there are(

52
5

)
ways to choose 5 cards, we find the probability is

(
4
1

) (
13
5

)
(
52
2

) =
33

16660
.

Exercise 32.2. General Mills is having a new promotion for their cereal. Each box of
cereal contains exactly one of a purple cow, an Ephraim Williams action figure, or a
Lord Jeff action figure; each box is equally likely to have any of the three prizes. A
Williams professor would like to obtain two purple cows and two Ephraim Williams
action figures to give to his children (Cameron and Kayla). He does not care about the
Lord Jeff action figures, and promptly throws them in the garbage when he obtains one.
What is the expected number of boxes this professor must open to obtain the desired
number and type of toys?

Solution:

33. BERRY, JACK

Exercise 33.1. An organism with a single chromosome has a genome size of G nu-
cleotides with m single nucleotide mutations in the genome. Assume G is at least 5
orders of magnitude larger than m. A proofreading enzyme starts at one end of the
DNA and travels along until it finds a mutation, which it will then correct. On average,
how many nucleotides must the enzyme check before it finds a mutation?

Solution: Imagine the genome is divided into runs of nucleotides, R(n), separated by
a mutation so that there are m + 1 runs of correct nucleotides. Each run has an equal
probability of having a certain length,

E[R(1)] = E[R(2)] = ⋅ ⋅ ⋅ = E[R(m+ 1)].
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Also, we know the total length of all the runs, R(1) + R(2) + ... + R(m + 1), equals
the number of correct nucleotides, or G−m. Thus

E[(1)] =
G−m

m+ 1
,

and hence the proofreading enzyme must read (G − m)/(m + 1) nucleotides before
encountering a mutation.

Exercise 33.2. Now suppose the occurrence of a mutation increases the likelihood of
another mutation being close by so that if a mutation occurs at nucleotide k, N(k),
then there is a .8 probability of there being another mutation within G/(5m). In other
words, there is a probability of 0.8 that a mutation is between N(k) − G/(5m) and
N(k) + G/(5m). What is the average number of nucleotides the proofreading enzyme
must check before encountering a mutation?

Solution:

34. BINDER, ARI

Exercise 34.1. There are 128 players in the US Open draw. Assume that player ® beats
any of the other 127 players with probability p. Let A correspond to the number of
matches ® wins at the Open. Find A’s mass function and expected value.

Solution: First, note that the 128 = 27 players are divided into 26 pairs. The two
players in each pair play against each other, and the winner moves on to the next round,
in which there are 25 pairs. Play continues until 1 = 20 player remains; he is the winner.
Thus, ® must win 7 matches to win the tournament. We can view this as the reverse of
a geometric distribution; as long as we have successes, we keep playing, stopping after
the first failure or when we have 7 successes. Hence,

f(A) =

⎧
⎨
⎩

pn(1− p) if 0 ≤ n ≤ 6

pn if n = 7

0 otherwise,

and therefore

E[A] =
6∑

n=0

nf(n)

= p(1− p) + 2p2(1− p) + 3p3(1− p) + 4p4(1− p) + 5p5(1− p)

+ 6p6(1− p) + 7p7

= p(1 + p+ p2 + p3 + p4 + p5 + p6).

Whenever we have a long, involved answer such as the one above, it is worth check-
ing extreme cases to see how reasonable it is. The most natural and easiest cases to
check are p = 1 and p = 0. Not surprisingly, as p → 1 the expected number of games
won converges to 7, while if p → 0 it converges to 0. It’s easier to see that the expected
number of wins is an increasing function of p (perhaps the simplest way to see this is to
compute its derivative with respect to p, and note that it is always non-negative).

The next value to use to test our answer is p = 1/2, though this is a bit harder to
judge. When p = 1/2 we get 127/128, a little less than 1. As our player loses his first
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match half the time, and is eliminated after the second match another 25% of the time,
such an answer is eminently reasonable; however, there is a better way of looking at the
problem. Let’s count the total number of wins in the tournament. There are 64 matches
in the first round, leading to 64 wins. The next rounds generate 32, 16, 8, 4, 2 and 1
additional wins, for a grand total of 127 wins. If p = 1/2 for every player, then they all
have the same expected number of wins. Thus we must divide the 127 wins among 128
people, which leads to an expected value of 127/128 wins per person, exactly what we
find. (If we had an infinite tournament, then the expected number of wins when p = 1/2
would be 2, as this would be a geometric series.)

While these arguments of course do not prove that our calculation above is correct,
they do provide strong support, and illustrate the value of these checks. (The original
solution had a typo, and the proposed answer failed these tests.)

Exercise 34.2. Now consider an n-round “full feed in” draw, where n ≥ 3. The format
of this is as follows: Play until you lose. If you win your first n matches, you win. If
you win your first n− 1 matches and lose, you finish second. If you win your first n− 2
matches and lose, you play an additional match for third place. If you lose before the
semifinal round, you go from the main draw into the backdraw. The backdraw works
as follows: The 2n−1 first round losers play against each other, and the 2n−2 losers of
this round are out of the tournament. The 2n−2 winners of this round play against the
2n−2 losers from the second round of the maindraw. The 2n−2 winners of this round
play against each other, and the 2n−3 winners that result play against the 2n−3 losers
from the third round of the main draw. The pattern repeats until there are four players
remaining in the backdraw (i.e. the four winners that result from the four maindraw
quarterfinal losers playing against the four players who won their previous backdraw
round), and then these four players play a single elimination tournament down to one.
That player finishes fifth in the overall tournament, and is the winner of the backdraw.
To summarize, you are done when you either: win the tournament, lose in the finals,
make the semis and then win or lose the third place match, lose in the maindraw before
the semis but then win the backdraw, or lose in the main draw before the semis and
lose again in the backdraw. Verify that a player who loses in the first round and then
proceeds to win the backdraw wins 2n−4 matches. Find the mass function and expected
value of A.

Solution:

35. BROWN, CHAD

Exercise 35.1. Calculate the probability of an MLB team sweeping every game of the
playoffs, given the following assumptions:

(1) Every team is evenly matched.
(2) The probability of the home team winning any particular game is p (and thus

the probability of the away team winning is 1− p).
(3) Assume that all eight playoff teams are randomly assigned a number from 1 to

8, corresponding to their seed, rather than using regular season stats.
(4) The first series (LDS) is best of 5, with the first, second, and fifth game played

at the home of the team with the higher seed. The second series (LCS) and third
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series (WS) are best of seven, with the first, second, six, and seventh games at
the home of the team with the higher seed.

(5) The outcome of each game is independent to the outcome of any previous games.

Solution: Only one team can sweep each series they play in. The LCS and WS are
particularly easy to analyze. For a sweep to occur, one team must win each of the
first four games, two of which are at their home and two of which are away. Thus the
probability that there is a sweep in the LCS is p2(1− p)2; similarly the probability that
there is a sweep in the WS is also p2(1− p)2.

The probability that the lower seed sweeps a LDS is (1− p)2p, while the probability
that the higher seed sweeps the LDS is p2(1− p). We thus find that the probability that
a lower seed sweeps all three series is

(1− p)2p ⋅ p2(1− p)2 ⋅ p2(1− p)2 = p5(1− p)6,

while for a higher seed it is

p2(1− p) ⋅ p2(1− p)2 ⋅ p2(1− p)2 = p6(1− p)5.

There are 8 teams (4 low seeds, 4 high seeds), and thus the total probability that one of
the 8 teams sweeps each series it plays is just

4p5(1− p)6 + 4p6(1− p)5 = 4p5(1− p)5.

For p = 1/2 the probability is 4 ⋅ 2−10 = 2−8 or 1 in 256.

Exercise 35.2. What is the probability of a team sweeping every game of the playoffs
if the LCS and WS were changed to a 3-3-1 format, where the first, second, third, and
seventh game of these series were played at the home of the higher seeded team?

Solution: This problem can be readily solved by brute force, as there are not too many
possibilities to consider. Unlike the previous case, however, the analysis of the LCS
and WS is significantly harder, as it matters whether or not the low or high seed is
sweeping. There are seven series to consider (four LDS, two LCS and one WS). Let’s
consider just the American League. Let us assume that the top seed plays the worst and
the second seed plays the third. The probability of the first or second sweeping their
series is p2(1 − p), while the probability that the third or fourth sweep their series is
(1 − p)2p. If the fourth seed sweeps, then it will clearly be the lower seed in the next
round; similarly if the top seed wins it will clearly be at home. Thus the probability
that the top seed sweeps its two American League series is just p2(1 − p) ⋅ p3(1 − p),
while the probability that the fourth seed sweeps both is (1 − p)2p ⋅ (1 − p)3p. For
the second or third seed to sweep the second round, however, it matters whether or not
they are playing the top or the bottom seed. Thus we need to know how likely it is for
the top seed to win its series. As they need to win three out of five, the possibilities
are either WWW (winning in three games), LWWW,WLWW,WWLW (winning in
four games), or LLWWW,WLLWW,WWLLW,LWWLW,WLWLW,WWLLW
(winning in five games); the probabilities of these events are readily calculated. For
example, in WLLWW the top seed wins games 1 and 5 at home, wins game 4 on the
road, and loses game 2 at home and loses game 3 on the road. The probability of this
happening is p(1−p)p(1−p)p. We can find the probability that the fourth seed wins its
series by the law of total probability, as it is just one minus the probability the top seed
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wins. We then have a conditional probability for the second or third team sweeping,
depending on whom their opponent is.

36. BUSTARD, TODD

Exercise 36.1. Consider postseason baseball. This year the record for most consecutive
games with an RBI was tied twice. Assuming that a player gets four at bats per game,
plays in n postseason games and has a batting average p0 and a probability p1 of hitting
a home run. Also, assume that a team has probability q of having a runner in scoring
position every time our batter steps up to the plate. What is the probability that this
player gets an RBI in each of his first k games?

Solution: Obviously the model above has numerous simplifying assumptions. The
knowledgeable baseball fan will note that there is one very important piece of infor-
mation missing above, namely that if the player walks with the bases loaded, then this
too counts as an RBI! For simplicity we assume that this and other ways of getting
an RBI without getting a hit (such as a sacrifice fly) do not happen. Equivalently, we
confine ourselves to RBIs from hits.

Even under this assumption, the problem is not well-defined. It makes a difference
whether or not the runner is on second or third, as a single should score a runner from
third but may not score a runner from second. For simplicity, we assume any runner on
second or third (i.e., a runner in scoring position) scores on any hit, while a runner on
first only scores on a home-run.

The probability that our batter gets a hitting RBI in an at-bat is thus p1 + q(p0 − p1).
We compute this as follows: if he hits a home run, he clearly receives an RBI; if he does
not hit a home run but does get a hit (which happens with probability p0 − p1) then he
earns an RBI if and only if someone is in scoring position. Thus the probability that he
does not get an RBI in an at-bat is 1− (p1 + q(p0 − p1)), so the probability that he does
not get an RBI in the game is (1− (p1 + q(p0 − p1)))

4 (since he has four at-bats).
Therefore

Probability at least 1 RBI in a game = 1− (1− (p1 + q(p0 − p1)))
4 ;

thus the probability that he gets an RBI in each of the first k games is simply the above
to the kth power.

Exercise 36.2. Generalize the above model to include factors such as walking with the
bases loaded (admittedly rare), sacrificing with a runner on third and less than two outs
(not so rare), et cetera.

37. CHO, JAEHONG

38. CITRO, BRIAN

Exercise 38.1. You have a total of six socks in your drawer, which are a mixture of black
and white. You pull out two socks randomly. The probability that you get a pair of two
white socks is 2/3. What is the probability that you get a pair of two black socks?

Solution: The probability of getting two black socks is 0. Since you know there are 6
socks and the probability of getting two white socks is 2

3
, there must be 5 white socks
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and one black sock, because the probability of drawing two white socks would then be
5
6
∗ 4

5
= 2

3
.

Another way to look at this is the following. Assume we have w white socks and
b black socks, with w + b = 6 of course. The number of ways of drawing two socks
(order does not matter) is

(
6
2

)
, while the number of ways of drawing two white socks is(

w
2

)
. Thus the probability we get two white socks is just

(
w
2

)
(
6
2

) =

w!
2!(w−2)!

6!
4!2!

=
w(w − 1)

6 ⋅ 5 ;

if we want this to equal 2/3, then we need w = 5. This implies there is only one black
sock, and thus the probability of a pair of black socks is zero.

Exercise 38.2. There is a line of 100 people waiting to board an airplane. Each of the
100 people in line are assigned a seat on the plane corresponding to their position in
line; i.e., the first person in line is assigned seat 1, the last person in line is assigned
seat 100. Upon boarding the plane, the first person in line decides to not sit in his
assigned seat but to instead randomly pick a seat to sit in from the remaining group of
99 seats. Each successive passenger sits in his/her assigned seat unless it is taken by
someone, in which case they randomly choose from the remaining open seats. What is
the probability that the 100th passenger sits in his assigned seat?

Solution:

39. FISH, CROSBY

Exercise 39.1. Suppose that a student is signing up for a winter study class. The prob-
ability of getting into any choice between 1 and 4 is given by f(xi) =

x
10

. Which choice
should the student expect to get?

Solution: Let X take values 1 through 4, then we take
E(X) =

∑4
x=1 x(

x
10
) = 1 ⋅ 1

10
+ 2 ⋅ 2

10
+ 3 ⋅ 3

10
+ 4 ⋅ 4

10
= 3

Exercise 39.2. In a game of rock, paper, scissors, a rock beats scissors, scissors beat
paper, and paper beats rock. Assume each player randomly chooses one of rock, paper,
scissors, with each choice equally likely. Assume every time a player wins they get 1
point, and every time they lose they lose 1 point; if the two players choose the same
object, it is a tie and no one gains or loses a point. The first person to reach 10 points
wins. What is the probability that the first player wins within the first 12 games?

Solution: The probability that you win a point is 1/3, the probability that you lose a
point is 1/3, and the probability that there is a tie is 1/3. There is only one way to win
in the first 10 games: you must win each time, which happens with probability (1/3)10.

To win in exactly 11 games, you must win 10 times and have one tie; however, the
tie must occur before the eleventh game, as otherwise you would win in 10. There are(
10
1

)
ways to choose one of the first 10 games to be a tie, and thus the probability you

win in exactly 11 games is just
(
10

1

)(
1

3

)9
1

3
⋅ 1
3

=
10

311
.
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To win in exactly 12 games, either you win 10 times and have two ties (both of which
must happen by the eleventh game) or you win 11 times and have one loss (and the loss
must be in the first ten games). Thus this probability is simply

(
11

2

)(
1

3

)9(
1

3

)2

⋅ 1
3
+

(
10

1

)(
1

3

)9
1

3
⋅
(
1

3

)2

=
65

312
.

Combining everything, we see the probability the first person wins in the first 12
games is

1

310
+

10

311
+

65

312
=

104

531441
.

Let’s consider another approach, where we try to arrive at this answer by considering
all sequences of 12 tosses where player one nets at least 10 points. (In other words,
there is no mercy rule, and once player one has 10 points he can continue playing and
taking player 2’s money!). For player 1 to net 10, he can either have 10 wins and 2 ties,
11 wins and 1 tie, 12 wins, or 11 wins and 1 loss. Thus the probability one of these
happens is

(
12

2

)(
1

3

)10(
1

3

)2

+

(
12

1

)(
1

3

)11 (
1

3

)
+

(
12

0

)(
1

3

)12

+

(
12

1

)(
1

3

)11(
1

3

)

=
91

531441
.

What went wrong? The problem is we forgot a few cases. We might have had 10
points by the tenth or eleventh toss, but ended with less. Thus we could end with as
few as 8 points if we have 10 wins followed by two losses (which happens one way)
or 9 points if we have 10 wins a loss and a tie. As he only has 10 wins, the last round
must be either a tie or a loss, and in fact the loss cannot occur earlier than the eleventh
round (though the tie can occur anywhere). If the loss is in the last spot, we have

(
11
1

)
ways to choose where the tie is, while if the loss is in the second to last spot then the
last spot must be a tie, in which case there is one way to do this. All told, we find there
are 1+11+1 more possibilities. As 312 = 531441, the probability is

91

531441
+

13

531441
=

104

531441
,

the same answer as before!

40. FORD, AARON

Exercise 40.1. There are m people in a circle. Alice begins by flipping n independent,
biased coins, each with probability p of landing on a heads. She passes the coins that
are heads to the right, and the process is repeated, except that the second person passes
the coins that come up tails. We keep alternating, with odd numbered people passing
on heads and even numbered people passing on tails. What is the expected number of
coins that return to Alice?

Solution: For a coin to return to Alice, the sequence of tosses must be HTHTHT . . . ,
ending in a tail if there are an even number of people and a head if there are an odd
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number of people. We set

p =

{
p(1− p)p(1− p) ⋅ ⋅ ⋅ p(1− p) = p

m
2 (1− p)

m
2 if n is even

p(1− p)p(1− p) ⋅ ⋅ ⋅ p(1− p)p = p
m+1

2 (1− p)
m−1

2 if n is odd.

We thus have a binomial process with n events and probability p of success, implying
the expected value is np, or np

m
2 (1 − p)

m
2 if m is even and np

m+1
2 (1 − p)

m−1
2 if m is

odd.

Remark 40.2. Is the following approach correct? Alice begins with n coins. We expect
her to pass np coins to the second person. Flipping np coins, we expect this person to
pass np(1− p) coins, the 3rd person to pass np(1− p)p coins, and so on. Thus if m is
even, we expect Alice to get np

m
2 (1 − p)

m
2 coins, while if m is odd we expect Alice to

get np
m+1

2 (1− p)
m−1

2 coins in return, the same answer as above.

Exercise 40.3. Continuing the problem above, assume now p = 1/2. As a function of
n, how many people have to be in the group if we expect Alice to have no coins returned
to her?

Solution: Note that in the special case that p = 1/2 the expected number of coins
returned to Alice is just n/2m. Thus if n < 2m, we expect Alice to get fewer than 1
coin. If, however, n = 2m − 1 with m large, then for all intents and purposes we expect
Alice to get one coin back. Thus the ‘right’ way to interpret this problem is that we
want n/2m < .5 so that the expected number of coins returned to Alice is less than 1.
In other words, n < 2m−1.

41. GROVER, MICHAEL

Exercise 41.1. Consider the following game: we roll a fair dice until we either roll a
one or choose to stop. Our strategy will be a ‘pure’ strategy as follows: we choose
some number c and stop if we get a c or higher, and continue if we roll less than c (and
of course greater than 1). Fix an integer k, and the payoff is defined as follows: we
receive rk dollars when we stop on r. Let Sc(k) represent the strategy of stopping at c
or more. If k = 1 then the expected value of the strategies are $3.5 for S6(1), $4 for
S5(1) and S4(1), and less for S3(1), S2(1) and S1(1). What must k equal for strategy
S6(k) to be superior to S5(k)?

Solution: Clearly if k is sufficiently large then strategy S6(k) is better than S5(k), so
there is such a k. To find the smallest k, note that for strategy S6(k) that we are equally
likely to stop rolling on a 6 or a 1, while for S5(k) we stop on a 6, 5 or 1 each with
probability 1/3. To see this, consider for example strategy S5(1). We keep rolling until
we get either a 1, 5 or 6; by symmetry each of these outcomes is equally likely, and thus
each occurs with probability 1/3.

Thus the expected payoff in strategy S6(k) is

6k ⋅ 1
2
+ 1k ⋅ 1

2
,

while for strategy S5(k) it is

6k ⋅ 1
3
+ 5k ⋅ 1

3
+ 1k ⋅ 1

3
.
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A straightforward calculation shows S6(3) < S5(3) but S6(4) ≥ S5(4).

Exercise 41.2. Prove or disprove: If X is a random variable with a Poisson distribution
with parameter N with N a random variable with a Poisson distribution with parameter
¸, then X is a Poisson random variable with parameter ¸.

Solution:

42. JACKSON, STEVEN

Exercise 42.1. Suppose that there are n air molecules inside a box of volume 1 m3.
What is the probability that no molecule occupies a specific cubic centimeter (which is
10−6 cubic meters) of the box?

Solution: In order to actually “solve” this, we need some assumptions. The first is that
each air molecule’s probability of being in that space is independent of the others, and
further that our molecules may be regarded as points (and thus there is no danger of
half of the molecule being inside and half outside our region). In a somewhat related
manner, we also assume that each air molecule behaves essentially the same, so that
there is no difference between O2, N2, and CO2 molecules. Finally, we assume that
there is nothing special about the chosen cubic centimeter.

With these assumptions, the problem is simple. Each molecule will have a probability
of (1 − 10−6) of not occupying the specific cubic centimeter, by the complement rule.
As they are independent, the joint probability will simply be (1− 10−6)n.

Of course, given our assumptions, this will simply be an approximation, and hope-
fully a good one. However, we are free to wonder about how much our approximations
cost us. While gasses are diffuse, they do collide with each other, and thus surely aren’t
truly independent. Moreover, some molecules will be polar, hence there can also be
longer range electromagnetic interactions. The question is, how much is the assump-
tion of independence violated by these?

We can also ask whether any cubic centimeter must automatically be equivalent. It
doesn’t seem unreasonable that a cubic centimeter in the corner of the box and one in
the center of the box will be somewhat different, but again the question is how much
will this affect our answer? These are terrific questions to ask, and lead to interesting
models.

Exercise 42.2. In the past three years, there has been a torrential downpour in Williamstown
on the Saturday of the fourth weekend in October. What is the probability of a torrential
downpour on that Saturday this year?

Solution: As weather models are typically untrustworthy more than two weeks away,
none of our models allow us to avail ourselves of these results more than to approximate
the probability of raining in the middle of October.

43. WISA KITICHAIWAT

Exercise 43.1. Suppose that each student has a 20% chance of failing a midterm in a
probability class, independent of everyone else. If there are 35 students in this class,
what is the probability that the number of students who fail the midterm will be between
7 and 15?
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Solution: Letting X be the number of students who fail the midterm, we find

ℙ(7 ≤ X ≤ 15) =
15∑

m=7

(
35

m

)
(0.2)m(0.8)35−m ≈ 0.566634.

Exercise 43.2. Professor Miller just won the first prize of the lottery and decided to
generously donate some of his wealth to a random charity. As a probability professor
from Williams, he thinks it is too boring to just give some money to an organization.
Therefore, he goes to a charity and randomly gives two die to its director, the first one
being purple and the second being gold. He asks the director to simultaneously roll
both die as many times as that person wants; however, she has to stop rolling the die
when the sum equals to 8. The director can choose to stop rolling both die whenever
she wants. The amount of money that Professor Miller donates is 10x1 + 100x2, where
x1 is the outcome of the first dice and x2 the outcome of the second. If x1 is the payoff
of the pink die and x2 is the pay off of the blue die. What is the best exit strategy for the
director to play in order to get as much money as possible?

Solution: If we were to accept any roll, the expected value is $185, 535. If we stop
whenever the first die is a 6, then we stop on one of the following pairs: (6,1), (6,2),
(6,3), (6,4), (6,5), (6,6), (2,6), (3,5), (4,4), (5,3). There are 10 pairs, and thus the prob-
ability of stopping on each is just 1/10 (as all pairs are equally likely). In this case
the expected value is 611500. As the most money possible with a first roll of a 5 is
105 + 600 < 611500, the expected payout decreases if we stop before a 6 on the first
roll.

44. KOLOGLU, MURAT

Exercise 44.1. The Timekeeper. The Timekeeper likes to use a traditional clock, with
the hour and minute hands continuously rotating circularly, with one full rotation of the
hour hand signifying 12 hours and one full rotation of the minute hand signifying 60
minutes (1 hour). Of course, being the Timekeeper, his clock is perfect, and there is no
margin for error. At some point in time, he glances at his clock and records the small
angle between the two hands to be x¼. Some random moment in the next 24 hours, he
glances for a second time. What is the probability that the smaller angle between the
hour and the minute hands the second time he looks at his clock is less than x¼?

Solution: There are several key observations to make. We know that the positions of
the two hands are dependent. By position, all we actually mean is the angle from some
set axis passing through the center of the circle. One might define this axis to be the line
along 12 and 6 on the clock’s face, so on and so forth. Now, the hour hand completes
one rotation in 12 hours and the minute hand completes one rotation in 1 hour. We can
say that their angular velocities are then:

vHour hand =
2¼

12 hours

vMinute hand =
2¼

1 hour
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One can infer that the angle between the two hands of the clock changes at angular
velocity

v# = vMinute hand − vHour hand

v# = 11

(
2¼

12 hours

)

Observe that due to radial symmetry the particular choice of an axis does not matter.
If we transfer ourselves to the frame of the hour hand and choose our axis to be along
the hour hand, then it becomes apparent that the angle # completes one rotation in 12

11
hours. This means that in 12 hours the angle # completes 11 rotations. In fact, this is
an extra bit of information that we don’t need to solve this problem. The key concept is
that the rate of change of the angle is constant, which means that the value of the angle
is uniformly distributed in time.

Going back to the question asked, it is easy to see that the probability of getting a
certain x is irrelevant. What is being asked is essentially ℙ(#′ ≤ x¼), where #′ is the
small angle between the two hands, in painted language. We have inferred that # is
uniformly distributed and we know it has to span the full 2¼. Then the small angle #’
is uniformly distributed on [0, ¼]. Therefore ℙ(#’ ≤ x¼) = x for 0 ≤ x ≤ 1.

Exercise 44.2. Modern Times. The Timekeeper has realized that he needs heightened
precision to keep up with modern times and technology. So he has installed a seconds
hand and a milliseconds hand on his perfect clock. Unlike the seconds hands of lesser,
more traditional clocks, neither of the seconds and milliseconds hands ’tick’; they move
continuously. Being the Timekeeper he has infinite time. So he decided that it would be
fun to do some time-consuming math. He derived the probability of the greatest angle
of the quadrilateral formed by the points where the 4 hands of his clock would intersect
the circular frame of his clock being greater than x¼ when he looks at his clock at a
random moment in time. What expression did he get? Using this probability, what is
the expected greatest angle of the quadrilateral?

Solution:

45. KUNG, ANDREW

Exercise 45.1. In the Mega Millions lottery game, players pick six numbers from two
separate pools of numbers - five different numbers from 1 to 56 (white balls) and one
number from 1 to 46 (white ball). The payout structure, rounded to the nearest whole
dollar, is as follows:

∙ Five white and one yellow: Jackpot (Odds: 1 in 175,711,536)
∙ Five white and no yellow: $250,000 (Odds: 1 in 3,904,701)
∙ Four white and one yellow: $10,000 (Odds: 1 in 15,313)
∙ Four white and no yellow: $150 (Odds: 1 in 13,781)
∙ Three white and one yellow: $150 (Odds: 1 in 13,781)
∙ Three white and no yellow: $7 (Odds: 1 in 306)
∙ Two white and one yellow: $10 (Odds: 1 in 844)
∙ One white and one yellow: $3 (Odds: 1 in 141)
∙ No white and one yellow: $2 (Odds: 1 in 75)
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For example, we computed three white and one yellow has a probability of happening
of 1 in 13,781 as follows: (

5
3

) (
51
2

) (
1
1

)
(
56
5

) (
46
1

) =
2125

29285256
,

which is about 1 in 13,781. Why is this the answer? There are
(
56
5

)
ways to choose

5 cards from 56 (order immaterial) and
(
46
1

)
ways to choose the one bonus card; thus

the number of possible tickets is simply the product. To have exactly 3 white and one
yellow, we must choose exactly 3 of the 5 cards (which is

(
5
3

)
) and then the bonus ball.

Approximately ow large must the Jackpot be before a $1 lottery ticket is a good in-
vestment? That is, when is the expected value greater than $1?

Solution: The expected value is approximately

Jackpot ⋅ 1

175, 711, 536
+ 250, 000 ⋅ 1

3, 904, 701
+ 10, 000 ⋅ 1

689, 065
+

150 ⋅ 1

15, 313
+ 150 ⋅ 1

13, 781
+ 7 ⋅ 1

306
+ 10 ⋅ 1

844
+ 3 ⋅ 1

141
+ 2 ⋅ 1

75
,

which exceeds 1 when the Jackpot is at least $143,752,176.80. (We are assuming that
there is only one winning entry.)

Exercise 45.2. Two people, Andrew and Jack, are in a fantasy football league together.
Through six weeks, Andrew’s team is 5-1 with 725 total points (first place out of ten),
and Jack’s team is 0-6 with 538 total points (ninth place out of ten). Yahoo! projections
has Andrew’s team at 118 points this week and Jack’s team at 106 points. If Andrew and
Jack are facing each other this week, what is the probability that Andrew wins? What
factors must be taken into account to do such a calculation, and how reliable/accurate
will these calculations be?

Solution:

46. LIU, ANDREW

Exercise 46.1. Suppose you have a fair 100-sided die (a Zocchihedron, according to
Wikipedia). What is the probability of rolling all 25 primes between 1 and 100 in a row?

Solution: There are 25 prime numbers between 1 and 100 and you have a 1
100

chance
of rowing any particular prime, so our first guess might naturally be that the answer is
just 1

10025
. The error with this is that it does not matter the order in which we roll the 25

primes, only that our first 25 rolls are distinct primes at most 100. We must take into
account the fact that there are 25! ways to order the first 25 prime numbers, and thus
the probability is

25! ⋅ 1

10025
=

236682282155319

1525878906250000000000000000000000000000
≈ 1.55112 ⋅ 10−25.

Exercise 46.2. Suppose you run an auction site that sells luxury handbags. You start
all auctions at 2 cents, each bid increases the price of the auction by another 2 cents,
and the auction is 5 days long. However, each bid costs the bidder X cents to make,
and each bid extends the length of the auction by 20 seconds. Additionally, the winner
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of the auction needs to pay the final price of the item. Given a $1000 bag, number of
bidders Y who act optimally (only bid at the last second), are determined (never ever
sleep and are always watching the auction), and thrifty (will not spend more than $50
total) find the relationship between X and Y to make your expected profit 0 (i.e., profit
equals how much you get from sale value and bid money minus cost of bag).

Solution: The idea taken from http://www.maxloren.com. The site uses this
strategy and is obviously very profitable (they charge 60 cents a bid).

47. LORENZO, ANTIONIO

Exercise 47.1. Suppose you roll two identical, normal, fair, six-sided dice at the same
time. Find the expected value of the sum of the two dice after one roll.

Solution: One way to do this is by brute force:

2 ⋅ 1

36
+ 3 ⋅ 2

36
+ ⋅ ⋅ ⋅+ 6 ⋅ 5

36
+ 7 ⋅ 6

36
+ 8 ⋅ 5

36
+ ⋅ ⋅ ⋅+ 11 ⋅ 2

36
+ 12 ⋅ 1

36
= 7.

Another way to do this is to use linearity of expectation. Let Xi be the outcome of die
i, and let X = X1 +X2. Then E[X] = E[X1] + E[X2], and

E[Xi] = 1 ⋅ 1
6
+ 2 ⋅ 1

6
+ 3 ⋅ 1

6
+ 4 ⋅ 1

6
+ 5 ⋅ 1

6
+ 6 ⋅ 1

6
= 3.5;

thus we again obtain 7.
Alternatively, we can solve this problem by noting that there are 21 possible pairs of

outcomes where order does not matter, ranging from (1,1), (1,2) et cetera all the way to
(5,6), (6,6). We then note that there are two ways of getting each outcome except for the
six diagonal possibilities ((1,1), (2,2), . . . , (6,6)); note (21−6) ⋅2+6 = 15 ⋅2+6 = 36,
which accounts for all the events.

Exercise 47.2. Suppose you roll n fair dice at the same time a total of m times. Find
the expected value of the sum of all the rolls.

Solution: We could again determine the answer by brute force, but it is much easier
to use linearity of expectation. This is equivalent to rolling nm die. If we let X =
X1 + ⋅ ⋅ ⋅+Xnm, then the expected value of the sum is the sum of the expected values,
and thus the expected value of our sum is nm ⋅ 3.5.

48. MOORE, DAVID

Exercise 48.1. Log-binomial distribution. Let X ∼ Bin(n, p), and define Y = 2X .
Give the mass function for Y .

Solution: We know the mass function for X is

fX(x) = ℙ(X = x) =
(n
x

)
px(1− p)1−x.
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Substituting x = log2 y produces

fY (y) = ℙ(Y = y)

= ℙ(2X = y)

= ℙ(X = log2 y)

=

(
n

log2 y

)
plog2 y(1− p)1−log2 y

Note that unlike the continuous case, in which we need to work with the cumulative
distribution function, here we can substitute directly into the mass function.

Exercise 48.2. You and a friend have identical coins which land on heads with proba-
bility p and tails otherwise. At some regular time interval, you and your friend flip your
coins simultaneously. If you throw a head, you mark down a point for yourself, and if
your friend throws a head, they get a point. This continues until both of you have at
least ten points. What is the expected number of time steps that the game runs?

Solution:

49. PEGADO, SEAN

Exercise 49.1. Game time. Consider the following game a friend proposes to you. You
are shown an integer k, 1 ≤ k ≤ 100. A random integer X is drawn from the uniform
distribution on the integers {1, 2, . . . , 100} (that is, the probability X equals n is 1

100
if n ∈ {1, 2, . . . , 100} and 0 otherwise) is generated. If X ≤ k + 10, you win $1;
otherwise, you lose $2. For what values of k should you play?

Solution: One of the standard ways of determining whether or not it is worth playing
a game is to compute the expected value; if it is positive it is worth playing in general,
while if it is negative it isn’t. (This is not entirely true, as some people are risk averse
or risk seeking; imagine losing one million dollars with probability one in a million
and otherwise winning two dollars otherwise; although the expected value is positive,
for many people the danger of losing a million dollars is not worth the possibility of
gaining two dollars.) For each k, we compute the expected value of the game. The
probability we win grows with k; clearly the probability we win ranges from a high of
1 if k ≥ 90 to a low of .11 if k = 1. In general, the probability we win is min(k+10,100)

100
for 1 ≤ k ≤ 100. Thus the expected value is

1 ⋅ min(k + 10, 100)

100
− 2 ⋅

(
1− min(k + 10, 100)

100

)
.

The expected value is negative when k = 66 and positive when k = 67, so it is worth
playing whenever we see a k ≥ 67.

Exercise 49.2. Now assume we must play. If k is chosen uniformly from {1, . . . , 100},
what is the expected value from playing?
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Solution: If k ≥ 90 (which happens with probability .1) our expected value is 1. For
the other k the probability of winning is k+10

100
, and thus the expected value is

1 ⋅ 1

10
+

1

100

89∑

k=1

(
1 ⋅ k + 10

100
− 2

(
1− k + 10

100

))
= − 423

2000
;

thus the best strategy in this case is not to play!

50. PESKOE, BEN

Exercise 50.1. It is fall in Williamstown, and the big tree in the center of the science
quad is losing its leaves. The leaves happen to be identical ℓ by ℓ squares, where ℓ is
probably around .1 meters or so. The tree is very big, and distributes the leaves evenly
over the quad. Since they are flat, they can overlap on the ground. The quad is exactly
100m by 50m. If I am standing on a given point on the quad after n leaves have fallen,
what is the probability that I am standing on a clear patch of grass?

Solution: We can start by finding the probability that I am standing on a given leaf, say
leaf i. The probability that I am standing on a line parallel with Route 2 through leaf i is
l

100
, and the probability that I am standing on a line perpendicular with Route 2 through

leaf n is ℓ
50

. These two events are independent, so the probability that I am standing on
leaf i is given by ℓ

100
⋅ ℓ
50

= ℓ2

5000
.

Now, since the locations of all the leaves are independent, we can treat this situation
as n identical independent random variables. To figure out the probability of standing
on any one of them, we must calculate the probability that we are not standing on any
of them and take the complement. That is, 1− (1− ( ℓ2

5000
))n.

Exercise 50.2. Assume the same tree continues to shed leaves forever. What is the
expected number of leaves it would take to cover the entire science quad?

Solution:

Exercise 50.3. Now assume that we have studied the tree more closely and determined
some patterns regarding its leaves falling. Namely, the time between leaves falling has
a Poisson distribution with parameter ¸ = 1 second. We also found that leaves fall for
exactly 20 days (1,728,000 seconds). What is the probability that the science quad will
be completely covered at the end of the fall?

Solution:

51. PHAM, VINCENT

Exercise 51.1. N men and N women are seated at a round table at random. What is
the probability that they are seated alternatively by gender?

We know that there are (2N − 1)! way to seat 2N people on a round table when
all we care about is the relative ordering of the people. This is because, by symmetry,
we might as well assign the first person to sit at spot 1. Now we only need to find the
number of ways N men and N women can be seated alternatively by gender. We first
seat the N men at the table at every other seat, which gives (N − 1)! different ways as
we might as well place the first man at seat 1. We then seat the N women at the round
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table. Here we notice that since the men are different, it does matter where we sit the
very first women; thus there are N ! ways to seat the women at the N seats between the
men at the table. Thus the probability is just (N−1)!N !

(2N−1)!
. When N = 2 this probability is

just 1/3; this falls to 1/10 when N = 3 and 1/35 when N = 5.

Exercise 51.2. N people are seated at a round table for two seminars. After the first
seminar they take a break and then are seated again at the round table randomly. What
is the probability that there are at least two persons whose number of people set between
them are the same before and after the break.

Solution:

52. SATOPÄÄ, VILLE

Exercise 52.1. In Finnish lottery the participants choose 7 unique numbers between
1 and 39. Then the next Saturday the lottery committee randomly chooses 7 numbers.
Each number is equally likely to be selected. If these 7 numbers match your 7 numbers,
you win a million euros. A lottery ticket costs 1 euro. If you participate every week for a
total of 50 years, what is your expected return? You can assume that every year a total
of 52 lotteries are organized.

Solution: Since the probability of winning in any week is

P (win) =
1(
39
7

) =
1

15380937
,

the expected return in a single lottery is

1000000 ⋅ 1

15380937
− 1 ⋅ 15380936

15380937
= −14380936

15380937
≈ −0.934984 euros.

Thus the total expected return in 50 years is just

50 ⋅ 52 ⋅ −14380936

15380937
≈ −2430.96.

Of course, many lotteries also have smaller prizes as well, so the expected return could
be better than this.

Exercise 52.2. You flip a biased coin that lands heads with probability p ∈ [0, 1]. If
it lands heads, you win. Otherwise your friend wins. How would you simulate such a
biased coin and determine the winner using a fair coin?

Solution: Assume we have a fair coin. We can simulate any number p ∈ (0, 1) as
follows: write p in base 2 (if there are two expansions for p, namely a finite and an
infinite one, choose the finite one). We flip our coin N times and create a number x by
letting the nth binary digit be a 1 toss n is a heads and a 0 if toss n is a tail. We choose N
so that if we continue tossing, no matter what we get we will not change which side of
p our number lies on. For example, imagine p =

√
2/2 ≈ 0.707107 and our sequence

of tosses starts HHTHTTHTH . Then

x =
1

2
+

1

4
+

1

16
+

1

128
+

1

512
=

421

512
≈ 0.822266;

as this number is greater than p, we would consider this a toss that landed on a tail.
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Exercise 52.3. Is it physically possible to construct a coin that lands heads with prob-
ability p, where p ∕∈ {0, 0.5, 1}, i.e. the problem is non-trivial?

Solution: One possibility is to have one side of the coin heavier than another, and
investigate the affect this would have on the probability of the coin landing on heads or
tails. Of course, we need to be clear on the groundrules. For example, do we always
toss the coin from the same initial configuration (say head up) but with variable force
and spin? How are we changing these? There are people who practice tossing coins,
and can toss a coin to land a given way with probability greater than 50%.

53. SHEA, MEGHAN

Exercise 53.1. There are 3 boxes, each meant for a specific person. The boxes are
distributed among 5 people randomly, with the 3 people the boxes were meant for in
the group of 5 and each box equally likely to end up with each person. What is the
probability that at least 1 of the boxes is given to the right person?

Solution: Since the boxes are distributed randomly, the probability a box is given to the
correct person is just 1

5
. There are two ways to compute the probability that at least one

box is correctly assigned. The first is brute force, where we compute the probability
exactly one, two or three people are given the correct box. The second is to use the law
of total probability; if we can determine the probability no one gets the right box, then
the probability that at least one person does is just one minus this.

As the probability of each box going to the correct person is 1/5, the probability that
none of the boxes go to the correct person is (4/5)3, and hence the probability that at
least one person gets the correct box is

1− (4/5)3 =
61

125
= .488.

Exercise 53.2. Imagine we have k boxes. Assume there are n distinct toys, and that in
each box there is exactly one action figure, and each box is equally likely to have any
action figure. If we pick 3 boxes at random, what is the probability that we get at least
2 of the same action figure?

Solution: Again it is easier to find one minus the probability that we have 3 distinct
figures. There are 3!

(
n
3

)
ways to choose three distinct action figures (with order matter-

ing), and n3 ways to choose 3 action figures (with order mattering). Thus the probability
we have at least two of the same action figure is just

1− 3!
(
n
3

)

n3
= 1− n(n− 1)(n− 2)

n3
.

Implicit in the analysis above is that n ≥ 3. If n < 3 then we must have at least two
copies of the same action figure. The binomial coefficient notation actually knows this.
We define

(
n
r

)
by

(n
r

)
=

n(n− 1)(n− 2) ⋅ ⋅ ⋅ (n− (r − 1))

r(r − 1)(r − 2) ⋅ ⋅ ⋅ 1 ;
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if r > n then one of the factors in the numerator is zero, and thus the binomial coeffi-
cient vanishes. For example,

(
3

5

)
=

3 ⋅ 2 ⋅ 1 ⋅ 0 ⋅ (−1)

5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 0.

While we can choose anything we wish for notation, some notations are clearly superior
to others. In this case, there should be no way of choosing 5 objects from 3, regardless
of whether or not order matters! Fortunately the binomial coefficient realizes this ab-
surdity, and is defined in such a way that it vanishes in these cases. Thus our formula
above is true for all n, and not just n ≥ 3.

We should of course remark that if n ≥ r then our binomial coefficient is the same
as n!/r!(n− r)!.

54. SHIN, GEA

Exercise 54.1. Consider a smart probability student detained in an underwater facility
with a trapdoor. Each day the student has one chance to try and open the trapdoor, with
independent probability 0.01 of successfully opening the door. Fortunately, he has a
magic machine, given to him by his professor, that increases his probability of breaking
down the door by 10% each day (so if his probability was 50%, the next day it rises to
55%). Find the expected number of days that he will be detained.

Solution: We can solve this problem through brute force. The probability that he breaks
away on the first day is 0.01. The probability that he breaks away on the second day is
(1− 0.01)(0.01)(1.1). As (0.01)(1.1)49 > 1, he can definitely break away on 50th day;
as (.01)(1.1)48 < 1, there is a positive chance he is still imprisoned after 49 days. Let
X be the number of days he is detained. Set p = 0.01 and k = 1.1. Then, the expected
number of days that he will be detained is

E(X) = 0 ⋅ p+ 1 ⋅ (1− p)pk + 2 ⋅ (1− p)(1− pk)pk2 + ⋅ ⋅ ⋅
+ 48 ⋅ (1− p) ⋅ ⋅ ⋅ (1− pk47)pk48 + 49 ⋅ (1− p) ⋅ ⋅ ⋅ (1− pk48) ⋅ 1.

Evaluating this sum yields ≈ 20.36488. Thus, we expect our student to be detained for
about 21 days.

For problems such as this, it is worthwhile to get some feel for the answer, some
idea of approximately how many days we expect to wait. Note that if 1.1n = 2 then
n = log(2)/ log(1.1) ≈ 7.3. Thus every 7.3 days (approximately) the probability of
escape doubles. Therefore in about 22 days the probability of escaping is about 8%. If
the probability were always 8% we would expect to need about 12.5 days to escape; as
the probability is growing we expect the answer to be less. Thus, we would be surprised
if the probability were greater than about 34. By doing a more careful analysis, we can
get better upper and lower estimates.

Exercise 54.2. Consider again a smart probability student detained in an underwater
facility with a trapdoor. Each day the student has one chance to try and open the trap-
door, with the initial probability 0.01 of successfully opening the door. Fortunately, he
has now a magic wand, given by his professor, that increases his probability of break-
ing down the door by (1 − p) ⋅ 0.1 each day (where p is the probability of successfully
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opening the door in the previous day). Find the expected number of days that he will be
detained.

Solution: Note that the probability of opening the door on the first day is 0.01, on
the second day it rises to 0.01 + (1 − 0.01) ⋅ 0.1 = 0.109 and on the third day to
0.109 + (1 − 0.109) ⋅ 0.1 = 0.1981. Note the probability is growing very rapidly at
first, but as time passes and it approaches 1, it grows very slowly. Unlike the previous
exercise, the probability never reaches or exceeds one, so it is possible (though unlikely)
for our student to be detained arbitrarily long. Arguing in a similar manner as above,
we find the expected time is about 4.798. If instead of gaining 10% of the missing
probability we gain only 1%, the expected time rises to about 12.517.

Exercise 54.3. Professor Miller loves birthdays so much that he wants his students to
enjoy their birthdays at home without class. He has a policy of canceling the entire class
if two or more people share the same birthday and the day happens to be a class day.
How many students does he need to maximize the expected number of students present
at his lectures for a whole semester, i.e. students times the number of lectures? Assume
that there are 28 lectures in total. For example, suppose that there are 40 students in
class. If two people have the same birthday on one of the lecture dates and there are
no other shared birthdays, then he will only have 27 lectures, so 27 ⋅ 40 = 1080. If
there were two sets of two (or more) people with the same birthday on two of the lecture
dates, then he will only have 26 lectures, with 26 ⋅40 = 1040. We are trying to maximize
the product of lectures times students.

Solution:

55. SHIRKOVA, TERESA

Exercise 55.1. Suppose you have a standard deck of 52 cards with 13 cards per suit.
We deal 5 cards to a person, one at a time. We say a set of cards in the deal is in a
sequence if each one numerically follows or precedes an existing card in the hand; as
soon as we get a card whose number does not precede or follow a card in our hand, we
say the sequence has ended. Aces are considered both high and low (so we may wrap
around). Thus the following are sequences:

324A, 56473, KQJA2, QJAK2, 34567, 54637,

while the following are not

243, 43625, QJA2K, 8531K.

What is the probability we have a sequence of length at least 3 starting with the first
card dealt?

Solution: One way to solve this problem is to break it up into three cases: we have a
sequence of length exactly 5, exactly 4, and exactly 3. As we are allowing wrap-arounds
(aces high and low), the first card is entirely arbitrary. All of our sequences must start
off with the first three cards in a sequence. After the first card is chosen, the second
card must be either one above or one below; the probability of that happening is 8/51.
There is again exactly two choices for the number of the next card (which must be either
directly below the lowest term or directly above the highest), so the probability is 8/50.
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If we have a sequence of exactly three, the next card cannot be above the highest or
below the lowest. Thus of the remaining 49 cards in the deck, we must avoid 8. Hence
the probability that the fourth card does not continue the sequence is 41/49, and the
remaining card can be anything. Thus the probability of having a sequence of length
exactly 3 is

1 ⋅ 8

51
⋅ 8

50
⋅ 41
49

⋅ 1 =
1312

62475
.

Similarly the probability of a sequence of length exactly 4 is

1 ⋅ 8

51
⋅ 8

50
⋅ 8

49
⋅ 40
48

=
128

37485
,

while having a sequence of length exactly 5 is

1 ⋅ 8

51
⋅ 8

50
⋅ 8

49
⋅ 8

48
=

128

187425
.

Thus the total probability of having a sequence of length at least 3 is

1312

62475
+

128

37485
+

128

187425
=

32

1275
≈ 0.025098.

There is an easier way to compute this probability, though. If we only care that our
sequence have length at least three and starts with the first card, then once the first three
cards are in sequence it does not matter what the remaining two cards are. The answer
is thus

1 ⋅ 8

51
⋅ 8

50
⋅ 1 ⋅ 1 =

32

1275
.

We chose to give the longer proof first for several reasons. First, if we care about a more
general question (such as having a sequence of length exactly 4), we need to argue along
those lines. Second, seeing the long way helps us appreciate the power of the second.

There are a myriad of problems we could ask along these lines. The next would be
to have a sequence of length at least three, starting anywhere. If we let S denote cards
that are in a sequence of length at least three together, N for cards that are not in that
sequence, and D for it not mattering what value the card has, our possibilities are the
following: SSSDD,NSSSD,NNSSS.

Exercise 55.2. Assume we have a cereal box with n possible different prizes (labeled
c1, c2, . . . , cn), and that each box contains exactly one prize (which is equally likely to
be any of the prizes). Consider the following buying pattern. You buy a box, which has
some prize, say ci. Now you buy the second box. If the second box has the prize ci, when
you go shopping again you buy a number of boxes equal to the number of boxes you
currently have squared (which in this case is 22 or 4); if the second box does not have
the same prize as the first, the next time you go shopping you purchase just one box. In
general, if none of the latest purchases have a new prize you only buy one additional
box the next time; if, however, at least one of the latest box purchased has a prize you
already have you get to buy the square of the number of boxes you currently have. Find
the expected number of days it would take to get a full set of objects.
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56. XIE, ZOE

Exercise 56.1. The probability that a child’s parents divorce increases with time, and
(sadly) once parents divorce assume they never remarry each other. Assume that the
cumulative distribution function of the parents being divorced when the child is y ≤ 18
years old is

∑y
t=1

1
10t

for y = 1, 2, . . . and 0 for y = 0 (at birth). Assume that the
child’s income when he turns 23 depends on her parents’ marital status before she
turns 18. More specifically, let’s posit that her hourly wage at age 23 follows a normal
distribution with mean 20 dollars and standard deviation

√
2 dollars if her parents

remain married to each other when she is 18, and a normal distribution with mean
15 dollars and standard deviation

√
7 dollars otherwise (we take a negative wage as

meaning that we owe money to the landlord). What is the average (mean) wage and its
standard deviation when the child is 23?

Solution: We first compute the probability the parents are divorced when the child is
18:

ℙ(parents divorced when child is 18) =
18∑
t=1

1

10t
=

1
10

− ( 1
10
)18

1− 1
10

=
1

9
.

Thus the probability that the parents are still married is

ℙ(parents married when child is 18) = 1− 1

9
=

8

9
,

and hence the expected wage is simply

E(wage of child at 23) =
1

9
(15) +

8

9
(20) = $19.44.

What about the standard deviation?

Exercise 56.2. Alice, Bob, Charlie and Dixon play a badminton doubles game. Alice
serves first and continues to serve as long as she is winning; then her partner Bob
serves until he loses a point; then Charlie serves until he loses a point and then Dixon.
A point is scored only when a player is serving and wins. The first pair of players to
win 21 points wins the game. Assume that each player wins a point with probability
.6 when she or her partner serves and with probability 0.4 when one of the opponents
serves. What is the probability that Alice and Bob will win the game?

Solution: The first simplification we may make is that we may regard each team as
getting two serve attempts. We can set up a recurrence or difference equation. Let xi,j

be the probability that Alice and Bob win given that they are serving and have i points
to j points for Charlie and Dixon, and similarly let yk,ℓ be the probability that Charlie
and Dixon win given that they are serving and have ℓ points to k points for Alice and
Bob. Note xi,j = yi,j by symmetry.

It’s actually convenient to break the probabilities up even further. Let ai,j be the
probability that Alice and Bob win given that they have i points to j points for their
opposition and Alice is serving; let bi,j be the same situation except now Bob is serving.
Call the similar quantities for Charlie and Dixon ci,j and di,j; again by symmetry we
have ci,j = ai,j and di,j = bi,j .
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Then
ai,j = .6ai+1,j + .4bi,j

and
bi,j = .6bi+1,j + .4(1− ai,j),

with initial conditions
a21,j = b21,j = 1

for 0 ≤ j ≤ 20. Why are these equations true? For the first, Alice and Bob win her
serve with probability .6, and they then have i + 1 points to the i points for Charlie
and Dixon; similarly if they lose the first point (which happens with probability .4) then
they are in the situation of Bob serving with a score of i to j, and by definition the
probability that they win in this case is just bi,j . The second equation is a bit harder;
the last expression is really .4(1 − ci,j) (as the probability Alice and Bob win is just 1
minus the probability that Charlie and Dixon win); we can simplify this by recalling
that ci,j = ai,j . The boundary equations are apparent, as the game ends once a team
reaches 21.

57. XIONG, WENTAO

Exercise 57.1 (The Monty Hall Problem). In the game show ‘Let’s make a deal’, a
contestant is given the choice of three doors. Behind one door is a car; behind the
others, goats. The car and the goats were placed randomly behind the doors before the
show. After the contestant has chosen a door, the host (Monty Hall) opens one of the
remaining two doors. Monty Hall knows what is behind each door; if he has a choice
of opening a door revealing a car or a goat he will always open the door revealing the
goat, but if goats are behind both doors he randomly opens one of them. After Monty
Hall opens a door with a goat, our contestant is asked whether or not he wants to switch
doors. Should he?

Solution: Yes! Without loss of generality, imagine our contestant chooses door 1. The
following 3 cases are equally likely (each occurring with probability 1

3
):

∙ Door 1: goat; Door 2: goat; Door 3: car.
∙ Door 1: goat; Door 2: car; Door 3: goat.
∙ Door 1: car; Door 2: goat; Door 3: goat.

If we are in case 1, Monty Hall must open door 2, and our contestant wins the car if
he switches, and loses if he stays with door 1.

If we are in case 2, Monty Hall must open door 3, and our contestant again wins the
car if he switches, and loses if he stays with door 1.

Finally, if we are in case 3 then Monty Hall can open either door. If our contestant
switches then he loses, while if he stays with door 1 he wins the car.

Thus, if he switches he wins 2 out of 3 times, while if he stays with his door he wins
only one out of three.

‘Cecil Adams’ has a great way of thinking about this problem: in effect, you are given
the opportunity of either sticking with your original door, or having both of the other
two doors. Thus, if you switch you should win two-thirds of the time. This problem has
generated lots of discussion and controversy over the years; see

http://en.wikipedia.org/wiki/Monty Hall problem
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for more details.

Exercise 57.2. Wentao starts with $ k and gambles with his professor, who owns an
infinite sum of money, in order to purchase some authentic Chinese food that costs $ N
(N > k). Wentao tosses a biased coin that turns up a head with probability p > 1/2
and a tail with probability 1− p. If the coin comes up heads, Wentao wins $ 1; if tails,
Wentao loses $ 1. This game ends when Wentao’s capital becomes 0 or $N . What is the
probability Wentao wins?

Solution: Let pi denote the probability of Wentao’s ultimate ruin starting from $ i.
Clearly p0 = 1 and pN = 0 (if Wentao starts with no money he is clearly bankrupt,
while if he starts with $ N he has the funds he needs). What about the other values of
pi? These are harder to deduce. We can set up an equation relating the various pi’s to
each other. The main idea is the following: if we have $ i with 0 < i < N , then after
we toss the coin we either have $ i + 1 (which happens with probability p) or $ i − 1
(which happens with probability 1− p). We thus find that we have the relation

pi = p ⋅ pi+1 + (1− p) ⋅ pi−1

if 1 ≤ i ≤ N − 1, with boundary conditions p0 = 1, pN = 0. The reason we can write
this down is that we have a memoryless process. We don’t care how we reach the point
of having $ i; all that matters is that at some point we have $ i.

The standard way to solve difference equations is the Method of Divine Inspiration;
namely, we guess an answer and see if it works! The standard guess is to try pi = ri.
Substituting this into

pi = p ⋅ pi+1 + (1− p) ⋅ pi−1

gives
ri = pri+1 + (1− p)ri−1.

After some algebra we find that r satisfies the equation

pr2 − r + (1− p) = 0,

which has roots r1 = 1 and r2 = 1−p
p

. One of the most important properties of linear
difference equations is that if ri1 and ri2 are solutions, so is c1r

i
1 + c2r

i
2 for any c1, c2.

To see this, we simply substitute this into the original difference equation, and see that
this also solves it. We simply must choose c1 and c2 to satisfy the boundary conditions,
which here is that p0 = 1 and pN = 0.

As p ∕= 1
2
, the two roots r1 and r2 are distinct and we must solve

c11
0 + c2

(
1− p

p

)0

= 1

c11
N + c2

(
1− p

p

)N

= 0.

This is two equations in two unknowns (c1, c2), which should be solvable. There are two
natural ways to do this. The first is to solve for c2 in terms of c1 in the first equation and
then substitute that into the second. Thus, from the first equation we find c2 = 1 − c1.
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Plugging this into the second equation gives

c1 ⋅ 1 + (1− c1) ⋅
(
1− p

p

)N

= 0.

This implies

c1 =

(
1−p
p

)N

(
1−p
p

)N

− 1
.

After some algebra, we see the solution is

pi =
(1−p

p
)i − (1−p

p
)N

1− (1−p
p
)N

.

The other way to find c1 and c2 is through linear algebra, writing the equations as
Ã

1 1

1
(

1−p
p

)N

)(
c1
c2

)
=

(
1
0

)
.

As the matrix is invertible, we can find c1 and c2.
Version 7 of Mathematica is very good at solving recurrence relations. To solve this

one, simply type
RSolve[{a[i] == p a[i + 1] + (1 - p) a[i - 1], a[0] == 1, a[M] == 0}, a[i], i]

In the code above, we have changed pi to a[i] and instead of having the boundary at N
we have it at M (Mathematica has reserved N as a symbol for numerics, and thus that
is unavailable).

Exercise 57.3. In the previous problem we calculated the probability that Wentao even-
tually won (or lost) the game. In that analysis, it did not matter how long we played,
only what the final result was. What is the expected number of tosses until the game
ends? Remember our coin is biased, and p ∕= 1/2.

Solution: Let Ti be the expected number of tosses until Wentao reaches either $ 0 or $ N
when we start counting with him having $ i. Note T0 = TN = 0, and for 1 ≤ i ≤ N −1
we have

Ti = (1 + Ti+1)p+ (1 + Ti−1)(1− p),

which after some algebra yields the recurrence relation

Ti+1 =
1

p
Ti − 1− p

p
Ti−1 − 1

p
.

We again turn to the Method of Divine Inspiration. If we didn’t have the −1/p at the
end, we could solve it by guessing Ti = ri. Let us write Ti = Ui + a for some constant
a. We find

Ui+1 =
1

p
Ui − 1− p

p
Ui−1 + a

(
1

p
− 1− p

p
− 1

)
− 1

p
=

1

p
Ui − 1− p

p
Ui−1 − 1

p
;

unfortunately the constant in front of a cancels, and thus this guess does not work.
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We must therefore guess again. We need something a bit more complicated than
Ti = Ui + a with a constant, as the coefficients above led to a catastrophic cancelation
of the a term. We try Ti = Ui + ia, which after some more algebra gives

Ui+1 =
1

p
Ui − 1− p

p
Ui−1 + (i− 1)a

(
1

p
− 1− p

p
− 1

)
+ a

(
1

p
− 2

)
− 1

p
,

where we wrote Ti = Ui + (i − 1)a + a and Ti+1 = Ui+1 + (i − 1)a + 2a to simplify
the algebra, as the (i− 1)a term will having a coefficient of zero. We see this is a better
choice, and for any p ∕= 2 there is a solution, namely

a =

1
p

1
p
− 2

=
1

1− 2p
.

Now that we know a, we can solve for Ui as before.
Typing

Simplify[RSolve[{T[i] == p (T[i + 1] + 1) + (1 - p) (T[i - 1] + 1), T[0] == 0, T[M] ==
0}, T[i], i]]

into Mathematica yields

Ti =

i+M

((
1−p
p

)i

− 1

)
− i

(
1−p
p

)M

((
1−p
p

)M

− 1

)
(2p− 1)

.

Note in the formula that it is essential that the coin is biased; if p = 1/2 the denomi-
nator is zero.

58. ZHANG, LIYANG

Exercise 58.1. There are four mathematicians sitting around a table. The magic hat
generator generates black and white hats with equal probability 1/2. They win a million
dollars if they can guess the color of at least one hat correctly. They lose a million
dollars if anyone who speaks is wrong. Given that one can only see the colors of other
people’s hats but not their own hat’s color, can they come up with a winning strategy?
(Note that if everyone is silent, they neither win nor lose.)

Solution: Let’s look at all of the 16 possible combinations of colors of hats:
WWWW WWWB WWBW WBWW BWWW WWBB WBBW BBWW WBWB

BWBW BWWB BBBW BBWB BWBB WBBB BBBB
Here is a strategy which has a positive expected value: If one sees all other three

people’s hats have the same color, then he calls the opposite color. If one sees two
different colors, remain silent. Thus we have a 8/16 chance to win and 2/16 to lose. The
expected value is thus

1

2
⋅ 106 − 2

16
⋅ 106 = 375000.

Is there a better strategy? If we forget about the fourth person and consider just the
first three, what happens if we reuse the three-person strategy? In that case, if you see
two hats of an opposite color you say nothing and otherwise if you see two hats of the
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same color you say the opposite. In that case the probability of being right is 6/8 and
the probability of being wrong is 2/8, for an expected value of

6

8
⋅ 106 − 2

8
⋅ 106 = 500000,

which is superior. Is there an even better strategy?

Exercise 58.2. This was another variant of the Monty Hall problem.

59

60

61. START OF THIRD SET OF PROPOSED PROBLEMS

62. ARNOSTI, NICK

Exercise 62.1. If X is a Poisson distributed random variable with parameter ¸, use
generating functions to find the third moment of X .

Solution: The generating function for X is

GX(s) = E[sX ]

=
∞∑

k=0

sk
¸ke−¸

k!

= e−¸

∞∑

k=0

(s¸)k

k!

= e−¸es¸

= e¸(s−1).

Straightforward differentiation yields

G′(s) = ¸e¸(s−1)

G′′
X(s) = ¸2e¸(s−1)

G′′′
X(s) = ¸3e¸(s−1). (62.1)

The mean is now readily calculated; it is

E[X] = G′
X(1) = ¸e¸(1−1) = ¸.

Further,
E[X(X − 1)] = G′′

X(1) = ¸2e¸(1−1) = ¸2,

so
E[X2] = ¸2 + E[X] = ¸2 + ¸.
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Finally,

E[X(X − 1)(X − 2)] = E[X3]− 3E[X2] + 2E[X]

= G′′′
X(1)

= ¸3, (62.2)

and so
E[X3] = ¸3 + 3(¸2 + ¸)− 2¸ = ¸3 + 3¸2 + ¸.

63. ATKINSON, BEN

Exercise 63.1. Let X and Y be independent Unif(0, 1) random variables. Find the
joint density of Z = X + Y .

Solution: The densities are fX(x) = fY (y) = 1 if 0 ≤ x, y ≤ 1 and 0 otherwise. The
density of Z is given by the convolution of the two densities, so

fZ(z) = (fX ∗ fY )(z)
=

∫ ∞

−∞
fX(x)fY (z − x)dx

We must determine the bounds of the integration. The factor fX(x) is zero unless
x ∈ [0, 1], while the second factor fY (z−x) is zero unless z−x ∈ [0, 1], or x ∈ [z−1, z].
Thus the density is

fZ(z) =

∫ min(1,z)

max(0,z−1)

dx.

It’s easiest to see what is happens by breaking the above into two cases. If z ≤ 1 then
the integration is from 0 to z, while if z ≥ 1 the integration is from z−1 to 1. Therefore
in the first case, namely when z ≤ 1, we have

fZ(z) =

∫ z

0

dx = z,

while in the second case, namely z ≥ 1, we have

fZ(z) =

∫ 1

z−1

dx = 2− z.

Collecting the two cases, we find the answer is

fZ(z) =

{
z if ∣z∣ ≤ 1

2− z if ∣z∣ ≥ 1.

Our answer has many properties we would expect, such as it is symmetric about
z = 1 and the greatest probability is when z = 1. Why do we expect it to be symmetric?
Note that if X and Y are Unif(0, 1), then so too are 1 − X and 1 − Y , and hence the
distribution of X +Y should be the same as that of (1−X)+ (1−Y ) = 2− (X +Y ).
It shouldn’t be surprising that the largest probability is when X + Y = 1 if we think
back to rolling die (and, in fact, this will also predict the triangular shape we see).

If we roll two fair die, we can obtain any integer from 2 to 12. There is only one way
to get a 2 or a 12, but there are six ways to get a 7 (no matter what is rolled on the first
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die, there is always exactly one roll on the second die that will give us a 7). In general,
the probability of rolling a k ∈ {2, . . . , 12} is

Prob(two rolls sum to k) =
6− ∣k − 6∣

36
.

We may interpret the roll of two die as adding two discrete uniform random variables,
and thus this exercise is good intuition for the continuous case.

64. RAN BI

Exercise 64.1. Let X1 . . . Xn be independent Cauchy random variables. Find the den-
sity function for X1 +X2.

Solution: Consider the sum of two independent Cauchy random variables, say Y =
X1 +X2. Using convolutions, we have

fY (x) = (fX1 ∗ fX2)(x) =

∫ ∞

−∞
fX1(t)fX2(x− t)dt.

As the random variables are both Cauchy, fX1 = fX2 and we find

fY (x) =

∫ ∞

−∞

1

¼(1 + t2)
⋅ 1

¼(1 + (x− t)2)
dt

=
1

¼2

∫ ∞

−∞

1

1 + (u+ x/2)2
⋅ 1

1 + (u− x/2)2
du,

where we changed variables by setting t = u+ x/2 to symmetrize the integrand.
As (

1 + (u+ x/2)2
)− (

1 + (u− x/2)2
)
= 2ux,

we have

fY (x) =
1

¼2

∫ ∞

−∞

1

2ux

[
1

1 + (u− x/2)2
− 1

1 + (u+ x/2)2

]
du,

or changing variables back to t we have

fY (x) =
1

¼2

∫ ∞

−∞

1

2tx

[
1

1 + (t− x/2)2
− 1

1 + (t+ x/2)2

]
dt.

Can we integrate this? Let’s study the simpler case

I(a) =

∫ ∞

−∞

1

t

1

1 + (t+ a)2
dt.

Let

u = 1/t, du = −dt/t2

dv =
dt

1 + (t+ a)2
, v = arctan(t+ a).

Then we find

I(a) =
arctan(t+ a)

t

∣∣∣∣∣

∞

t=−∞
+

∫ ∞

−∞

arctan(t+ a)

t2
dt.
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Unfortunately it seems as if we are going around and around in circles. Resorting to
a (good) Table of Integrals, we find

fY (x)

=
2x arctan( t

2
− x) + 2x arctan( t

2
+ x) + log(1 + ( t

2
+ x))− log(1 + ( t

2
− x)2)

¼24x(1 + x2)

∣∣∣∣∣

∞

−∞
.

Evaluating the logarithm terms at the boundaries gives zero as they cancel, when the
arctangent terms reinforce. As arctan(±∞) = ±¼/2, we obtain

fY (x) =
4¼x

¼24x(1 + x2)
=

1

¼(1 + x2)
;

I think this is wrong, as I thought it was (X1 +X2)/2 is the standard Cauchy.

65. BINDER, ARI

Exercise 65.1. Consider a player’s performance in two consecutive US Opens. Find
the mass function for the number of matches won in these two tournaments. Recall that
the mass function for number of matches won in one tournament is

ℙ(A = n) = f(n) =

⎧
⎨
⎩

pn(1− p) if 0 ≤ n ≤ 6

p7 if n = 7

0 otherwise.

Solution: Let B = A1 + A2, where Ai denotes the number of wins in tournament i.
One way to look at the problem is that we have 3 cases to consider: we fail to win both
tournaments, we win exactly one tournament, or we win both tournaments.

Unfortunately, this is not the best way to break up the analysis. The reason is that
we are interested in the probability of getting exactly 8 wins; for this purpose, we don’t
care if we win 7 in the first tournament and 1 in the second, or 4 in each. We break the
analysis into cases, doing the easier ones first.

There are no ways to win fewer than 0 games or more than 14. There is only one
way to win 14 games; that requires us to win both tournaments, which happens with
probability p7 ⋅ p7 = p14.

If we win 6 games or fewer, then we cannot win either tournament. We must win a1
games in the first tournament and b− a1 in the second, where a1 ∈ {0, 1, . . . , b}. Thus,
when b ≤ 6, the probability of winning exactly b games is

fB(b) =
b∑

a1=0

pa1(1− p) ⋅ pb−a1(1− p) = (1− p)2pb
b∑

a1=0

1 = (b+ 1)(1− p)2pb.

We are now left with the interesting case of winning b games, with 7 ≤ b ≤ 13. Note
that we can win exactly one tournament, but we do not need to win a tournament unless
b = 13. The probability of getting 13 wins is just

fB(13) =

(
2

1

)
p7 ⋅ p6(1− p) = 2p13(1− p).
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For winning between 7 and 12 games, the probability is

fB(b) =

(
2

1

)
p7 ⋅ pb−7(1− p) +

6∑

a1=b−6

pa1(1− p) ⋅ pb−a1(1− p)

= 2pb(1− p) + pb(1− p)2
6∑

a1=b−6

1

= 2pb(1− p) + (13− b)pb(1− p)2

(it’s 13− b as the number of integers from b− 6 to 6 is 6− (b− 6) + 1). We therefore
find

fB(b) =

⎧
⎨
⎩

(b+ 1)(1− p)2pb if 0 ≤ b ≤ 6

2(1− p)pb + (13− b)(1− p)2pb if 7 ≤ b ≤ 12

2(1− p)p13 if b = 13

p14 if b = 14.

Whenever we have a complicated expression like this, it’s best to do whatever checks
we can. The most natural is to see if it sums to 1, which it must as it is a probability
mass function. While we can evaluate it exactly by using the finite geometric series
formula, it is often simpler to substitute specific values and have a program such as
Mathematica grind out the computation. Doing both of these checks shows that the
above is a probability mass function (namely, it sums to 1), and thus we have some
confidence in our result. (In fact, initially I wrote 12 − b instead of 13 − b, and had a
slightly wrong answer.)

Exercise 65.2. Notation as in the previous problem, what is the mean number of wins
we expect our player to have?

Solution: As we know the probability mass function, we can find the mean by E[X] =∑
b b ⋅ ℙ(B = b). After some algebra we find

E[X] = 2p(1 + p+ p2 + p3 + p4 + p5 + p6) =
2p(1− p7)

1− p
.

66. BROWN, CHAD

Exercise 66.1. Let X be a random variable distributed uniformly on [0, 1]. Find the
density and expected value of the random variable Y , where Y = X3.

Solution: Consider the cumulative distribution function of X:

FX(x) =

⎧
⎨
⎩

0 if x ≤ 0

x if 0 < x ≤ 1

1 if x > 1.

Since X = Y 1/3, we have that

FY (y) = FX(y
1/3) =

⎧
⎨
⎩

0 if y ≤ 0

y1/3 if 0 < y ≤ 1

1 if y > 1.
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Differentiating gives the density function, so

fY (y) =
d

dy
FY (y) =

⎧
⎨
⎩

0 if y ≤ 0
1

3y2/3
if 0 < y ≤ 1

0 if y > 1.

The expected value of Y is just

E[Y ] =

∫ 1

0

y

3y2/3
dy

=

∫ 1

0

y1/3

3
dy

=
y4/3

4

∣∣∣∣∣

1

0

=
1

4
. (66.1)

67. BUSTARD, TODD

Exercise 67.1. Let X1, . . . , Xn be independent random variables where each Xk has an
exponential density function with parameter ¸k = k, which means the density function
of Xk is

fXk
(x) =

{
ke−kx if x ≥ 0

0 otherwise.

Find the moment generating function MX1+⋅⋅⋅+Xn(t).

Solution: First we compute the moment generating function of an individual Xk, and
then use our properties to find the moment generating function for the sum. We have

MXk
(t) =

∫ ∞

0

etxke−kxdx

=

∫ ∞

0

ke−k(x− t
k
x)dx

=

∫ ∞

0

ke−k(1− t
k)xdx

=
1(

1− t
k

)
∫ ∞

0

k

(
1− t

k

)
e−k(1− t

k)xdx

=
1(

1− t
k

)
∫ ∞

0

e−udu

=
1(

1− t
k

) ,

so long as t < k. We need this restriction to ensure that we are integrating the exponen-
tial of a negative quantity, as otherwise the integral will not exist.
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As the Xi’s are independent, the moment generating function of the sum is the prod-
uct of the moment generating functions. Thus

MX1+⋅⋅⋅+Xn(t) = MX1(t) ⋅ ⋅ ⋅MXn(t)

=
n∏

k=1

1(
1− t

k

) .

In the product above, each factor imposes a different condition on t; the kth factor forces
t < k. Thus in order for the above arguments to be valid, each of the n conditions must
be satisfied, which means we must have t < 1.

68. FISH, CROSBY

Exercise 68.1. Find the moment generating function of a geometric random variable
X with parameter p.

Solution: By definition, we have

MX(t) = E[etX ] =
∞∑
n=0

etnℙ(X = n).

For a geometric random variable, ℙ(X = n) = (1− p)n−1p for n ≥ 1 and 0 otherwise.
Thus

MX(t) =
∞∑
n=0

etn(1− p)n−1p

=
p

1− p

∞∑
n=0

etn(1− p)n

=
p

1− p

∞∑
n=0

(et(1− p))n.

The above is a geometric series, and converges for et(1− p) < 1, yielding

MX(t) =
p

1− p

1

1− et(1− p)

for et(1− p) < 1, or equivalently for t < log( 1
1−p

).

69. FORD, AARON

Exercise 69.1. Find the moment generating function for the binomial distribution with
parameters N and p, and using this, confirm that the mean is indeed Np.

Solution: Let X ∼ Bin(N, p). By definition we have

MX(t) = E[etX ] =
N∑

k=0

etkℙ(X = k).



58 MATH 341

For the binomial, ℙ(X = k) =
(
N
k

)
pk(1− p)N−k, and so

MX(t) =
N∑

k=0

etk
(
N

k

)
pk(1− p)N−k

=
N∑

k=0

(
N

k

)
(pet)k(1− p)N−k

=
(
pet + (1− p)

)N−k
,

where the last follows from the Binomial Theorem.
To find the mean, we use the formula E[X] = M ′

X(1). As

M ′
X(t) = N

(
pet + (1− p)

)N−1 ⋅ pet,
which gives

M ′
X(0) = N

(
pe0 + (1− p)

)N−1 ⋅ pe0 = N(p+ 1− p)N−1p = Np.

70. GROVER, MICHAEL

Exercise 70.1. For k > 1, find the generating function for the series an = 1/kn for
n ∈ {0, 1, . . . , }.

Solution:

Ga(s) =
∞∑
n=0

(sn ⋅ 1

kn

=
∞∑
n=0

( s
k

)n

=
1

1− s
k

=
k

k − s
,

so long as ∣s∣ < k (we need this to ensure that the series converges).

71. WISA KITICHAIWAT

Exercise 71.1. Let X1 and X2 be independent Cauchy variables. Find the joint density
function of

Y1 =
X1

X2

and Y2 = 3X1 + 4X2.

Solution: The change of variable formula for the density says that

fY1,Y2(y1, y2) = fX1,X2 (x1(y1, y2), x2(y1, y2)) ⋅ ∣J(y1, y2)∣ .
We thus need to determine how to express the xi’s in terms of the yj’s, and then take the
Jacobian of the change of variable. Obviously we cannot compute the Jacobian until
we know the inverse change of variables, so we do that first.
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Let T be our map from (X1, X2) to (Y1, Y2). Thus,

(y1, y2) = T (x1, x2) =

(
x1

x2

, 3x1 + 4x2

)
.

We need to invert this relation and solve for x1, x2 in terms of y1, y2. From

x1 = y1x2

4x2 = y2 − 3x1

we obtain

(4 + 3y1)x2 = y2

by replacing 3x1 in the second equation with 3y1x2 and then bringing that over to the
other side and factoring. This allows us to solve for x2 in terms of y1 and y2, and we
find

x2 =
y2

4 + 3y1
.

We now use the relation x1 = y1x2 to find

x1 =
y1y2

4 + 3y1
.

We now have T−1(y1, y2) = (x1, x2) = (x1(y1, y2), x2(y1, y2)), and thus we can
compute the Jacobian. We find

J(y1, y2) =

∣∣∣∣∣
∂x1

∂y1

∂x2

∂y1
∂x1

∂y2

∂x2

∂y2

∣∣∣∣∣ =

∣∣∣∣∣
−3y1y2
(4+3y1)2

+ y2
4+3y1

−3y2
(4+3y1)2

y1
4+3y1

1
4+3y1

∣∣∣∣∣ .

Taking the determinant gives

J(y1, y2) =
−3y1y2

(4 + 3y1)3
+

y2
(4 + 3y1)3

− −3y1y2
(4 + 3y1)3

=
y2

4 + 3y1
.

We now substitute into the change of variable formula, which says

fY1,Y2(y1, y2) = fX1,X2 (x1(y1, y2), x2(y1, y2)) ⋅ ∣J(y1, y2)∣ .
As X1 and X2 are independent, fX1,X2(x1, x2) = fX1(x1)fX2(x2). Further, each fXi

is
the Cauchy density, so fXi

(x) = (¼(1 + x2))−1. Thus

fY1,Y2(y1, y2) =
1

¼(1 + x1(y1, y2))2
1

¼(1 + x2(y1, y2))2

∣∣∣∣
y2

(4 + 3y1)2

∣∣∣∣

=
1

¼2

(4 + 3y1)
2

(4 + 3y1)2 + (y1y2)2
(4 + 3y1)

2

(4 + 3y1)2 + y22

∣∣∣∣
y2

(4 + 3y1)2

∣∣∣∣

=
1

¼2

(4 + 3y1)
2∣y2∣

((4 + 3y1)2 + (y1y2)2) ⋅ ((4 + 3y1)2 + y22)
.
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72. KOLOGLU, MURAT

Exercise 72.1. Envy is Green. After their bitter defeat in the Grand Battle for the Green
Chicken (a grueling but enjoyable math competition), some of the defeated students
attempted to regain the Green Chicken by traveling to its new home in Purpletown and
trying to steal it from the Department of Purple Math and Statistics. Of course, as the
Department was being guarded by diligent professors and students alike, it took a lot
of courage to attempt to break in. Students would come to the doors of the Department
and go in with probability p < 1 or ‘chicken’ out and turn back with probability 1− p.
Every student that entered was caught, and every student that chose not to go in was
pressured by and acquiesced to their fellows to make another attempt. Thus a student
is constantly stealing until he is caught. It wasn’t until N students were caught that
they realized they would not succeed on these missions, where N can be modeled as a
random variable with the Poisson distribution with parameter ¸. An amused student of
Purple College decided to make a Purple Record article about the incident, where he
revealed the total number of attempts by the invading students. What was the expected
value of the total number of attempts?

Solution: We use generating functions to solve this question. Let Xi with i ∈ {1, 2, . . . , N}
be the random variables denoting the number of attempts by the ith student. Observe
that the Xi’s are independent geometrically distributed random variables with parame-
ter p of success. What makes this problem difficult (and interesting!) is that N is not
fixed, but is itself a random variable with a Poisson distribution with parameter ¸. For-
tunately, N is independent from the identically distributed Xi’s.

If N were fixed, the generating function of X1 + ⋅ ⋅ ⋅+XN would be just

GX1+⋅⋅⋅+XN
(s) =

N∏
i=1

GXi
(s) = GX(s)

N ,

where GX(s) is the common generating function; as N is not fixed, however, this is
wrong! The correct solution uses a beautiful fact on compounding.

Theorem: Let X1, X2, . . . be independent, identically distributed random variables
with generating function GX(s), and let N be a random variable independent of the
Xi’s with generating function GN(s). If Y = X1+⋅ ⋅ ⋅+XN , then GY (s) = GN(GX(s)).

We first use this theorem to solve the problem, and then give the proof. As N is a
Poisson random variable, its generating function is GN(s) = e¸(s−1); as the Xi’s are
geometric random variables, their generating functions are GX(s) =

ps
1−s(1−p)

. Thus the
theorem tells us that the generating function for Y = X1 + ⋅ ⋅ ⋅+XN is

GY (s) = GN(GX(s)) = GN

(
ps

1− s(1− p)

)
= e¸(

ps
1−s(1−p)

−1).
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The mean is now easily determined by differentiation, as E[Y ] = G′
Y (1). Thus

E[Y ] = G′
Y (1)

= p¸
(1− s(1− p)) + s(1− p)

(1− s(1− p))2
e¸(

ps
1−s(1−p)

−1)
∣∣∣
s=1

= p¸
1

p2
e¸(

p
p
−1)

=
¸

p
.

We now prove the theorem using conditional probabilities. We have

GY (s) = E[sY ]

=
∞∑
n=0

E[sY ∣N = n]ℙ(N = n)

=
∞∑
n=0

E[sX1+⋅⋅⋅+Xn ]ℙ(N = n)

=
∞∑
n=0

E[sX1 ⋅ ⋅ ⋅ sXn ]ℙ(N = n)

=
∞∑
n=0

E[sX1 ] ⋅ ⋅ ⋅E[sXn ]ℙ(N = n),

where we used the independence of the Xi’s to say the expected value of the product is
the product of the expected values. (We also used the fact that if g is a monotonically
increasing function, then if X1, . . . , Xn are independent so too are g(X1), . . . , g(Xn).)
Each E[sXi ] = GX(s) by definition, and thus

GY (s) =
∞∑
n=0

GX(s)
nℙ(N = n) = GN(GX(s)),

with the last step following from applying the relation

GN(s) =
∞∑
n=0

snℙ(N = n)

with s = GX(s).

73. LIU, ANDREW

Exercise 73.1. If you roll three die, what is the probability that you get a prime number?

Solution: We know that there are 216 possible combinations for three die (63) where
order matters, so all that’s left to do is to count all the ways. We can roll any integer
from 3 to 18 inclusive. The only prime numbers in this range are 3, 5, 7, 11, 13, and 17,
so we must just compute the probability of rolling each of these.
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While it is possible to set up the answer in terms of convolutions, it is simple enough
to just enumerate the possibilities. To simplify things, note that if all three die rolls are
the same, then it counts as one way, if two numbers are the same, then it counts as three
ways, and if all the numbers are different, then it counts as 6 ways.

3: (1,1,1): 1 way

5: (1,2,2), (1,1,3): 6 ways

7: (1,1,5), (1,2,4), (1,3,3), (2, 2, 3): 15 ways

11: (1,4,6), (2,3,6), (1,5,5), (2,4,5), (3,3,5), (3,4,4): 27 ways

13: (1,6,6), (2,5,6), (3,4,6), (3,5,5), (4,4,5): 21 ways

17: (5,6,6): 3 ways

So we have (1 + 6 + 15 + 27 + 21 + 3)/216 = 71/216.
Note that it is very easy to forgot to count a valid combination. To make sure this

doesn’t happen, it is best to have a specific ordering in mind to ensure nothing is for-
gotten. The combinations listed above are in a very specific order: in the triple (a, b, c)
we always have a ≤ b ≤ c. We start with the largest value of c, then take the largest
value of b possible and then see if an a works; we then move to the next smallest b and
repeat. For example, consider 11. We want to write a + b + c = 11 with a ≤ b ≤ c.
The largest c can be is 6, so let’s see if there are any such solutions. We first try b = 6,
but immediately find that no a will work, as 6 + 6 = 12 > 11. We then try b = 5, but
again there are no solutions as a must be at least 1 and b+ c already equals 11 here. We
then try b = 4, and now we do have a solution, as 1 + 4 + 6 = 11. This will generate
six solutions by re-ordering:

(1, 4, 6), (4, 1, 6), (1, 6, 4), (4, 6, 1), (6, 1, 4), (6, 4, 1).

We now try b = 3, and find a = 2 works since 2 + 3 + 6 = 11. This will generate six
additional solutions,

(2, 3, 6), (3, 2, 6), (2, 6, 3), (3, 6, 2), (6, 2, 3), (6, 3, 2).

We now continue and set b = 2, and see that there is no valid a that will work. We
might at first think there is such an a, as taking a = 3 yields 3 + 2 + 6 = 11; however,
this solution has already been counted (it was one of the six solutions generated from
(2, 3, 6)). Remember, in order to avoid double counting we are listing our solutions
(a, b, c) with a ≤ b ≤ c.

74. PEGADO, SEAN

Exercise 74.1. Suppose you have a piece of paper with a horizontal line drawn across
it. A friend draws a small square around the line at the very center of the paper. He
makes a challenge: if you immediately hand the paper back (and do not play the game),
you lose nothing but you also win nothing. If you do choose to play, you may have as
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many or as few marks as you like be made on the sheet. When you return the paper,
your friend will take the mean value of every mark. If that mean value is in the box,
he will pay you $1,000, but if the mark is outside the box, you must pay him $1,000. A
mark can be made by mutual friends: any friend can ever only place one mark, but you
may assume you have infinitely many mutual friends (you are very popular).

Each friend will place a mark by closing his eyes and randomly choosing a point on
the line. Each friend’s random placement can be understood by a uniform probability
density function. One friend’s density is independent of the densities of all other friends.

Should you play the game? If so, what is the optimal strategy for maximizing your
winnings? Assume the left endpoint of the line is marked 0, the right marked 1, and the
left edge of the box marked −r, the right side of it marked r.

Solution: Yes, you should play. By the Central Limit Theorem if we have enough
friends randomly pick marks, the sum of their marks will begin to be normally dis-
tributed. This is very convenient for us, since that means the average will eventually
land inside the box, which is of length r on each side of the mean. Thus our winning
strategy will be to have a sufficiently large number of friends place a mark, until the sum
of the marks have a normal distribution. Then we will win and maximize our profits.

75. PESKOE, BEN

Exercise 75.1. Find the distribution function for the sum of two independent random
variables X and Y , where X has the standard normal distribution and Y has the stan-
dard exponential distribution.

Solution: The two density functions are

fX(x) =
1√
2¼

e−x2/2

fY (x) =

{
e−x if x ≥ 0

0 otherwise.

Using convolutions, we get

fX+Y (x) =

∫ ∞

−∞
fX(t)fY (x− t)dx.

ăăWe now must be very careful. There is no problem in substituting for the standard
normal’s density; however, the exponential’s density is only e−(x−t) if x − t ≥ 0; oth-
erwise it is zero. Thus, for each fixed x, the range of t is from −∞ to x. This is
slightly different from previous problems, where at the end of the day we frequently
had t ∈ [0, x] instead of the t ∈ (−∞, x] we have here. The reason for the difference is
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that the first factor, fX(t), does not restrict t at all in this problem. Thus the density is

fX+Y (t) =

∫ x

−∞

1

2¼
e−t2/2e−(x−t) dt

=
1

2¼
e−x

∫ x

−∞
e−t2/2+tdt

=
1

2¼
e−x

∫ x

−∞
e−t2/2+t−1/2+1/2dt

=
1

2¼
e−x

∫ x

−∞
e−

1
2
(t2−2t+1)+ 1

2dt

=
1

2¼
e−xe1/2

∫ x

−∞
e−(t−1)2/2dt;

the key step above was completing the square, namely replacing − t2

2
+ t with − t2

2
+ t−

1
2
+ 1

2
. Changing variables by letting u = t− 1 gives

fX+Y (t) = e−(x− 1
2
)

∫ x−1

−∞

1

2¼
e−u2/2du = e−(x− 1

2
)FX(x− 1),

where FX is the cumulative distribution function of the standard normal.
As the cumulative distribution function of the standard normal appears so frequently

in the subject, it has been given a special name, and much effort has been spent tabulat-
ing its values and finding rapidly convergent series approximations. We define the error
function, denoted erf, by

erf(x) =

∫ x

0

2√
¼
e−t2dt.

Note the integrand looks like the density of a normal with mean 0 and variance 1/2; in
fact, since the integrand is even we have

erf(x) =

∫ x

−x

1√
2¼ ⋅ 1/2 e−t2/(2⋅ 1

2
)dt,

which we may interpret as the area under the normal with mean 0 and variance 1/2
between −x and x.

As we use erf for areas involving a normal with mean 0 and variance 1/2, we use Φ
for the cumulative distribution function of the standard normal. Simple algebra gives

Φ(x) =
1

2
+

1

2
erf

(
x√
2

)
.

76. SHIN, GEA

Exercise 76.1. Let X1, X2 be independent random variables having the geometric dis-
tribution with parameter p. Using convolutions, find the density for X1 +X2.

Solution: As the Xi’s are geometric random variables, their density function is

f(xi) =

{
(1− p)xi−1p if xi ≥ 1

0 otherwise,
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with 0 < p ≤ 1. Let Y = X1 +X2. Since the density function of Xi is non-zero only
when xi ≥ 1, the density function of Y is zero unless y ≥ 2. Thus for y ≥ 2 we have

g(y) = (f1 ∗ f2)(y)

=

y−1∑
t=1

f1(t)f2(y − t)

=

y−1∑
t=1

p(1− p)t−1p(1− p)y−t−1

= p2
y−1∑
t=1

(1− p)y−2

= (y − 1)p2(1− p)y−2.

77. ZHANG, LIYANG

Exercise 77.1. Find the Fourier transform of f(x) = e−a∣x∣ for any a > 0.

Solution: By definition of Fourier transform

f̂(») =

∫ ∞

−∞
e−a∣x∣e−2¼ix»dx.

We now split the integration into two parts, (−∞, 0] and [0,∞) as our function f has
a different definition in each region. In the arguments below we assume the complex
exponential is integrated the same way as the standard exponential; in other words, the
anti-derivative of ezx with respect to x is just z−1ezx; we discuss how one would prove
this below. We therefore have

f̂(») =

∫ 0

−∞
eaxe−2¼ix»dx +

∫ ∞

0

e−axe−2¼ix»dx

=

∫ 0

−∞
e(a−2¼i»)xdx +

∫ ∞

0

e(−a−2¼i»)xdx

=
1

a− 2¼i»
(1− 0) +

1

a+ 2¼i»
(1− 0)

=
2a

a2 + 4¼2»2
.

We now sketch how to prove our exponential claim. Consider
∫ ¯

®

e(a+bi)xdx.

Using
eiµ = cos µ + i sin µ

and
e(a+bi)x = eaxebix = eax cos(bx) + ieax sin(bx),
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we find ∫ ¯

®

e(a+bi)xdx =

∫ ¯

®

eax cos(bx)dx+ i

∫ ¯

®

eax sin(bx)dx.

We need to compute two classical integrals, that of eax cos(bx) and eax sin(bx). One
way to do this is to integrate by parts twice and use the ‘bring it over’ method; the reason
is setting dv = eaxdx leads to something easily integrated, while setting u = cos(bx)
leads to a sin(bx) term, and then integrating by parts again gives a cos(bx) term.

Alternatively, we can use the method of divine inspiration (or a Table of Integrals)
and note ∫

eax cos(bx)dx =
eax(a cos(bx) + b sin(bx))

a2 + b2∫
eax sin(bx)dx =

eax(−b cos(bx) + a sin(bx))

a2 + b2
.

The proof can be completed by a painful but straightforward brute force analysis, where
we evaluate these quantities at ® and ¯ and compare these to the claimed

∫ ¯

®

e(a+ib)xdx =
e(a+ib)x

a+ ib

∣∣∣
¯

®
=

e(a+ib)¯ − e(a+ib)®

a+ ib
.

============================


