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1. Introduction and main result

Suppose X := (Xk, k ∈ Z) is a sequence of random variables on a probability space
(Ω,F , P ). This sequence X is said to be “strictly stationary” if for all choices of inte-
gers j and ℓ and nonnegative integer m, the random vectors (Xj, Xj+1, . . . , Xj+m) and
(Xℓ, Xℓ+1, . . . , Xℓ+m) have the same distribution. For a given integer N ≥ 2, the sequence
X (stationary or not) is said to satisfy “N -tuplewise independence” if for every choice of
N distinct integers k(1), k(2), . . . , k(N), the random variables Xk(1), Xk(2), . . . , Xk(N)

are independent. For N = 2 (resp. N = 3), the word “N -tuplewise” is also expressed as
“pairwise” (resp. “triplewise”).

Etemadi [5] proved a strong law of large numbers for sequences of pairwise indepen-
dent, identically distributed random variables with finite absolute first moment. Janson
[7] showed with several classes of counterexamples that for strictly stationary sequences
of pairwise independent, nondegenerate, square-integrable random variables, the Central
Limit Theorem (henceforth abbreviated CLT) need not hold. Subsequently, Bradley [2,
Theorem 1] constructed another such counterexample, a 3-state one that has the addi-
tional property of satisfying the absolute regularity (weak Bernoulli) condition. For an
arbitrary fixed integer N ≥ 3, Pruss [9] constructed a (not strictly stationary) sequence
of bounded, nondegenerate, N -tuplewise independent, identically distributed random vari-
ables for which the CLT fails to hold. In that paper, Pruss left open the question whether,
for any integer N ≥ 3, a strictly stationary counterexample exists. For N = 3, Bradley [3,
Theorem 1] answered that question by showing that the counterexample in [2, Theorem 1]
alluded to above is in fact triplewise independent.

In a similar spirit, for an arbitrary integer N ≥ 2, Flaminio [6] constructed a strictly
stationary, finite-state, N -tuplewise independent random sequence X := (Xk, k ∈ Z) which
also has zero entropy and is mixing (in the ergodic-theoretic sense). That paper explicitly
left open the question of whether those examples satisfy the CLT.

In this paper, we shall answer affirmatively the question in [9], by constructing for
an arbitrary fixed integer N ≥ 2 a strictly stationary, N -tuplewise independent sequence
of bounded, nondegenerate random variables such that the CLT fails to hold. The con-
struction will be in part an adaptation of the (not strictly stationary) counterexample in
[9].

Before the main result is stated, a few notations are needed:
The Borel σ-field on the real number line R will be denoted R.
Convergence in distribution will be denoted by ⇒.
The set of positive integers will be denoted by N. For a given sequence X := (Xk, k ∈

Z) of random variables, the partial sums will be denoted for n ∈ N by

Sn := S(X, n) := X1 +X2 + . . .+Xn. (1.1)

Here is our main result:

Theorem 1.1. Suppose N is an integer such that N ≥ 2. Then there exists a strictly sta-
tionary sequence X := (Xk, k ∈ Z) of random variables such that the following statements
hold:
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(A) The random variable X0 is uniformly distributed on the interval [−31/2, 31/2] (and
hence EX0 = 0 and EX2

0 = 1).
(B) For every choice of N distinct integers k(1), k(2), . . . , k(N), the random variables

Xk(1), Xk(2), . . . , Xk(N) are independent.
(C) The random variables |Xk|, k ∈ Z are independent (and identically distributed).
(D) For every infinite setQ ⊂ N, there exist an infinite set T ⊂ Q and a nondegenerate,

non-normal probability measure µ on (R,R) such that Sn/n
1/2 ⇒ µ as n→ ∞, n ∈ T .

Here are some comments on Theorem 1.1:
By property (A), the “natural normalization” to consider for the central limit question

for the partial sums of this sequence is Sn/n
1/2.

Property (B) is of course N -tuplewise independence.
By property (D) and the Theorem of Types (see e.g. [1, p. 193, Theorem 14.2]), there

do not exist constants an > 0 and bn ∈ R for n ∈ N such that anSn + bn ⇒ N(0, 1), even
along a subsequence of the positive integers.

Also by property (D) and an elementary argument, there do not exist constants bn ∈ R
for n ∈ N such that n−1/2Sn + bn → 0 in probability, even along a subsequence of the
positive integers.

In property (D), the probability measure µ may depend on the set Q.

Remark 1.2. With essentially the same construction, one obtains an analog of Theorem
1.1 with property (A) replaced by the following one: (A′) The random variable X0 has the
N(0, 1) distribution.

We did not investigate the ergodic-theoretic properties of the sequence X in Theorem
1.1, nor did we try to ascertain the particular class of probability measures µ that can arise
in statement (D) there. Bradley [4] gives a construction of a (nondegenerate, two-state)
strictly stationary, 5-tuplewise independent random sequence which fails to satisfy the CLT
(instead, it satisfies property (D) in Theorem 1.1), and also has the extra properties of be-
ing “causal” (for an appropriate use of that term) and therefore “Bernoulli” (i.e. isomorphic
to a Bernoulli shift) and also having a trivial double tail σ-field. There does not seem to be
an obvious way to build those extra properties into the construction here for Theorem 1.1.

The proof of Theorem 1.1 will be given in sections 2 and 3. It will be rather intricate
and will require a fair amount of notation. Refer to properties (A) and (C) in Theorem
1.1. The construction will basically involve taking a sequence of independent, identically
distributed random variables uniformly distributed on the interval [−31/2, 31/2], and chang-
ing the signs of the variables in such a way as to introduce a dependence that preserves
N -tuplewise independence but is incompatible with the CLT.

In essence it involves the conversion of the (not strictly stationary) counterexample
in [9] to one that is strictly stationary. The main ideas for that conversion were outlined
in an e-mail message by one of the authors (Pruss [10]) to the other author (RCB), and
are developed in section 3 here. Section 2 gives some vital “preliminary” information;
much of it is taken or adapted from [9], but will be given again here in detail because
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of considerable extra complications in our context. The use (in both sections 2 and 3)
of higher order moments to establish property (D) in Theorem 1.1, is adapted from the
analogous use of 6th moments for the same purpose in (an earlier, 2006 version of) the
preprint [4]. Underlying all this is the repeated creation of “big” collections of N -tuplewise
independent random variables from “smaller” ones; such procedures are well known in the
theory of error-correcting codes (see e.g. [8]).

2. Part 1 of proof of Theorem 1.1

Sections 2 and 3 together will give the proof of Theorem 1.1. Both sections will be
divided into several “steps,” including a “definition,” some “lemmas,” etc. Throughout this
proof, the setting is a probability space (Ω,F , P ), “enlarged” as necessary to accommodate
all random variables defined in this proof.

Step 2.1. Let L be an arbitrary fixed integer such that

L is even and L ≥ 6. (2.1)

To prove Theorem 1.1, it suffices to construct a strictly stationary, (L − 1)–tuplewise
independent random sequence X := (Xk, k ∈ Z) that also satisfies properties (A), (C),
and (D) in Theorem 1.1. That will be the goal of sections 2 and 3.

Step 2.2. The following notations and conventions will be used:
(a) Refer to (2.1). For n ∈ {0, 1, 2, . . .}, when the term Ln appears in a subscript or

exponent, it will be written as L ↑ n for typographical convenience.
(b) Suppose n ∈ N. A vector x ∈ Rn will often be represented as x := (x0, x1, . . . , xn−1)

(instead of (x1, x2, . . . , xn)), for “bookkeeping” convenience. For a given x := (x0, x1, . . . ,
xn−1) ∈ Rn, define the two real numbers

sum x :=
n−1
∑

i=0

xi and prod x :=
n−1
∏

i=0

xi. (2.2)

Notations of the form f((x0, x1, . . . , xn−1)) will be written simply as f(x0, x1, . . . , xn−1).
(c) Sometimes the coordinates of a vector will be permuted. If n ∈ N, x := (x0, x1, . . . ,

xn−1) ∈ Rn, and σ is a permutation of the set {0, 1, . . . , n − 1}, then define the vector
xσ ∈ Rn by xσ := ((xσ)0, (Xσ)1, . . . , (Xσ)n−1) := (xσ(0), xσ(1), . . . , xσ(n−1)).

(d) If (xk, k ∈ Z) ∈ RZ, and a ≤ b are integers, then the vector (xa, xa+1, . . . , xb) will
also be denoted (xk : a ≤ k ≤ b).

(e) A “measure” on the space R or Rn (n ∈ N) or RZ will always mean a measure
on the Borel σ-field on that space.

(f) If η is a random variable/vector/sequence, then the distribution of η on the ap-
propriate space (such as R, Rn, or RZ) will be denoted L(η). If also F is an event such
that P (F ) > 0, then L(η | F ) will denote the conditional distribution of η, given F .

(g) For a given n ∈ N, an “Rn–valued random vector” is simply a random vector
with n coordinates. Of course, if n,m ∈ N, η1 and η2 are Rn–valued random vectors,
L(η1) = L(η2) (on Rn), and f : Rn → Rm is a Borel function, then L(f(η1)) = L(f(η2))
(on Rm).
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(h) Several notations will be defined here. Suppose Y := (Yi, i ∈ I) is a family of
random variables, where I is a nonempty (possibly infinite) index set. The σ–field of events
generated by this family will be denoted σ(Y ) or σ(Yi, i ∈ I). To avoid any confusion, this
family Y is said to satisfy “(L − 1)–tuplewise independence” if either (i) card I = 1, or
(ii) card I ≥ 2 and for every set S ⊂ I such that 2 ≤ card S ≤ L−1, the random variables
Yi, i ∈ S are independent. (The point there is to formally include the case card I = 1
in that terminology.) Here and below, “card” means cardinality. In the case of a random
vector Y := (Y0, Y1, . . . , Yn−1), where n ∈ N, the phrase “Y satisfies (L − 1)–tuplewise
independence” simply means that the family of it coordinates (Yi, i ∈ {0, 1, . . . , n − 1})
satisfies (L− 1)–tuplewise independence.

Step 2.3. Here a few useful functions on Rn will be defined.

Step 2.3(A). For each n ∈ N, define the function ϕn : Rn → Rn as follows: For x ∈ Rn

(see (2.2)),

ϕn(x) :=

{

x if sum x > 0
0n if sum x = 0
−x if sum x < 0

(2.3)

where 0n denotes the origin in Rn.
Thus for example ϕ3(5,−7, 4) = ϕ3(−5, 7,−4) = (5,−7, 4).

Remark 1. For each n ∈ N and each x ∈ Rn, sum ϕn(x) = |sum x|.

Remark 2. Suppose n ∈ N, x := (x0, x1, . . . , xn−1) ∈ Rn, y := ϕn(x) := (y0, y1, . . . ,
yn−1), and σ is a permutation of the set {0, 1, . . . , n − 1}. Recall from step 2.2(c) the
notations xσ := (xσ(0), xσ(1), . . . , xσ(n−1)) and yσ := (yσ(0), yσ(1), . . . , yσ(n−1)). Then yσ =
ϕn(xσ). This holds by a careful trivial argument, using the fact that sum xσ = sum x.
Thus for 0 ≤ i ≤ n− 1 (see step 2.2(c) again), (ϕn(xσ))i = (yσ)i = yσ(i) = (ϕn(x))σ(i).

Remark 3. If n, x, and y are as in Remark 2 above (with y = ϕn(x)), and also
sum x 6= 0, then |xi| = |yi| for each i ∈ {0, 1, . . . , n− 1}.

Remark 4. Suppose n ∈ N, Y is an Rn–valued random vector (recall step 2.2(g)) such
that L(−Y ) = L(Y ) and L(Y ) is absolutely continuous with respect to Lebesgue measure
on Rn, and V is a random variable independent of Y such that P (V = −1) = P (V = 1) =
1/2. Then P (sum Y = 0) = 0; and for any Borel set B ⊂ {x ∈ Rn : sum x > 0},

P (Y ∈ B) = P (−Y ∈ B) = (1/2) · P (ϕn(Y ) ∈ B);

and hence by a trivial argument, L(V ϕn(Y )) = L(Y ).

Step 2.3(B). Refer to (2.1). Occasionally, “big” vectors will be created by the splicing
together of L “smaller” ones. Suppose n is a positive integer, and for each ℓ ∈ {0, 1, . . . , L−

1}, x(ℓ) := (x
(ℓ)
0 , x

(ℓ)
1 , . . . , x

(ℓ)
n−1) ∈ Rn. Then the notation

〈

x(0) | x(1) | x(2) | · · · | x(L−1)
〉

(2.4)

means the vector y := (y0, y1, y2, . . . , yLn−1) ∈ RLn such that for each ℓ ∈ {0, 1, . . . , L−1},
(yℓn, yℓn+1, . . . , yℓn+n−1) = x(ℓ).
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Step 2.3(C). For each n ∈ N and each j ∈ {0, 1, . . . , L − 1}, define the function ψn,j :
RLn → RLn as follows: Suppose y ∈ RLn. Represent y := 〈x(0) | x(1) | · · · | x(L−1)〉 as in
(2.4), where for each ℓ ∈ {0, 1, . . . , L− 1}, x(ℓ) ∈ Rn. Then (see (2.2)) define

ψn,j(y) :=

{

y if
∏L−1

ℓ=0 (sumx(ℓ)) ≤ 0

〈x(0)| · · · |x(j−1)| − x(j)|x(j+1)| · · · |x(L−1)〉 if
∏L−1

ℓ=0 (sumx(ℓ)) > 0.
(2.5)

That is, if
∏L−1

ℓ=0 (sum x(ℓ)) > 0, then to define ψn,j(y), one just multiplies by −1 the
coordinates of x(j) (the (j + 1)st “n–coordinate piece” of y); all other coordinates of y are
left alone.

Preview. We shall show later on that if for each ℓ ∈ {0, 1, . . . , L− 1}, Y (ℓ) is an Rn–
valued random vector satisfying (L − 1)–tuplewise independence (see (2.1)) and certain
other conditions, and these random vectors Y (ℓ), ℓ ∈ {0, 1, . . . , L − 1} are independent
of each other, and one defines the RLn–valued random vector Y := 〈Y (0) | Y (1) | · · · |
Y (L−1)〉, then for any j ∈ {0, 1, . . . , L−1}, the RLn–valued random vector ψn,j(Y ) satisfies
(L − 1)–tuplewise independence. Iterative use of this construction will generate the final
sequence X := (Xk, k ∈ Z) for Theorem 1.1.

Step 2.4. Here several special probability measures on R or Rn or RZ will be defined.

Step 2.4(A). The notation λunps3 will refer to the uniform distribution on the interval
[−31/2, 31/2], regarded as a probability measure on R. (The subscript “unps3” stands
for uniform on the interval from negative to positive square root of 3.) For any positive
integer m, the m–fold product measure λunps3×λunps3×. . .×λunps3 on Rm will be denoted

λ
[m]
unps3.

Remark. If U is a random variable such that L(U) = λunps3 (see step 2.2(f)), then of
course EUn = 0 for odd n ∈ N and EUn = (n + 1)−1 · 3n/2 for even n ∈ N. Hence, if
also Z is a N(0, 1) random variable, then (see e.g. [1, p. 275, eq. (21.7)]) for every n ∈ N,
EZn ≥ EUn ≥ 0 (with equality for odd n and with EZ2 = EU2 = 1).

Step 2.4(B). Suppose n ∈ N, and µ is a probability measure on Rn. Then the notation
D(n, µ) means the distribution on RZ of a random sequence Y := (Yk, k ∈ Z) such that
(i) for each u ∈ Z, the random vector ζ(u) := (Ynu, Ynu+1, Ynu+2, . . . , Ynu+n−1) satisfies
L(ζ(u)) = µ, and (ii) these random vectors ζ(u), u ∈ Z are independent of each other.

Step 2.4(C). Define (see (2.1) and (2.2)) the set Υ := {x ∈ {−1, 1}L : prodx = −1}.
Then card Υ = 2L−1. Let ν denote the uniform distribution on Υ — that is, the probability
measure ν on RL such that ν({x}) = 1/2L−1 for each x ∈ Υ.

Step 2.4(D). Suppose n ∈ N, and µ is a probability measure on Rn. Then define
the probability measure θ(µ) on RLn by θ(µ) := L(Y ) where the random vector Y :=
(Y0, Y1, . . . , YLn−1) is as defined below:

Let W (0),W (1), . . . ,W (L−1) each be an Rn–valued random vector, such that L(W (ℓ)) =
µ for each ℓ ∈ {0, 1, . . . , L−1}, and such that these random vectors W (ℓ), ℓ ∈ {0, 1, . . . , L−
1} are independent of each other. Let V := (V0, V1, . . . , VL−1) be a Υ–valued random vec-
tor such that L(V ) = ν (see step 2.4(C) above), with V being independent of the family
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(W (ℓ), ℓ ∈ {0, 1, . . . , L− 1}). Referring to step 2.3(A)(B), define the RLn–valued random
vector Y by

Y :=
〈

V0ϕn(W (0)) | V1ϕn(W (1)) | V2ϕn(W (2)) | · · · | VL−1ϕn(W (L−1))
〉

. (2.6)

Remark 2.5. Suppose V := (V0, V1, . . . , VL−1) is a random vector such that L(V ) = ν
(see (2.1) and step 2.4(C)). Then by elementary arguments, the following statements hold:

(i) For each k ∈ {0, 1, . . . , L− 1}, P (Vk = −1) = P (Vk = 1) = 1/2.
(ii) V satisfies (L− 1)–tuplewise independence.
(iii) L(−V ) = ν.
(iv) For every permutation σ on the set {0, 1, . . . , L − 1}, the random vector Vσ :=

(Vσ(0), Vσ(1), . . . , Vσ(L−1)) (see step 2.2(c)) satisfies L(Vσ) = ν.
(v) prod V = −1 a.s. (see (2.2)). Hence for any j ∈ {0, 1, . . . , L − 1},

Vj = −
∏

ℓ∈{0,1,...,L−1}−{j} Vℓ a.s.

Definition 2.6. Suppose n ∈ N, and µ is a probability measure on Rn. Then µ is
said to satisfy “Condition H(n)” if the following seven statements (a)–(g) hold, where
W := (W0,W1, . . . ,Wn−1) is a random vector such that L(W ) = µ:

(a) µ is absolutely continuous with respect to Lebesgue measure on Rn.
(b) For each k ∈ {0, 1, . . . , n− 1}, L(Wk) = λunps3 (see step 2.4(A)).
(c) W satisfies (L− 1)–tuplewise independence.
(d) The random variables |W0|, |W1|, . . . , |Wn−1| are independent (if n ≥ 2).
(e) L(−W ) = µ.
(f) For any j ∈ {0, 1, . . . , n−1}, there exists a permutation σ on the set {0, 1, . . . , n−1}

such that (i) σ(0) = j and (ii) L(Wσ) = µ (where Wσ := (Wσ(0),Wσ(1), . . . ,Wσ(n−1)) —
see step 2.2(c)).

(g) Either (i) n < L, or (ii) n ≥ L, and for every set S ⊂ {0, 1, . . . , n− 1} such that
card S = L, one has that E(

∏

i∈S Wi) ≤ 0.

Lemma 2.7. Suppose n ∈ N, and W := (W0,W1, . . . ,Wn−1) is a random vector whose
distribution L(W ) on Rn satisfies Condition H(n). Referring to (2.3), define the random
vector Y := ϕn(W ) := (Y0, Y1, . . . , Yn−1). Then the following three statements hold (see
(2.2)):

(i) E(sumY ) = E|sumW | ≥ (1/2)n1/2.
(ii) L(Y0) = L(Y1) = · · · = L(Yn−1).
(iii) For any k ∈ {0, 1, . . . , n− 1}, EYk = (1/n) · E|sumW |.

Proof. Let us first prove (i). Trivially sum Y = |sum W | by (2.3). We just need to prove
the (“latter”) inequality in (i).

Refer to (2.1) and Definition 2.6(b)(c). By simple calculations, including the argument
in [1, p. 85, proof of Theorem 6.1] (which uses only 4–tuplewise independence), one has
that for each k ∈ {0, 1, . . . , n−1}, L(Wk) = λunps3, EWk = 0, EW 2

k = 1, and EW 4
k = 9/5,

and hence E(sum W )2 = n and

E(sum W )4 = n · EW 4
0 + 3n(n− 1) · (EW 2

0 )2 < 3n2.
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Hence by Hölder’s inequality,

n = E(sum W )2 ≤
∥

∥

∥
|sum W |2/3

∥

∥

∥

3/2
·
∥

∥

∥
|sum W |4/3

∥

∥

∥

3

= [E|sum W | ]2/3 ·
[

E(sum W )4
]1/3

≤ [E|sum W | ]2/3 ·
(

3n2
)1/3

.

Hence n3/2 ≤ E|sum W | · (3n2)1/2. Hence the (“latter”) inequality in (i) holds.
Now let us prove (ii). Suppose j ∈ {0, 1, . . . , n− 1}. Referring to Definition 2.6(f), let

σ be a permutation of the set {0, 1, . . . , n − 1} such that σ(0) = j and L(Wσ) = L(W ).
Then L(ϕn(Wσ)) = L(ϕn(W )) = L(Y ). Also, Yσ = ϕn(Wσ) by Remark 2 in step 2.3(A),
and hence L(Yσ) = L(Y ). Hence L(Yj) = L(Yσ(0)) = L(Y0). Since j ∈ {0, 1, . . . , n − 1}
was arbitrary, (ii) follows.

Statement (iii) follows trivially from statements (i) and (ii).

Lemma 2.8. Suppose n ∈ N, and µ is a probability measure on Rn that satisfies Condition
H(n). Then the following statements hold:

(A) The probability measure θ(µ) on RLn (see step 2.4(D)) satisfies Condition H(Ln).
(B) Suppose W is an RLn–valued random vector of the form

W := (W0,W1, . . . ,WLn−1) :=
〈

ζ(0) | ζ(1) | ζ(2) | · · · | ζ(L−1)
〉

(2.7)

(see (2.4)) where (i) for each ℓ ∈ {0, 1, . . . , L−1}, ζ(ℓ) is an Rn–valued random vector such
that L(ζ(ℓ)) = µ, and (ii) these random vectors ζ(ℓ), ℓ ∈ {0, 1, . . . , L− 1} are independent
of each other. Then (see (2.5)) for every j ∈ {0, 1, . . . , L− 1}, L(ψn,j(W )) = θ(µ).

(C) Suppose the RLn–valued random vector W is as in statement (B) (satisfying all
conditions there), and Y := (Y0, Y1, . . . , YLn−1) is an RLn–valued random vector such that
L(Y ) = θ(µ). Suppose S is a nonempty subset of {0, 1, . . . , Ln − 1}. Then the following
statements (i), (ii), (iii) hold:

(i) For each integer M ∈ {1, 2, . . . , L− 1}, E(
∑

k∈S Yk)M = E(
∑

k∈S Wk)M . (In the
case where M is odd, both sides of that equality are 0.)

(ii) E(
∑

k∈S Yk)L ≤ E(
∑

k∈S Wk)L.
(iii) For the case where S = {0, 1, . . . , Ln− 1} itself, one has (see (2.2))

E(sum W )L −E(sum Y )L ≥ 2−L · L! · nL/2. (2.8)

Statements (A) and (B) and their proofs are taken or adapted from [9]. Their proofs
will be included here because of extra complications in our context.

Proof. The proofs of statements (B), (A), and (C) will be given in that order.

Proof of statement (B). Before the random vector W in statement (B) is brought into
the picture, some preliminary work is needed.

Let j ∈ {0, 1, . . . , L− 1} be arbitrary but fixed. (See the role of j in statement (B).)
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Let V ′
0 , V

′
1 , . . . , V

′
L−1 be independent, identically distributed {−1, 1}–valued random

variables such that P (V ′
0 = −1) = P (V ′

0 = 1) = 1/2. Define the random vector V ∗ :=
(V ∗

0 , V
∗
1 , . . . , V

∗
L−1) as follows: For each ℓ ∈ {0, 1, . . . , L− 1} − {j}, V ∗

ℓ := V ′
ℓ ; and

V ∗
j := −

∏

ℓ∈{0,1,...,L−1}−{j}

V ∗
ℓ . (2.9)

Now the random variables V ∗
ℓ , ℓ ∈ {0, 1, . . . , L− 1} − {j} are independent and iden-

tically distributed, P (V ∗
ℓ = −1) = P (V ∗

ℓ = 1) = 1/2 for each ℓ ∈ {0, 1, . . . , L − 1} − {j},
and (2.9) holds. These conditions together uniquely determine L(V ∗). Also, the random
vector V (with L(V ) = ν) in Remark 2.5 satisfies the analogs of those conditions (see
Remark 2.5(i)(ii)(v)). It follows that

L(V ∗) = ν. (2.10)

Next, let ξ(0), ξ(1), . . . , ξ(L−1) be independent Rn–valued random vectors such that
(i) L(ξ(ℓ)) = µ for each ℓ ∈ {0, 1, . . . , L−1} and (ii) σ(ξ(0), ξ(1), . . . , ξ(L−1)) is independent
of σ(V ′) (and hence independent of σ(V ∗)) — see step 2.2(h). Define the RLn–valued
random vectors W ′ and W ∗ by (see (2.3) and (2.4))

W ′ :=
(

W ′
0,W

′
1, . . . ,W

′
Ln−1

)

:=
〈

V ′
0ϕn(ξ(0)) | V ′

1ϕn(ξ(1)) | · · · | V ′
L−1ϕn(ξ(L−1))

〉

(2.11)

and

W ∗ :=
(

W ∗
0 ,W

∗
1 , . . . ,W

∗
Ln−1

)

:=
〈

V ∗
0 ϕn(ξ(0)) | V ∗

1 ϕn(ξ(1)) | · · · | V ∗
L−1ϕn(ξL−1))

〉

. (2.12)

By (2.10), (2.12), and step 2.4(D),

L(W ∗) = θ(µ). (2.13)

Since (by hypothesis) µ satisfies Condition H(n), one has by Definition 2.6(a)(e) and
Remark 4 in step 2.3(A) that ∀ ℓ ∈ {0, 1, . . . , L− 1},

L(V ′
ℓϕn(ξ(ℓ))) = L(ξ(ℓ)) = µ. (2.14)

Also, the random vectors V ′
ℓϕn(ξ(ℓ)), ℓ ∈ {0, 1, . . . , L− 1} are independent (by the prop-

erties above). Hence by (2.11) and (2.7) and the (other) assumptions in statement (B),

L(W ′) = L(W ). (2.15)

Our next task is to compare the random vectors W ′ and W ∗. For that purpose,
observe that by (2.14) and Definition 2.6(a) (and the hypothesis of Lemma 2.8),

P

(

L−1
∏

ℓ=0

sum
(

V ′
ℓϕn(ξ(ℓ))

)

= 0

)

= 0,
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and for all ω ∈ Ω not in that event,

V ∗
j (ω)ϕn(ξ(j)(ω)) =

{

−V ′
j (ω)ϕn(ξ(j)(ω)) if

∏L−1
ℓ=0 sum(V ′

ℓ (ω)ϕn(ξ(ℓ)(ω))) > 0

V ′
j (ω)ϕn(ξ(j)(ω)) if

∏L−1
ℓ=0 sum(V ′

ℓ (ω)ϕn(ξ(ℓ)(ω))) < 0.
(2.16)

To verify (2.16), consider first the case where
∏L−1

ℓ=0 sum(V ′
ℓ (ω)ϕn(ξ(ℓ)(ω))) > 0. This can

be rewritten as
∏L−1

ℓ=0 [V ′
ℓ (ω)· sumϕn(ξ(ℓ)(ω))] > 0, or [

∏L−1
ℓ=0 V

′
ℓ (ω)]·[

∏L−1
ℓ=0 sumϕn(ξ(ℓ)(ω))] >

0. Since sum ϕn(ξ(ℓ)(ω)) > 0 for each ℓ ∈ {0, 1, . . . , L − 1}, this forces
∏L−1

ℓ=0 V
′
ℓ (ω) = 1.

That in turn implies V ′
j (ω) =

∏

ℓ6=j V
′
ℓ (ω), and hence by (2.9) and its entire sentence,

V ∗
j (ω) = −

∏

ℓ6=j

V ∗
ℓ (ω) = −

∏

ℓ6=j

V ′
ℓ (ω) = −V ′

j (ω),

and hence (2.16) holds. In the other case, where
∏L−1

ℓ=0 sum(V ′
ℓ (ω)ϕn(ξ(ℓ)(ω))) < 0, eq.

(2.16) holds by a similar argument.
Now of course V ∗

ℓ ϕn(ξ(ℓ)) = V ′
ℓϕn(ξ(ℓ)) for each ℓ ∈ {0, 1, . . . , L− 1} − {j}. Hence by

(2.5), (2.11), (2.12), and (2.16) and its entire sentence,

ψn,j(W ′) = W ∗ a.s. (2.17)

Now by (2.15), (2.17), and (2.13), L(ψn,j(W )) = L(ψn,j(W ′)) = L(W ∗) = θ(µ). Since
j ∈ {0, 1, . . . , L− 1} was arbitrary, statement(B) in Lemma 2.8 holds.

Proof of statement (A). This will be a continuation of the argument above for statement
(B). (The integer j in that argument will not play a role here; as a formality, one can take,
say, j = 0.) Using (2.12) and (2.13), we shall verify, one by one, the analogs of conditions
(a)–(g) in Definition 2.6 for the probability measure θ(µ) on RLn.

By (2.14) and the paragraph after (2.10), L(ξ(0), ξ(1), . . . , ξ(L−1)) = µ × µ × · · · × µ
(the L–fold product measure on (Rn)L), which (by Definition 2.6(a) for µ and a standard
measure–theoretic argument) is absolutely continuous with respect to Lebesgue measure on
(Rn)L. Hence by (2.3), Definition 2.6(e) for µ, and an elementary argument, L(ϕn(ξ(0)),
ϕn(ξ(1)), . . . , ϕn(ξ(L−1))) is absolutely continuous. Hence so is L(W ∗), by (2.12) and an
elementary argument. Hence by (2.13), the analog of condition (a) in Definition 2.6 holds
for θ(µ).

Next, by (2.14), (2.10), Remark 2.5(i)(ii), and the paragraph after (2.10), one has that

∀ ℓ ∈ {0, 1, . . . , L− 1}, L(V ∗
ℓ ϕn(ξ(ℓ))) = L(V ′

ℓϕn(ξ(ℓ))) = µ, (2.18)

and also that every L − 1 of the random vectors V ∗
ℓ ϕn(ξ(ℓ)), ℓ ∈ {0, 1, . . . , L − 1} are

independent. Hence by (2.12), Definition 2.6(b)(c) for µ, and a simple argument, one has
that L(W ∗

k ) = λunps3 for each k ∈ {0, 1, . . . , Ln − 1}, and that the random vector W ∗

satisfies (L − 1)–tuplewise independence. Hence by (2.13), the analogs of conditions (b)
and (c) in Definition 2.6 hold for θ(µ).

Next, by (2.7) and its entire sentence, together with Definition 2.6(d) for µ, the random
variables |Wi|, i ∈ {0, 1, . . . , Ln − 1} are independent. Hence by (2.15), the same holds
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for the random variables |W ′
i |, 0 ≤ i ≤ Ln − 1. Now by (2.11), (2.12), and the entire

paragraph containing (2.9), |W ∗
i | = |W ′

i | for each i ∈ {0, 1, . . . , Ln − 1}; and hence the
random variables |W ∗

i |, 0 ≤ i ≤ Ln− 1 are independent. Hence by (2.12) and (2.13), the
analog of condition (d) in Definition 2.6 holds for θ(µ).

Next, by (2.10), Remark 2.5(iii), and the paragraph after (2.10),

L(V ∗, ξ(0), ξ(1), . . . , ξ(L−1)) = ν × µ× µ× . . .× µ

= L(−V ∗, ξ(0), ξ(1), . . . , ξ(L−1)). (2.19)

Also, by (2.12), W ∗ = f(V ∗, ξ(0), ξ(1), . . . , ξ(L−1)) for an obvious Borel function f : RL ×
(Rn)L → RnL, and −W ∗ = f(−V ∗, ξ(0), ξ(1), . . . , ξ(L−1)). Hence L(−W ∗) = L(W ∗) by
(2.19). Hence by (2.13), the analog of condition (e) in Definition 2.6 holds for θ(µ).

Proof of Definition 2.6(f) for θ(µ). Refer to the notations in step 2.2(c), and refer to
Remark 2 in step 2.3(A).

Let J ∈ {0, 1, . . . , Ln−1} be arbitrary but fixed. Refer to (2.12) and (2.13). To prove
the analog of property (f) in Definition 2.6 for θ(µ), it suffices to show that there exists a
permutation τ of the set {0, 1, . . . , Ln− 1} such that

τ(0) = J and L(W ∗
τ ) = L(W ∗). (2.20)

Let ℓ′ ∈ {0, 1, . . . , L− 1} and j′ ∈ {0, 1, . . . , n− 1} be such that

J = ℓ′n+ j′. (2.21)

Let α be a permutation of the set {0, 1, . . . , L − 1} such that α(0) = ℓ′. Then by (2.19),
(2.10), and Remark 2.5(iv),

L
(

V ∗
α , ξ

(α(0)), ξ(α(1)), . . . , ξ(α(L−1))
)

= ν × µ× µ× . . .× µ. (2.22)

Applying Definition 2.6(f) for µ (see (2.14)), let β be a permutation of the set {0, 1, . . . , n−

1} such that β(0) = j′ and (say) L(ξ
(α(0))
β ) = µ. Then by (2.22) and a trivial argument,

L
(

V ∗
α , ξ

(α(0))
β , ξ(α(1)), ξ(α(2)), . . . , ξ(α(L−1))

)

= ν × µ× µ× . . .× µ. (2.23)

Define the RLn–valued random vectors W ∗∗ and W ∗∗∗ by

W ∗∗ :=
(

W ∗∗
0 ,W ∗∗

1 , . . . ,W ∗∗
Ln−1

)

:=
〈

(V ∗
α )0ϕn(ξ(α(0))) | (V ∗

α )1ϕn(ξ(α(1))) | · · · | (V ∗
α )L−1ϕn(ξ(α(L−1)))

〉

(2.24)

and

W ∗∗∗ :=
(

W ∗∗∗
0 ,W ∗∗∗

1 , . . . ,W ∗∗∗
Ln−1

)

:=
〈

(V ∗
α )0ϕn(ξ

(α(0))
β ) | (V ∗

α )1ϕn(ξ(α(1))) | (V ∗
α )2ϕn(ξ(α(2))) |

· · · | (V ∗
α )L−1ϕn(ξ(α(L−1)))

〉

. (2.25)
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By (2.19) (its first equality), (2.22), (2.23), (2.24), (2.25), (2.12), and (2.13),

L(W ∗∗∗) = L(W ∗∗) = L(W ∗) = θ(µ). (2.26)

By (2.21) and the sentence after it, together with (2.24) and (2.12), the random
variables W ∗∗

k , 0 ≤ k ≤ Ln− 1 in (2.24) are (to put this informally) simply a permutation
of the random variables W ∗

k , 0 ≤ k ≤ Ln − 1 in (2.12), such that W ∗∗
j′ = W ∗

J . Similarly,
by (2.24), (2.25), Remark 2 in step 2.3(A), and the sentence after (2.22), the random
variables W ∗∗∗

k , 0 ≤ k ≤ Ln−1 in (2.25) are simply a permutation of the random variables
W ∗∗

k , 0 ≤ k ≤ Ln − 1 in (2.24), such that W ∗∗∗
0 = W ∗∗

j′ . Hence the random variables
W ∗∗∗

k , 0 ≤ k ≤ Ln − 1 in (2.25) are simply a permutation of the random variables W ∗
k ,

0 ≤ k ≤ Ln − 1 in (2.12), such that W ∗∗∗
0 = W ∗

J . Thus for the resulting permutation τ
of the indices {0, 1, . . . , Ln− 1}, one has that W ∗∗∗ = W ∗

τ and by (2.26), equation (2.20)
holds. That completes the argument for Definition 2.6(f) for θ(µ).

Proof of Definition 2.6(g) for θ(µ). Let S be an arbitrary fixed subset of {0, 1, . . . , Ln−
1} such that card S = L. Refer to (2.12) and (2.13). Our task is to show thatE(

∏

k∈S W
∗
k ) ≤

0.
For each ℓ ∈ {0, 1, . . . , L− 1}, define the set

Φ(ℓ) := {ℓn, ℓn+ 1, . . . , ℓn+ n− 1}. (2.27)

These sets form a partition of the set {0, 1, . . . , Ln−1}. The argument here will be divided
into three cases according to how many indices ℓ ∈ {0, 1, . . . , L− 1} are such that the set
S ∩ Φ(ℓ) is nonempty. First recall from (2.12) that for each ℓ ∈ {0, 1, . . . , L− 1},

(

W ∗
ℓn,W

∗
ℓn+1, . . . ,W

∗
ℓn+n−1

)

= V ∗
ℓ ϕn(ξ(ℓ)). (2.28)

Case 1. S ⊂ Φ(ℓ) for some ℓ ∈ {0, 1, . . . , L− 1}. Then by (2.28) and (2.27) (for that
ℓ), (2.18), and Definition 2.6(g) for µ, E(

∏

k∈S W
∗
k ) ≤ 0.

Case 2. The set T := {ℓ ∈ {0, 1, . . . , L−1} : S∩Φ(ℓ) 6= ∅} satisfies 2 ≤ card T ≤ L−1.
This forces card(S∩Φ(ℓ)) ≤ L−1 for each ℓ ∈ T . For each ℓ ∈ T , by (2.28), (2.27), (2.18),
and Definition 2.6(b)(c) for µ, E(

∏

k∈S∩Φ(ℓ)W
∗
k ) =

∏

k∈S∩φ(ℓ)EW
∗
k = 0. Also, by (2.28),

(2.27), and the phrase immediately after (2.18), the σ–fields σ(W ∗
k , k ∈ S ∩ Φ(ℓ)), ℓ ∈ T

are independent. It follows that E(
∏

k∈S W
∗
k ) = 0.

Case 3. For each ℓ ∈ {0, 1, . . . , L − 1}, the set Φ(ℓ) contains exactly one element of
S. (Recall that card S = L.) For each ℓ ∈ {0, 1, . . . , L − 1}, let k(ℓ) denote the element
of S ∩ Φ(ℓ). By (2.12), for each ℓ ∈ {0, 1, . . . , L − 1}, W ∗

k(ℓ) = V ∗
ℓ Tℓ where Tℓ is one of

the coordinates of the random vector ϕn(ξ(ℓ)). For each ℓ ∈ {0, 1, . . . , L − 1}, ETℓ > 0
by (2.14) and Lemma 2.7(i)(iii). Hence by (2.10), the paragraph after (2.10), and Remark
2.5(v),

E

(

∏

k∈S

W ∗
k

)

= E

(

L−1
∏

ℓ=0

W ∗
k(ℓ)

)

= E

(

L−1
∏

ℓ=0

V ∗
ℓ

)

·
L−1
∏

ℓ=0

ETℓ

= −1 ·
L−1
∏

ℓ=0

ETℓ < 0.
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That completes the argument for Case 3, for Definition 2.6(g) for θ(µ), and for state-
ment (A).

Proof of statement (C). In this argument, for any RLn–valued random vector η :=
(η0, η1, . . . , ηLn−1) and any nonempty set Q ⊂ {0, 1, . . . , Ln− 1}, the notation (ηk, k ∈ Q)
will sometimes be used to denote the random vector (ηk(1), ηk(2), . . . , ηk(m)) where m =
cardQ and k(1), k(2), . . . , k(m) are in strictly increasing order the elements of Q.

We shall use appropriate arguments from the proofs of (A) and (B).
For any nonempty set Q ⊂ {0, 1, . . . , Ln− 1} such that card Q ≤ L− 1, one has (see

step 2.4(A)) that

L(Wk, k ∈ Q) = λ
[m]
unps3 = L(Yk, k ∈ Q). (2.29)

The first equality holds by the entire sentence containing (2.7), together with Definition
2.6(b)(c) for µ and a simple argument. The second equality holds by Definition 2.6(b)(c)
for θ(µ) (recall statement (A), proved above).

Refer to the set S in statement (C). To prove item (i) in statement (C), note that if
1 ≤ M ≤ L− 1, then for any M–tuple (k(1), k(2), . . . , K(M)) ∈ SM (the k(i)’s need not

be distinct), E(
∏M

i=1Wk(i)) = (
∏M

i=1 Yk(i)) by (2.29) and its entire sentence. Adding up
over all M–tuples ∈ SM , one obtains E(

∑

k∈S Wk)M = E(
∑

k∈S Yk)M , the equality in (i).
The last sentence in (i) follows from Definition 2.6(e) for θ(µ) (applied to Y ).

Proof of statement (C)(ii). Let (k(1), k(2), . . . , k(L)) be an arbitrary fixed L–tuple
∈ SL. (The k(i)’s need not be distinct.) In order to prove statement (C)(ii), it suffices to
prove that

E

(

L
∏

i=1

Yk(i)

)

≤ E

(

L
∏

i=1

Wk(i)

)

. (2.30)

(For then by adding up both sides over all L–tuples ∈ SL, one would obtain statement
(C)(ii).)

If two or more of the integers k(i) are equal, then (2.30) holds with equality by (2.29)
and its entire sentence. Therefore, we now assume that the integers k(i) are distinct.

Now refer to the sets Φ(ℓ), ℓ ∈ {0, 1, . . . , L−1} in (2.27). Suppose first that {k(1), k(2),
. . . , k(L)} ⊂ Φ(ℓ′) for some ℓ′ ∈ {0, 1, . . . , L − 1}. By (2.27) and (2.7) and its entire
sentence,

L (Wk, k ∈ Φ(ℓ′)) = L
(

ζ(ℓ′)
)

= µ. (2.31)

Also, since L(Y ) = θ(µ) = L(W ∗) by (2.13) and the assumption on Y , one has by (2.27),
(2.12), and (2.18),

L(Yk, k ∈ Φ(ℓ′)) = L(W ∗
k , k ∈ Φ(ℓ′)) = L(V ∗

ℓ′ϕn(ζ(ℓ′))) = µ. (2.32)

Hence L(Yk(1), Yk(2), . . . , Yk(L)) = L(Wk(1),Wk(2), . . . ,Wk(L)), and (2.30) holds with equal-
ity.

Now consider the remaining case where {k(1), k(2), . . . , k(L)}∩Φ(ℓ) is nonempty for at
least two indices ℓ ∈ {0, 1, . . . , L−1}. Then none of the sets Φ(ℓ), ℓ ∈ {0, 1, . . . , L−1} can
contain more than L−1 of the integers k(i). Now (2.31) holds for any ℓ′ ∈ {0, 1, . . . , L−1};

13



and hence by Definition 2.6(b)(c) for µ, one has that for any ℓ ∈ {0, 1, . . . , L−1} such that
{k(1), . . . , k(L)} ∩ Φ(ℓ) is nonempty, E

∏

Wk(i) = 0 where the product is taken over all
i ∈ {0, 1, . . . , L} such that k(i) ∈ Φ(ℓ). Also, by (2.27) and (2.7) and its entire sentence,
the σ–fields σ(Wk, k ∈ Φ(ℓ)), ℓ ∈ {0, 1, . . . , L − 1} are independent. It follows that

E(
∏L

i=1Wk(i)) = 0. Since (by hypothesis) L(Y ) = θ(µ), one has by Definition 2.6(g) for

θ(µ) that E(
∏L

i=1 Yk(i)) ≤ 0. Thus (2.30) holds. That complets the proof of statement
(C)(ii).

Proof of statement (C)(iii). Refer again to (2.27). For each ℓ ∈ {0, 1, . . . , L − 1},
define the random variables

η′ℓ :=
∑

k∈Φ(ℓ)

Wk and η∗ℓ :=
∑

k∈Φ(ℓ)

Yk. (2.33)

Then

sumW =

L−1
∑

ℓ=0

η′ℓ and sum Y =

L−1
∑

ℓ=0

η∗ℓ . (2.34)

By (2.27) and (2.7) and its entire sentence (note that η′ℓ = sum ζ(ℓ) for each ℓ ∈
{0, 1, . . . , L− 1}), the random variables η′ℓ, ℓ ∈ {0, 1, . . . , L− 1} are independent. Recall
again that L(W ∗) = θ(µ) = L(Y ) by (2.13) and the assumption on Y . By (2.33), (2.27),
(2.12), and the phrase immediately after (2.18), every L−1 of the random variables η∗ℓ , ℓ ∈
{0, 1, . . . , L−1} are independent. Hence by (2.31), (2.32), and (2.33), if j(1), j(2), . . . , j(L−
1) are distinct elements of {0, 1, . . . ,  L − 1}, then

L
(

η′j(1), η
′
j(2), . . . , η

′
j(L−1)

)

= L
(

η∗j(1), η
∗
j(2), . . . , η

∗
j(L−1)

)

.

Hence, if j(1), j(2), . . . , j(L) are each an element of {0, 1, . . . , L − 1} and two or more of

the j(i)’s are equal, then E(
∏L

i=1 η
′
j(i)) = E(

∏L
i=1 η

∗
j(i)). Hence by (2.34) and a simple

calculation,

E(sumW )L −E(sumY )L = L! ·

[

E

(

L−1
∏

ℓ=0

η′ℓ

)

− E

(

L−1
∏

ℓ=0

η∗ℓ

)]

. (2.35)

Now by (2.7) and its entire sentence, and Definition 2.6(b) for µ, one has that EWk = 0
for each k ∈ {0, 1 . . . , Ln− 1}; and hence by (2.33), Eη′ℓ = 0 for each ℓ ∈ {0, 1, . . . , L− 1}.

Hence by the sentence after (2.34), E(
∏L−1

ℓ=0 η
′
ℓ) = 0. Hence by (2.35),

E(sumW )L −E(sum Y )L = −L! · E

(

L−1
∑

ℓ=0

η∗ℓ

)

. (2.36)

Now recall again the equality L(W ∗) = L(Y ) in the second sentence after (2.34). By
(2.33), (2.27), and (2.12),

E

(

L−1
∏

ℓ=0

η∗ℓ

)

= E

[

L−1
∏

ℓ=0

sum
(

V ∗
ℓ ϕn(ξ(ℓ))

)

]

= E

[

L−1
∏

ℓ=0

(

V ∗
ℓ · sum

(

ϕn(ξ(ℓ))
))

]

.
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Hence by (2.10), Remark 2.5(v), and the sentence after (2.10),

E

(

L−1
∏

ℓ=0

η∗ℓ

)

= E

[

L−1
∏

ℓ=0

V ∗
ℓ

]

·
L−1
∏

ℓ=0

E
[

sumϕn(ξ(ℓ))
]

= −1 ·
[

E
(

sumϕn(ξ(0))
)]L

. (2.37)

Now by the sentence after (2.10), together with Lemma 2.7(i), E(sumϕn(ξ(0))) ≥ (1/2)n1/2.

Hence by (2.37), E(
∏L−1

ℓ=0 η
∗
ℓ ) ≤ −2−LnL/2. Hence by (2.36), eq. (2.8) holds. That com-

pletes the proof of statement C(iii), and of Lemma 2.8.

Lemma 2.9. Suppose n is a positive integer, and µ is a probability measure on Rn

that satisfies Condition H(n) (see Definition 2.6). Suppose W := (Wk, k ∈ Z) and
Y := (Yk, k ∈ Z) are random sequences such that (see step 2.4(B)(D)) L(W ) = D(n, µ)
and L(Y ) = D(Ln, θ(µ)). Then the following statements hold:

(A) The random variables Wk, k ∈ Z satisfy (L− 1)–tuplewise independence as well
as (for all k ∈ Z) L(Wk) = λunps3 (see step 2.4(A)); and the same holds for the random
variables Yk, k ∈ Z.

(B) For any nonempty finite set S ⊂ Z, one has that E(
∑

k∈S Yk)L ≤ E(
∑

k∈S Wk)L.
(C) If j ∈ Z, and S is a finite subset of Z such that {j, j+1, j+2, . . . , j+2Ln−1} ⊂ S,

then

E

(

∑

k∈S

Wk

)L

−E

(

∑

k∈S

Yk

)L

≥ 2−L · L! · nL/2. (2.38)

Proof. Statement (A) holds by Lemma 2.8(A), Definition 2.6(b)(c) (for both µ and θ(µ)),
step 2.4(B), and a trivial extra argument.

Statements (B) and (C) will be proved together. For that purpose, define for each
u ∈ Z the set

Λ(u) := {Lnu, Lnu+ 1, Lnu+ 2, . . . , Lnu+ Ln− 1}. (2.39)

In this argument, we shall follow the convention in the first paragraph of the proof of
statement (C) in Lemma 2.8. By step 2.4(B) and a trivial argument, the random vectors
(Wk, k ∈ Λ(u)), u ∈ Z are independent of each other; and the random vectors (Yk,
k ∈ Λ(u)), u ∈ Z are independent of each other.

Now suppose S is a nonempty finite subset of Z. Let Q denote the (nonempty, finite)
set of all integers u such that the set S ∩ Λ(u) is nonempty. For each q ∈ Q, define the
random variables

T ′
q :=

∑

k∈S∩Λ(q)

Wk and T ∗
q :=

∑

k∈S∩Λ(q)

Yk. (2.40)

Then
∑

k∈S

Wk =
∑

q∈Q

T ′
q and

∑

k∈S

Yk =
∑

q∈Q

T ∗
q . (2.41)

Now for each q ∈ Z, by step 2.4(B), the random vectors (WLnq,WLnq+1, . . . ,WLnq+Ln−1)
and (YLnq, YLnq+1, . . . , YLnq+Ln−1) satisfy the hypothesis of Lemma 2.8(C). Hence for each
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q ∈ Q and each m ∈ {1, 2, . . . , L− 1}, by (2.40) and Lemma 2.8(C)(i), E(T ′
q)m = E(T ∗

q )m.
Also, the random variables T ′

q, q ∈ Q are independent, and the random variables T ∗
q ,

q ∈ Q are independent, by (2.40), (2.39), and the two sentences right after (2.39). Hence,
if a given L–tuple (q(1), q(2), . . . , q(L)) ∈ QL is such that at least two of the entries q(i)

are different from each other, then by a simple argument, E(
∏L

i=1 T
′
q(i)) = E(

∏L
i=1 T

∗
q(i)).

Hence by (2.41) and a simple calculation,

E

[

∑

k∈S

Wk

]L

− E

[

∑

k∈S

Yk

]L

=
∑

q∈Q

[

E(T ′
q)L − E(T ∗

q )L
]

. (2.42)

Now by (2.40), the sentence after (2.41), and Lemma 2.8(C)(ii), E(T ′
q)L ≥ E(T ∗

q )L

for every q ∈ Q. Hence by (2.42), statement (B) (in Lemma 2.9) holds.
To continue this argument in order to prove statement (C), note that under the hy-

pothesis of (C), there exists p ∈ Q such that (see (2.39) again) Λ(p) ⊂ S. By (2.40), the
sentence after (2.41), and Lemma 2.8(C)(iii), E(T ′

p)L − E(T ∗
p )L ≥ 2−L · L! · nL/2. Hence

by (2.42) and the sentence right after it, equation (2.38) holds. That completes the proof
of statement (C), and of Lemma 2.9.

3. Part 2 of proof of Theorem 1.1

This section is a direct continuation of section 2. As in section 2, the argument here
in section 3 will be divided into several “steps,” including some “lemmas.”

Step 3.1. Refer again to the even integer L ≥ 6 fixed in step 2.1. Refer to steps 2.2(a)
and 2.4(A)(D). Recursively define as follows, for each n ∈ {0, 1, 2, . . .}, the probability
measure µn on RL↑n: (i) µ0 := λunps3, and (ii) for each n ≥ 0, µn+1 := θ(µn).

Remark. For each n ∈ {0, 1, 2, . . .}, the probability measure µn satisfies Condition
H(Ln). (For n = 0, that holds by Definition 2.6 and a trivial argument; and then for
n ≥ 1, it holds by Lemma 2.8(A) and induction.)

For the next lemma, and for the rest of section 3 here, let Z be a N(0, 1) random
variable.

Lemma 3.2. Suppose h and m are positive integers such that m ≤ h. Suppose Y := (Yk,
k ∈ Z) is a random sequence such that L(Y ) = D(Lh, µh) (see step 2.4(B)). Suppose S is a
finite set ⊂ Z such that for some integer j, one has that {j, j+1, j+2, . . . , j+2Lm−1} ⊂ S.
Then

E

[

∑

k∈S

Yk

]L

≤ E
[

(cardS)1/2Z
]L

− 2−L · L! · L(m−1)L/2. (3.1)

Proof. For each n ∈ {0, 1, 2, . . .}, let W (n) := (W
(n)
k , k ∈ Z) be a random sequence such

that L(W (n)) = D(Ln, µn). Then by Lemma 2.9(B),

∀n ≥ 1, E

[

∑

k∈S

W
(n)
k

]L

≤ E

[

∑

k∈S

W
(n−1)
k

]L

. (3.2)
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Also by Lemma 2.9(C) (with n = Lm−1) and the assumptions on S,

E

[

∑

k∈S

W
(m)
k

]L

≤ E

[

∑

k∈S

W
(m−1)
k

]L

− 2−L · L! · L(m−1)L/2.

Combining that with (3.2) and trivial induction, one has that

∀n ≥ m, E

[

∑

k∈S

W
(n)
k

]L

≤ E

[

∑

k∈S

W
(0)
k

]L

− 2−L · L! · L(m−1)L/2.

Since h ≥ m (by hypothesis) and L(Y ) = L(W (h)), it follows that

E

[

∑

k∈S

Yk

]L

≤ E

[

∑

k∈S

W
(0)
k

]L

− 2−L · L! · L(m−1)L/2.

Hence, to complete the proof of (3.1), it suffices to prove that

E

[

∑

k∈S

W
(0)
k

]L

≤ E
[

(cardS)1/2Z
]L

. (3.3)

Now (see steps 3.1 and 2.4(A) again), the random variables W
(0)
k , k ∈ Z are indepen-

dent and identically distributed, with L(W
(0)
0 ) = λunps3. Let Zk, k ∈ Z be independent

N(0, 1) random variables. If p is a positive integer, k(1), k(2), . . . , k(p) are distinct integers,
and a(1), a(2), . . . , a(p) are (not necessarily distinct) positive integers, then by the Remark
in step 2.4(A),

E

[

p
∏

i=1

(

W
(0)
k(i)

)a(i)
]

=

p
∏

i=1

E
(

W
(0)
k(i)

)a(i)

≤

p
∏

i=1

EZ
a(i)
k(i) = E

[

p
∏

i=1

Z
a(i)
k(i)

]

.

Thus for any L–tuple (k(1), k(2), . . . , k(L)) ∈ ZL (the k(ℓ)’s need not be distinct),

E[
∏L

ℓ=1W
(0)
k(ℓ)] ≤ E[

∏L
ℓ=1 Zk(ℓ)]. Adding up both sides over all L–tuples ∈ SL, one obtains

E[
∑

k∈S W
(0)
k ]L ≤ E[

∑

k∈S Zk]L. Since L(
∑

k∈S Zk) = N(0, cardS) = L((cardS)1/2Z),
eq. (3.3) follows. That completes the proof of (3.1) and of Lemma 3.2.

Step 3.3. Let κ1, κ2, κ3, . . . be a sequence of independent, identically distributed random
variables, taking their values in the set {0, 1, 2, . . . , L − 1} and uniformly distributed on
that set.

Define the random variables J(n), n ∈ {0, 1, 2, . . .} as follows:

J(0) := 0 (constant), and for each n ∈ N, J(n) :=

n
∑

u=1

Lu−1κu. (3.4)
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Remarks. Recall that in the base–L number system, for a given n ≥ 1 and a given
β ∈ {0, 1, 2, . . . , Ln − 1}, there is a unique representation β =

∑n
u=1 L

u−1αu such that
α1, α2, . . . , αn ∈ {0, 1, . . . , L− 1}. Also, by (3.4),

∀n ∈ N, J(n) = Ln−1κn + J(n− 1). (3.5)

From those facts and trivial arguments, one has the following observations:

Remark 1. For each n ∈ {0, 1, 2, . . .}, the random variable J(n) takes its values in the
set {0, 1, 2, . . . , Ln − 1} and is uniformly distributed on that set.

Remark 2. For each n ∈ N (and each ω ∈ Ω), J(n) ≥ J(n− 1) and in fact

−J(n) ≤ −J(n− 1) ≤ 0

≤ −J(n− 1) + Ln−1 − 1 ≤ −J(n) + Ln − 1. (3.6)

(For the last inequality, apply (3.5) and the fact Ln−1κn ≤ Ln−1(L− 1) = Ln − Ln−1.)

Remark 3. For each n ∈ N and each ω ∈ Ω such that 1 ≤ κn(ω) ≤ L − 2, one has
(again by (3.5)) that

− J(n)(ω) ≤ −Ln−1 − J(n− 1)(ω) and

(−J(n− 1)(ω) + Ln−1 − 1) + Ln−1 ≤ (−J(n)(ω) + Ln − 1). (3.7)

Remark 4. For each n ∈ N and each j ∈ {0, 1, 2, . . . , Ln − 1}, there exists a unique
choice of integers j0 ∈ {0, 1, 2, . . . , Ln−1 − 1} and k0 ∈ {0, 1, . . . , L− 1} such that

{J(n) = j} = {J(n− 1) = j0} ∩ {κn = k0}. (3.8)

Remark 5. For each n ∈ N, the two random variables J(n−1) and κn are independent.

Step 3.4. For each n ∈ {0, 1, 2, . . .}, we shall construct a sequence X(n) := (X
(n)
k , k ∈ Z)

of random variables. The definition will be recursive, and is as follows:

(A) To start off, let X(0) := (X
(0)
k , k ∈ Z) be a sequence of independent, identically

distributed random variables such that (i) L(X
(0)
0 ) = λunps3 (again see step 2.4(A)) and

(ii) this sequence X(0) is independent of the sequence (κ1, κ2, κ3, . . . ) in step 3.3.

(B) Now suppose n ≥ 1, and the random sequence X(n−1) := (X
(n−1)
k , k ∈ Z) is

already defined. Define the random sequence X(n) := (X
(n)
k , k ∈ Z) as follows:

For a given ω ∈ Ω, in the notations in step 2.2(a)(d) and step 2.3(C),

(X
(n)
k (ω) : −J(n)(ω) ≤ k ≤ −J(n)(ω) + Ln − 1)

:=















ψL↑(n−1),1(X
(n−1)
k (ω) : −J(n)(ω) ≤ k ≤ −J(n)(ω) + Ln − 1)

if J(n)(ω) = J(n− 1)(ω)

ψL↑(n−1),0(X
(n−1)
k (ω) : −J(n)(ω) ≤ k ≤ −J(n)(ω) + Ln − 1)

if J(n)(ω) > J(n− 1)(ω),

(3.9)
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and for every integer K ∈ Z − {0},

(X
(n)
k (ω) : −J(n)(ω) +KLn ≤ k ≤ −J(n)(ω) +KLn + Ln − 1)

:= ψL↑(n−1),0(X
(n−1)
k (ω) : −J(n)(ω) +KLn ≤ k ≤ −J(n)(ω) +KLn + Ln − 1).

(3.10)

That completes the recursive definition. By induction on n, one has (see step 2.2(h))
that

∀n ∈ N, σ(X(n)) ⊂ σ(X(0)) ∨ σ(κ1, κ2, . . . , κn). (3.11)

By step 3.3 and paragraph (A) (property (ii)) above, one now has that for all n ∈
{0, 1, 2, . . .}, the two σ–fields σ(J(n), X(n)) and σ(κn+1) are independent.

Lemma 3.5. For each n ∈ {0, 1, 2, . . .}, one has that

∀ j ∈ {0, 1, 2, . . . , Ln − 1}, L
(

X
(n)
−j+k, k ∈ Z | J(n) = j

)

= D (Ln, µn) . (3.12)

Proof. Eq. (3.12) holds for n = 0 by (3.4) and step 3.4(A), step 3.1, and step 2.4(B).
Now for induction, suppose that n ≥ 1, and that (3.12) holds with n replaced by n−1.

To complete the induction step and the proof, our task is to prove (3.12) for the given n.
Referring to (3.12) suppose j ∈ {0, 1, 2, . . . , Ln − 1}.
Referring to step 3.3 (its Remark 4), let j0 ∈ {0, 1, . . . , Ln−1−1} and k0 ∈ {0, 1, . . . , L−

1} be such that (3.8) holds. By the sentence after (3.11), the σ–fields σ(J(n− 1), X(n−1))
and σ(κn) are independent. Hence by (3.8) and a simple calculation,

∀B ∈ σ(X(n−1)), P (B | J(n) = j) = P (B | {J(n− 1) = j0} ∩ {κn = k0})

= P (B | J(n− 1) = j0). (3.13)

Now by (3.8) and (3.5), j = Ln−1k0 + j0. By the induction hypothesis,

L
(

X
(n−1)
−j(0)+k, k ∈ Z | J(n− 1) = j0

)

= D
(

Ln−1, µn−1

)

(3.14)

(where j0 is also written as j(0) for typographical convenience). Also (see step 2.4(B)),
the distribution D(Ln−1, µn−1) on RZ is invariant under a shift of the indices by (any
multiple of) Ln−1. Hence by (3.14),

L
(

X
(n−1)
−j+k , k ∈ Z | J(n− 1) = j0

)

= D
(

Ln−1, µn−1

)

.

Hence by (3.13),

L
(

X
(n−1)
−j+k , k ∈ Z | J(n) = j

)

= D
(

Ln−1, µn−1

)

. (3.15)
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Referring to step 2.2(d), consider the following three classes of random vectors for
K ∈ Z:

ζ ′K :=
(

X
(n−1)
k : −j +KLn−1 ≤ k ≤ −j +KLn−1 + Ln−1 − 1

)

,

ζ ′′K :=
(

X
(n−1)
k : −j +KLn ≤ k ≤ −j +KLn + Ln − 1

)

,

ζ ′′′K :=
(

X
(n)
k : −j +KLn ≤ k ≤ −j +KLn + Ln − 1

)

.

Referring to (2.4), note that for each K ∈ Z, ζ ′′K =
〈

ζ ′LK | ζ ′LK+1 | ζ ′LK+2 | · · · | ζ ′LK+L−1

〉

.
Also, by (3.9)–(3.10) (and the inclusion {J(n) = j} ⊂ {J(n − 1) = j0} from (3.8)),
for each K ∈ Z, either (if K 6= 0, or K = 0 and j > j0) ζ ′′′K (ω) = ψL↑(n−1),0(ζ ′′K(ω))
for all ω ∈ {J(n) = j}, or (if K = 0 and j = j0) ζ ′′′K (ω) = ψL↑(n−1),1(ζ ′′K(ω)) for all
ω ∈ {J(n) = j}. Now by (3.15) and step 2.4(B), conditional on the event {J(n) = j}, the
random vectors ζ ′K , K ∈ Z are independent and have distribution µn−1. Hence conditional
on {J(n) = j}, the random vectors ζ ′′K , K ∈ Z are independent. Hence by step 3.1 and
Lemma 2.8(B), conditional on {J(n) = j}, the random vectors ζ ′′′K , K ∈ Z are independent
and have distribution µn. Thus by step 2.4(B), eq. (3.12) holds for our given n and j. Since
j ∈ {0, 1, . . . , Ln − 1} was arbitrary, that completes the induction step and the proof.

Lemma 3.6. For each n ∈ N, the random sequence X(n) is strictly stationary and satisfies

L(X
(n)
0 ) = λunps3 (see step 2.4(A)) and (L− 1)–tuplewise independence, and the random

variables |X
(n)
k |, k ∈ Z are independent.

Proof. Let n ∈ N be arbitrary but fixed.
To prove strict stationarity, let ζ := (ζk, k ∈ Z) be a random sequence such that

(see step 2.4(B)) L(ζ) = D(Ln, µn). For each i ∈ Z, define the probability measure ηi on
RZ by ηi := L(ζi+k, k ∈ Z). Then η0 = D(Ln, µn), and from step 2.4(B) one has the

“periodicity” ηi+L↑n = ηi for i ∈ Z. By Lemma 3.5, if j ∈ {0, 1, . . . , Ln−1} then L(X
(n)
−j+k,

k ∈ Z | J(n) = j) = η0, and if also i ∈ Z then L(X
(n)
−j+k+i, k ∈ Z | J(n) = j) = ηi. Hence

by step 3.3 (its Remark 1) and a simple calculation, for any i ∈ Z,

L
(

X
(n)
i+k, k ∈ Z

)

= L−n ·

(L↑n)−1
∑

j=0

L
(

X
(n)
i+k, k ∈ Z | J(n) = j

)

= L−n ·

(L↑n)−1
∑

j=0

L
(

X
(n)
−j+k+i+j , k ∈ Z | J(n) = j

)

= L−n ·

(L↑n)−1
∑

j=0

ηi+j = L−n ·

(L↑n)−1
∑

u=0

ηu

where the last equality comes from the “periodicity” mentioned above. The last expression
does not depend on i. Hence the sequence X(n) is strictly stationary.

Next, by Lemma 3.5, step 3.1 (its Remark), Definition 2.6(b)(c)(d), and step 2.4(B)
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(and where necessary a trivial extra argument), one has the following observations: First,

L
(

X
(n)
0

)

= L−n ·

(L↑n)−1
∑

j=0

L
(

X
(n)
0 | J(n) = j

)

= L−n ·

(L↑n)−1
∑

j=0

λunps3 = λunps3.

Second, if k(1), k(2), . . . , k(L − 1) are any choice of L − 1 distinct integers, then (with a
notation at the end of step 2.4(A))

L
(

X
(n)
k(1), X

(n)
k(2), . . . , X

(n)
k(L−1)

)

= L−n ·

(L↑n)−1
∑

j=0

L
(

X
(n)
k(1), X

(n)
k(2), . . . , X

(n)
k(L−1) | J(n) = j

)

= L−n ·

(L↑n)−1
∑

j=0

λ
[L−1]
unps3 = λ

[L−1]
unps3 ;

and hence the sequence X(n) satisfies (L−1)–tuplewise independence. Third, by a similar

argument, the random variables |X
(n)
k |, k ∈ Z are independent. The proof of Lemma 3.6

is complete.

Lemma 3.7. Suppose h and m are positive integers such that m ≤ h. Suppose p is a
positive integer such that p ≥ 2Lm. Then (recall the sentence preceding Lemma 3.2)

E

[

p
∑

k=1

X
(h)
k

]L

≤ E
[

p1/2Z
]L

− 2−L · L! · L(m−1)L/2. (3.16)

Proof. By Lemma 3.5 and Lemma 3.2, for each j ∈ {0, 1, . . . , Lh − 1},

E





[

p
∑

k=1

X
(h)
k

]L
∣

∣

∣

∣

J(n) = j



 ≤ [RHS of (3.16)].

Hence by step 3.3 (its Remark 1) and a trivial calculation, (3.16) holds.

Lemma 3.8. There exists an event G with P (G) = 1 such that the following holds: For
every ω ∈ G and every k ∈ Z, there exists a positive integer m = m(ω, k) such that

∀ n ≥ m, X
(n)
k (ω) = X

(m)
k (ω). (3.17)

Proof. First some preliminary calculations will be useful.
Suppose ω ∈ Ω, n ≥ 1, and J(n)(ω) = J(n − 1)(ω). Then by (3.9) and step 2.3(C),

X
(n)
k (ω) = X

(n−1)
k (ω) will hold for all k ∈ Z such that −J(n)(ω) ≤ k ≤ −J(n)(ω)+Ln−1
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with the possible exception of the indices k such that −J(n)(ω)+Ln−1 ≤ k ≤ −J(n)(ω)+

2Ln−1 − 1. Thus (if J(n)(ω) = J(n− 1)(ω)) X
(n)
k (ω) = X

(n−1)
k (ω) will hold for all k such

that −J(n)(ω) ≤ k ≤ −J(n)(ω) + Ln−1 − 1, that is, for all k such that

−J(n− 1)(ω) ≤ k ≤ −J(n− 1)(ω) + Ln−1 − 1. (3.18)

Now suppose ω ∈ Ω, n ≥ 1, and (instead) J(n)(ω) > J(n − 1)(ω). Then by (3.5),
J(n)(ω) ≥ J(n− 1)(ω) + Ln−1 and hence −J(n)(ω) + Ln−1 ≤ −J(n− 1)(ω); and also by

(3.9) and step 2.3(C), X
(n)
k (ω) = X

(n−1)
k (ω) will hold for (at least) all integers k such that

−J(n)(ω) +Ln−1 ≤ k ≤ −J(n)(ω) +Ln − 1, and in particular (see also the last inequality
in (3.6)) for all integers k such that (3.18) holds.

By the preceding two paragraphs, one has that if ω ∈ Ω and n ≥ 1, then X
(n)
k (ω) =

X
(n−1)
k (ω) for all integers k such that (3.18) holds.

Hence by (3.6) and induction, one has that if ω ∈ Ω, n ≥ 1, and k satisfies (3.18),

then X
(n−1)
k (ω) = X

(n)
k (ω) = X

(n+1)
k (ω) = X

(n+2)
k (ω) = . . . .

Now define the event G by

G := {1 ≤ κn ≤ L− 2 for infinitely many n ∈ N}.

By (2.1) and step 3.3, P (1 ≤ κn ≤ L − 2) ≥ 2/3 for each n ∈ N, and hence by step 3.3
and the (second) Borel–Cantelli Lemma, P (G) = 1. Also, for each ω ∈ G, [LHS of (3.18)]
−→ −∞ and [RHS of (3.18)] −→ ∞ as n → ∞ by (3.7). Hence for every ω ∈ G and
every k ∈ Z, there exists n ∈ N such that (3.18) holds. Hence by the observation in the
preceding paragraph, Lemma 3.8 holds.

Step 3.9. Define the sequence X := (Xk, k ∈ Z) of random variables as follows: For each
k ∈ Z,

Xk := lim
n→∞

X
(n)
k . (3.19)

By Lemma 3.8, for each k ∈ Z, this limit exists almost surely.

Step 3.10. The task now is to show that the sequence X defined in (3.19) has all of the
properties stated in Theorem 1.1.

Suppose p is a positive integer and k(1), k(2), . . . , k(p) are distinct elements of Z. By

(3.19), for any p–tuple (t1, t2, . . . , tp) ∈ Rp, one has that
∑p

i=1 tiX
(n)
k(i) −→

∑p
i=1 tiXk(i)

a.s. as n→ ∞. Hence by [1, p. 330, Theorem 25.2, and p. 383, Theorem 29.4],

L
(

X
(n)
k(1), X

(n)
k(2), . . . , X

(n)
k(p)

)

=⇒ L
(

Xk(1), Xk(2), . . . , Xk(p)

)

as n→ ∞ (3.20)

(weak convergence on Rp). Recall the elementary fact that for weak convergence on Rp,
the limiting distribution is unique.

For a given j ∈ Z and a given m ∈ N, one has that

L
(

X
(n)
j+1, X

(n)
j+2, . . . , X

(n)
j+m

)

= L
(

X
(n)
1 , X

(n)
2 , . . . , X(n)

m

)
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for each n ≥ 1 by Lemma 3.6, and hence by (3.20) one has that

L (Xj+1, Xj+2, . . . , Xj+m) = L (X1, X2, . . . , Xm) .

Hence the sequence X is strictly stationary.

Since L(X
(n)
0 ) = λunps3 for each n ∈ N by Lemma 3.6, it follows from (3.20) that

L(X0) = λunps3. Thus property (A) in Theorem 1.1 holds.

In the case p = L − 1, the left side of (3.20) is λ
[L−1]
unps3 for each n ∈ N by Lemma

3.6 (see the end of step 2.4(A)), and hence the right side of (3.20) is also λ
[L−1]
unps3. Thus

property (B) (here (L− 1)–tuplewise independence) in Theorem 1.1 holds (see step 2.1).
Property (C) in Theorem 1.1 holds by a similar argument involving Lemma 3.6 and

eq. (3.20) with p arbitrarily large.

Step 3.11. The final task is to prove property (D) in Theorem 1.1. Recall the notations
for partial sums in eq. (1.1).

By property (A) (proved above) in Theorem 1.1, and a routine calculation, EX0 = 0,
EX2

0 = 1, and EX4
0 = 9/5. Recall eq. (2.1) and the property of (L − 1)–tuplewise

independence (proved above) for the sequence X . One has that

∀n ≥ 1, E
(

n−1/2S(X, n)
)

= 0 and (3.21)

∀n ≥ 1, E
(

n−1/2S(X, n)
)2

= 1. (3.22)

Further, by the well known, elementary calculation in [1, p. 85, proof of Theorem 6.1]
(which requires only 4–tuplewise independence), one has that for each n ∈ N,

E(S(X, n))4 = n ·EX4
0 + 3n(n− 1)(EX2

0)2

= n · (9/5) + (3n2 − 3n) · 1 ≤ 3n2.

Hence

∀n ≥ 1, E
(

n−1/2S(X, n)
)4

≤ 3. (3.23)

By (say) (3.22) and Chebyshev’s inequality, the family of distributions of the normalized
partial sums n−1/2S(X, n), n ∈ N is tight.

Now for the proof of property (D) in Theorem 1.1, suppose Q is an infinite subset of
N. Because of tightness, there exists an infinite set T ⊂ Q and a probability measure µ
on R (both T and µ henceforth fixed) such that

n−1/2S(X, n) =⇒ µ as n→ ∞, n ∈ T . (3.24)

To complete the proof of property (D) in Theorem 1.1, our task now is to show that µ is
neither degenerate nor normal.

Because of (3.23), (3.24), and [1, p. 338, the Corollary], one has by (3.21) and (3.22)
that

∫

x∈R

xµ(dx) = 0 and

∫

x∈R

x2µ(dx) = 1. (3.25)

23



Hence the probability measure µ has positive variance and is therefore nondegenerate.
If µ were normal, then by (3.25) it would have to be the N(0, 1) distribution. Because

of (3.24) and [1, p. 334, Corollary 1, and p. 338, Theorem 25.11], to show that µ fails to
be normal, it now suffices to show (see the sentence preceding Lemma 3.2) that

∀n ≥ 2L, E
(

n−1/2S(X, n)
)L

≤ EZL − 8−L/2 · L! · L−L. (3.26)

Let M ≥ 2L be arbitrary but fixed. Let m ∈ N be the integer such that

2Lm ≤M < 2Lm+1. (3.27)

By (3.27) and Lemma 3.7, for all n ≥ m,

E
[

S(X(n),M)
]L

≤ E
[

M1/2Z
]L

− 2−L · L! · L(m−1)L/2. (3.28)

Now for each n ∈ N, [S(X(n),M)]L ≤ [31/2M ]L a.s. (since |X
(n)
k | ≤ 31/2 a.s. for each

k ∈ Z by Lemma 3.6), and hence by (3.19) and dominated convergence, E[S(X(n),M)]L →
E[S(X,M)]L as n→ ∞. Hence by (3.28),

E[S(X,M)]L ≤ E[M1/2Z]L − 2−L · L! · L(m−1)L/2.

(That also follows simply from Fatou’s Lemma.) Hence by the second inequality in (3.27),

E
[

M−1/2S(X,M)
]L

≤ EZL − 2−L · L! · L(m−1)L/2 ·M−L/2

≤ EZL − 2−L · L! · L(m−1)L/2 · (2Lm+1)−L/2

= EZL − 2−3L/2 · L! · L−L.

Since M ≥ 2L was arbitrary, eq. (3.26) holds. That completes the proof that µ is non-
normal, and that property (D) in Theorem 1.1 holds. The proof of Theorem 1.1 is complete.
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