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This expository paper provides accessible derivations of “the various inequalities collectively known as
Chernoff bounds.” These are bounds on the probability that a sum of independent random 0-1 indicator
variables will take a value arbitrarily far from its expected value. Intuitively we can think of this as the
probability of tossing a fair coin 100 times and producing only 10 heads (or 90 heads). The paper gives
bounds in several different forms, under varying assumptions (that the variables are iid, for example), but
the most general bound is that for any S = X1 + X2 + ⋅ ⋅ ⋅ + Xn where the Xi are independent random 0-1
variables (not necessarily identically distributed, so each Xi is 1 with probability pi and 0 otherwise), then

ℙ(S ≥ (1 + ")m) ≤ e−"2m/3, where m = p1 + p2 + ⋅ ⋅ ⋅ + pn is the expected value of S. In other words, the
probability of a sum of random variables being greater by some distance " than its expected value decreases
exponentially as the mean, which correlates roughly with the number of trials, increases (the paper also gives
analagous results for the lower tail). This is a much stronger constraint than that given by, for example,
Chebyshev’s inequality, which though more generally applicable only guarantees a polynomial decrease.

The derivation works in part by writing ℙ(S ≥ (1 + ")m) in terms of the moment generating function of

S, using Markov’s inequality (ℙ(X ≥ a) ≤ E[X]
a ) to derive ℙ(S ≥ (1 + ")m) ≤ e−t(1+")mE[etS ]. This general

bound holds no matter how S is distributed; if we then use the fact that S is a sum of random indicator
variables to calculate E[etS ] = em(et−1), and take t = ln(1 + "), we can derive the particular bound given
above.

One application of these bounds is in computer science, in the analysis of probabilistic algorithms.
Suppose we have an algorithm for some decision problem (i.e., the algorithm produces a “yes” or “no”
answer) which gives a correct answer only slightly more than half of the time. We expect that if we run the
algorithm many, many, times, it will become increasingly likely that the most common answer is in fact the
correct answer. The Chernoff bound tells us that as long as the probability of an incorrect answer is less
than 1

2 on any particular trial, then the probability that the majority of trials will give incorrect answers
decreases exponentially with the number of trials. We can use this to calculate the number of times we
would need to run the algorithm to have an arbitrary degree of confidence in the result.
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