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Summary. A sequence of random variables X1;X2;X3; . . . is said to be
N -tuplewise independent if Xi1 ;Xi2 ; . . . ;XiN are independent whenever
�i1; i2; . . . ; iN � is an N -tuple of distinct positive integers. For any ®xed
N 2 Z�, we construct a sequence of bounded identically distributed
N -tuplewise independent random variables which fail to satisfy the
central limit theorem.

Mathematics Subject Classi®cation (1991): 60F0S

Fix N 2 Z�. A sequence X1;X2;X3; . . . of random variables is said to
be N -tuplewise independent if Xi1 ;Xi2 ; . . . ;XiN are independent when-
ever i1; i2; . . . ; iN are distinct indices. Every sequence of random vari-
ables is 1-tuplewise independent. The concepts of 2-tuplewise and
4-tuplewise independence are usually referred to as pairwise and qua-
druplewise independence, respectively.

Janson [4] and Bradley [1] have constructed sequences of identically
distributed bounded pairwise independent random variables which fail
to satisfy the central limit theorem. Professor Dominik Szynal has
asked the author whether quadruplewise independent random variables
necessarily satisfy the central limit theorem. Some positive evidence
might be provided by Szynal's result [6] that although the Hsu-Rob-
bins law of large numbers [3] fails for pairwise independent random
variables, it does hold for quadruplewise independent random vari-
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ables. However, as we shall show, there is no central limit theorem for
quadruplewise independent random variables, and indeed for no
choice of N is there a central limit theorem for N -tuplewise indepen-
dent random variables.

Recall that a random variable N is said to be symmetric if N and ÿN
both have the same distribution. Our main result is then as follows.

Theorem. Fix N 2 Z� and let N be an arbitrary symmetric random
variable with a ®nite second moment. Assume P �N 6� 0� > 0. Then there
exists a sequence X1;X2;X3; . . . of identically distributed N -tuplewise
independent random variables which have the same distribution as N but
which are such that nÿ1=2�X1 � � � � � Xn� does not converge in distribu-
tion to a normal random variable, and hence X1;X2;X3; . . . do not satisfy
the central limit theorem.

Moreover, we may choose this sequence so that jX1j; jX2j; jX3j; . . . are
independent.

The proof of the Theorem will give an explicit construction of the
sequence fXng.

Letting N be a variable taking on the values 1 and ÿ1 with prob-
ability 1

2 each, we can obtain a two-state bounded identically distrib-
uted N -tuplewise independent sequence of random variables failing to
satisfy the central limit theorem.

Remark 1. Note that unlike the examples of Janson [4] and Bradley
[1] which produced strictly stationary sequences, our example is not a
strictly stationary sequence and the author does not know whether a
strictly stationary N -tuplewise (or even quadruplewise or triplewise)
independent counterexample to the central limit theorem is possible.
One can adapt the counterexample given in the present paper to show
that there is no Barry-Esseen type inequality for strictly stationary
sequences of N -tuplewise independent random variables, and in fact
that convergence rates in the central limit theorem in this setting can be
arbitrarily slow.However, the author has not succeeded in constructing
a strictly stationary and N -tuplewise independent sequence (for N � 3)
which would actually fail to satisfy the central limit theorem.

Suppose X1;X2;X3; . . . is a pairwise independent sequence of iden-
tically distributed random variables with ®nite second moments. It
follows from [5, Corollary 1] that X1;X2;X3; . . . satisfy the central limit
theorem if and only if for all real t we have

nÿ1=2
Xn

k�1
E Xke

itnÿ1=2Snk

h i
! 0 as n ! 1 ; �1�
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where Snk � �
Pn

j�1 Xj� ÿ Xk. Thus, one approach to trying to prove
the central limit theorem in the strictly stationary and quadruplewise
independent case would be to try to prove that in that case (1) must
hold. However, it is not at all clear how this could be done.

Remark 2. If in addition to pairwise independence one assumes that
the random variables are jointly symmetric, i.e., that all ®nite-dimen-
sional distributions remain unchanged whenever any subset of the
random variables are multiplied by ÿ1, then a central limit theorem
does hold. In the identically distributed case this was shown by Hong
[2], while Pruss and Szynal [5] have shown this in general under
Lindeberg's condition. (Note that given joint symmetry, (1) is trivial
since every term in the summation in it must vanish.)

Remark 3. Janson [4, p. 448, Remark 6] notes that if a1; a2; . . . ; aN are
independent random variables uniformly distributed on �0; 1�, and

Xn � e2pi a1�a2n�a3n2����aN nNÿ1� � ;
then the fXng1n�1 are an N -tuplewise independent sequence. Partial
sums of this sequence have been heavily studied in number theory (see,
e.g., Vinogradov's book [7, 8]). It is apparently still an open question
whether this sequence of Xn satis®es the central limit theorem, at least
if N � 3. If N � 2, then the answer is negative [4]. To settle the
question is of course equivalent to checking whether (1) holds for the
above Xn if N � 3.

Remark 4. It is still not known whether a law of the iterated loga-
rithm holds for N -tuplewise independent random variables, at least
for N � 3. If N � 2, then the answer is negative as can be seen by
using Janson's example [4].

The rest of the paper is devoted to the proof of our Theorem.
We require two crucial lemmas. Fix N � 1. Given �x1; . . . ; xN�1� 2

RN�1, if one of x1; . . . ; xN�1 vanishes then let s�x1; . . . ; xN�1� � 1.
Otherwise, put

s x1; . . . ; xN�1� � � �ÿ1�m ;
where

m � Cardfi : xi < 0; 1 � i � N � 1g :
Then the sequence

x1; . . . ; xN ; s x1; . . . ; xN�1� �xN�1

always either contains a zero or else has an even number of negative
entries.
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Lemma 1. Fix N � 2. Let Y1; . . . ; YN�1 be independent identically dis-
tributed normal random variables with mean zero and variance r2 > 0.
Then,

Y1 � � � � � YN � s Y1; . . . ; YN�1� �YN�1

does not have a normal distribution.

To prove this, we shall use the following lemma which also pro-
vides the basis of our construction of a sequence of N -tuplewise in-
dependent random variables.

Lemma 2. Fix N and K in Z�. Let fYigi2I be a collection of independent
identically distributed symmetric random variables, with
Card I � �N � 1�K. Let A1; . . . ;AN�1 be a partition of I into N � 1
disjoint sets of K elements each. Put

Tj �
X
i2Aj

Yi ;

and let

s � s T1; . . . ; TN�1� � :
For i 2 SN

j�1 Aj, let Y 0i � Yi, and for i 2 AN�1, let Y 0i � sYi. Then, fY 0i gi2I
is a collection of N -tuplewise independent and identically distributed
random variables with the same distribution as the Yi.

Proof of Lemma 2. For conciseness, write �n� � f1; 2; . . . ; ng. Without
loss of generality, suppose that I � �N � 1� � �K� and Ai � fig � �K�
for all i 2 �N � 1�. Use � to denote equality in (joint) distribution (for
vector valued random variables).

De®ne the vector-valued random variables Yi � �Y�i;1�; Y�i;2�; . . . ;
Y�i;K�� and Y0i � �Y 0�i;1�; Y 0�i;2�; . . . ; Y 0�i;K��. I claim that the sequence
Y01; . . . ;Y0N�1 is exchangeable, i.e.,

Y01; . . . ;Y0N�1
ÿ � � Y0p�1�; . . . ;Y0p�N�1�

� �
for all permutations p of �N � 1�.

Assume for now that the exchangeability has been proved. Let
a1; . . . ; aN 2 I be distinct indices. Then, since the Ai are disjoint, there
exists a k 2 �N � 1� such that none of the ai (for i 2 �N �) is in Ak. If
k � N � 1, then it follows that �Y 0a1 ; . . . ; Y 0aN

� and �Ya1 ; . . . ; YaN � coin-
cide. Since the latter is a sequence of independent identically distrib-
uted random variables with the same distribution as the Yi, the proof
is then complete. Suppose now k 6� N � 1. Let p be a permutation of
�N � 1� exchanging k and N � 1 and let q�i; j� � �p�i�; j�. Then, the
exchangeability of Y01; . . . ;Y0N�1 implies that
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Y 0a1 ; . . . ; Y 0aN

� �
� Y 0q�a1�; . . . ; Y 0q�aN �
� �

: �2�
But by choice of q and k, we have fq�a1�; . . . ; q�aN �g \ AN�1 � ;.
Thus, �Y 0q�a1�; . . . ; Y 0q�aN �� coincides with �Yq�a1�; . . . ; Yq�aN �� by de®nition
of the Y 0i . But �Yq�a1�; . . . ; Yq�aN �� is a sequence of independent iden-
tically distributed random variables with the same distribution as the
Yi, and so the left hand side of (2) must also be such a sequence, which
completes the proof.

It su�ces to prove the exchangeability of Y01; . . . ;Y0N�1. Since
Y01; . . . ;Y0N is an exchangeable sequence (being independent and
identically distributed, since it coincides with Y1; . . . ;YN ), it in fact
su�ces to show that

Y01; . . . ;Y0Nÿ1;Y
0
N ;Y

0
N�1

ÿ � � Y01; . . . ;Y0Nÿ1;Y
0
N�1;Y

0
N

ÿ �
:

Fix Borel sets U1; . . . ;UN�1 in RK . Since Y0i � Yi for i < N � 1, what
we must show is that

P A;YN 2 UN ;Y
0
N�1 2 UN�1

ÿ � � P A;Y0N�1 2 UN ;YN 2 UN�1
ÿ �

; �3�
where A � TNÿ1

i�1 fYi 2 Uig if N > 1 and where A is the whole proba-
bility space if N � 1. Write t�x; y� � s�T1; . . . ; TNÿ1; x; y� for real x and
y. Note that Y0N�1 � t�TN ; TN�1�YN�1. We thus have

P A;YN 2 UN ;Y
0
N�1 2 UN�1; t TN ; TN�1� � � 1

ÿ �
� P A;YN 2 UN ;YN�1 2 UN�1; t TN ; TN�1� � � 1� �
� P A;YN�1 2 UN ;YN 2 UN�1; t TN ; TN�1� � � 1� �
� P A;Y0N�1 2 UN ;YN 2 UN�1; t TN ; TN�1� � � 1

ÿ �
; �4�

where the middle equality used the fact that Y1; . . . ;YN�1 are ex-
changeable (being independent and identically distributed). On the
other hand,

P A;YN 2 UN ;Y
0
N�1 2 UN�1; t TN ; TN�1� � � ÿ1ÿ �

� P A;YN 2 UN ;ÿYN�1 2 UN�1; t TN ; TN�1� � � ÿ1� �
� P A;YN 2 UN ;YN�1 2 UN�1; t TN ;ÿTN�1� � � ÿ1� �
� P A;YN�1 2 UN ;YN 2 UN�1; t TN�1;ÿTN� � � ÿ1� �
� P A;YN�1 2 UN ;YN 2 UN�1; t ÿTN�1; TN� � � ÿ1� �
� P A;ÿYN�1 2 UN ;YN 2 UN�1; t TN�1; TN� � � ÿ1� �
� P A;Y0N�1 2 UN ;YN 2 UN�1; t TN ; TN�1� � � ÿ1ÿ �

: �5�
Here, the ®rst and last equalities used the identity Y0N�1 � t�TN ;
TN�1�YN�1 (the last equality also used the fact that t�x; y� � t�y; x�);
the second equality used the symmetry of the random variables which
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ensures that replacing the vector YN�1 with ÿYN�1 (while remem-
bering to simultaneously replace its sum TN�1 with ÿTN�1) will not
change any joint distributions; the third equality used the fact that by
independence and identical distribution, if we exchange the vectors YN

and YN�1 (while remembering to simultaneously exchange their sums
TN and TN�1), then no joint distributions will change; the fourth
equality used the identity t�x;ÿy� � t�ÿx; y�; the ®fth equality once
again used symmetry of distributions exactly as in the second equality.

Since t�TN ; TN�1� takes on only the values 1 and ÿ1, by adding up
(4) and (5) we obtain (3), as desired. (

Proof of Lemma 1. Put Y 0i � Yi for i � 1; . . . ;N and de®ne

Y 0N�1 � s Y1; . . . ; YN�1� �YN�1 :

Let T � Y1 � � � � � YN�1 and set T 0 � Y 01 � � � � � Y 0N�1. Put I � f1; . . . ;
N � 1g and set Aj � fjg for 1 � j � N � 1. By Lemma 2, the random
variables Y 01; . . . ; Y 0N�1 are N -tuplewise independent and identically
distributed with the same distribution as Y1. Since in particular they
are pairwise independent, we have

Var T 0 �
XN�1
i�1

Var Y 0i �
XN�1
i�1

Var Yi � Var T :

Moreover E�T 0� � E�T � � 0. Evidently T is a normal random variable.
Hence, if T 0 is also a normal random variable, it must have the same
distribution as T since it has the same variance and mean. But I claim
that

E
��T 0�N�1� 6� E T N�1� �

: �6�
From this claim it follows that T 0 does not have the same distribution
as T and hence is not normal. To prove the claim, proceed as follows.
We may write

x1 � � � � � xN�1� �N�1� / x1; . . . ; xN�1� � � �N � 1�! �
YN�1
i�1

xi ;

for any real numbers x1; . . . ; xN�1, where / is a symmetric polynomial
with the property that each term of /�x1; . . . ; xN�1� depends on at
most N of the variables x1; . . . ; xN�1. But

E / Y1; . . . ; YN�1� �� � � E / Y 01; . . . ; Y 0N�1
ÿ �� �

since Y 01; . . . ; Y 0N�1 are N -tuplewise independent and identically dis-
tributed so that the joint distributions of any k of the variables
Y 01; . . . ; Y 0N�1 for k � N are the same as the joint distributions of any k
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of the variables Y1; . . . ; YN�1, and since each term in the polynomial /
depends on at most N of the variables. Thus,

E �T 0�N�1 ÿ T N�1
h i

� �N � 1�! � E
YN�1
i�1

Y 0i ÿ
YN�1
i�1

Yi

" #
: �7�

But s�Y1; . . . ; YN � was chosen in such a way that the list

Y1; . . . ; YN ; s Y1; . . . ; YN� �YN�1

either contains a zero or else has an even number of negative entries,
so that YN�1

i�1
Y 0i � 0 :

Since jY 0i j � jYij for all i, it follows that

E
YN�1
i�1

Y 0i

" #
� E

YN�1
i�1

Yi

�����
�����

" #
> 0 : �8�

On the other hand,

E
YN�1
i�1

Yi

" #
�
YN�1
i�1

E�Yi� � 0 ; �9�

by independence. From (7), (8) and (9) we immediately obtain (6) as
desired. (

We may now prove our Theorem.

Proof of Theorem. Fix N 2 Z�. Replacing N by max�N ; 2�, we may
assume that N � 2. Let ak be a sequence of positive integers such that

lim
k!1

a1 � � � � � ak

ak�1
� 0 : �10�

For instance, one could let ak � 22
k
.

Set

bk � 1� �N � 1�
Xkÿ1
j�1

ak ;

for k 2 Z�. Note that bk�1 ÿ bk � �N � 1�ak. Let N1;N2; . . . be a se-
quence of independent identically distributed random variables with
the same distribution as N. Let

Ik � fbk; bk � 1; . . . ; bk�1 ÿ 1g :
We shall now de®ne Xn when n 2 Ik. Fix k 2 Z�. Let Ak;1; . . . ;Ak;N�1
be a partition of Ik into N � 1 disjoint sets of ak elements each. Put
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Tk;j �
X
i2Ak;j

Ni ;

for 1 � j � N � 1. Let

sk � s Tk;1; . . . ; Tk;N�1
ÿ �

;

in the notation of the lemmas. Fix n such that bk � n < bk�1. De®ne

Xn � skNn if n 2 Ak;N�1
Nn otherwise

�
:

We now prove that X1;X2; . . . is an N -tuplewise independent and
identically distributed sequence. Let Gk be the r-®eld generated by
fXigi2Ik

. Then G1;G2; . . . are independent r-®elds. Therefore, it su�ces
for us to prove that the fXigi2Ik

are N -tuplewise independent and
identically distributed with the same distribution as N for each ®xed k.
But to see this, we only have to let I � Ik, de®ne Yi � Ni for i 2 I, set
Aj � Ak;j for j � 1; . . . ;N � 1, and apply Lemma 2.

Therefore X1;X2; . . . is indeed an N -tuplewise independent and
identically distributed sequence. We must now show that the nor-
malized partial sums of the Xi do not converge in distribution to a
normal random variable. To see this, let

Zk � 1���������������������N � 1�ak
p Xbk�1ÿ1

i�bk

Xi :

and

Wk � 1�����������������
bk�1 ÿ 1
p

Xbk�1ÿ1

i�1
Xi :

Now,

E
Xbkÿ1

i�1
Xi

 !224 35 � E
Xbkÿ1

i�1
X 2

i

" #
� �bk ÿ 1�r2 ; �11�

because the Xi are pairwise independent (as they are N -tuplewise in-
dependent for some N � 2) with mean zero, and where r2 � VarN. It
follows that

1�����������������
bk�1 ÿ 1
p

Xbkÿ1

i�1
Xi

converges to zero in L2 as k !1 since bk=�bk�1 ÿ 1� ! 0 by (10).
Moreover, by (11) we have Wk uniformly bounded in L2-norm while
(10) implies that �N � 1�ak=bk�1 ! 1. Therefore,
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Zk ÿ Wk ! 0

in L2. Thus, if Wk converges in distribution to a normal random
variable, so does Zk. Therefore it su�ces for us to show that Zk fails to
converge to a normal random variable.

Now,

Zk � 1���������������������N � 1�ak
p skTk;N�1 �

XN

j�1
Tk;j

 !
:

But Tk;j is a sum of ak independent copies of N1 and hence, by the
classical central limit theorem for independent identically distributed
random variables, aÿ1=2k Tk;j converges in distribution to a normal
random variable with mean zero and variance r2 as k ! 1 for each
®xed j 2 f1; . . . ;N � 1g. Let Y1; . . . ; YN�1 be independent normal
random variables with mean zero and variance r2. As can be easily
veri®ed,

1�����
ak
p skTk;N�1 �

XN

j�1
Tk;N

 !
then converges in distribution to

s Y1; . . . ; YN�1� �YN�1 �
XN

j�1
Yj ; �12�

as k ! 1. But by Lemma 1, the distribution of (12) is not normal,
and hence Zk cannot converge to a normal distribution as k ! 1.

Moreover, we have jXnj � jNnj almost surely for each n, and since
the Nn are independent it follows that jX1j; jX2j; jX3j; . . . are indepen-
dent. (
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