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Introduction to the Pythagorean Won—-Loss Theorem J




Goals of the Talk

@ Give derivation Pythagorean Won-Loss formula.

@ Observe ideas / techniques of modeling.

@ See how advanced theory enters in simple problems.
@ Opportunities from inefficiencies.

@ Xtra: further avenues for research for students.




Goals of the Talk

@ Give derivation Pythagorean Won-Loss formula.

@ Observe ideas / techniques of modeling.

@ See how advanced theory enters in simple problems.
@ Opportunities from inefficiencies.

@ Xtra: further avenues for research for students.

GO SOX!

¢




Intro
°

Baseball Review

Goal is to go from




Intro

Baseball Review




Intro

Baseball Review




Baseball Review




Intro

Baseball Review

SHOPPACH

\ g‘, 20I1 WITH RISP/2

2000

et | £ & .
e 0N T

| 5’

AL STRIKES  PCT. ‘ . BALLS STRIKES outs




Numerical Observation: Pythagorean Won—Loss Formula

Parameters
@ RS;s: average number of runs scored per game;
@ RAs: average number of runs allowed per game;
@ ~: some parameter, constant for a sport.

86 Yoars & Worth the Wait




Numerical Observation: Pythagorean Won—Loss Formula

Parameters
@ RS;s: average number of runs scored per game;
@ RAqws: average number of runs allowed per game;
@ ~: some parameter, constant for a sport.

James’ Won-Loss Formula (NUMERICAL

Observation)

#Wins RSs
#Games RS+ RA]

obs

Won — Loss Percentage =

~ originally taken as 2, numerical studies show best ~ for
baseball is about 1.82.




Intro

[e]e] o]

Pythagorean Won-Loss Formula: Example

James’ Won-Loss Formula

#Wins RS

obs

#Games RS} + RAJ.

Won — Loss Percentage =

Example (v = 1.82): In 2009 the Red Sox were 95-67.
They scored 872 runs and allowed 736, for a Pythagorean
prediction record of 93.4 wins and 68.6 losses; the
Yankees were 103-59 but predicted to be 95.2-66.8 (they
scored 915 runs and allowed 753).
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Pythagorean Won-Loss Formula: Example

James’ Won-Loss Formula

#Wins RS
#Games RS)s + RA L

Won — Loss Percentage =

Example (v = 1.82): In 2009 the Red Sox were 95-67.
They scored 872 runs and allowed 736, for a Pythagorean
prediction record of 93.4 wins and 68.6 losses; the
Yankees were 103-59 but predicted to be 95.2-66.8 (they
scored 915 runs and allowed 753).

2011: Red Sox ‘should’ be 95-67, Tampa ‘should’ be
92-70....
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Applications of the Pythagorean Won—-Loss Formula

@ Extrapolation: use half-way through season to predict
a team’s performance for rest of season.

@ Evaluation: see if consistently over-perform or
under-perform.

@ Advantage: Other statistics / formulas (run-differential
per game); this is easy to use, depends only on two
simple numbers for a team.
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Applications of the Pythagorean Won—-Loss Formula

@ Extrapolation: use half-way through season to predict
a team’s performance for rest of season.

@ Evaluation: see if consistently over-perform or
under-perform.

@ Advantage: Other statistics / formulas (run-differential
per game); this is easy to use, depends only on two
simple numbers for a team.

Red Sox: 2004 Predictions: May 1: 99 wins; June 1: 93
wins; July 1: 90 wins; August 1: 92 wins.
Finished season with 98 wins.
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Prob & Modeling
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Observed scoring distributions

Goal is to model observed scoring distributions; for
example, consider
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Probability Review

@ Let X be random variable with density p(x):
op(x)>0;
o [Z p(x)dx = 1;
o Prob(a < X <b) = [°p(x)dx.
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Probability Review
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@ Let X be random variable with density p(x):
o p(x) 2 0;
o [Z p(x)dx = 1;
o Prob(a < X <b :f

@ Mean = [ xp(x)dx.
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Probability Review

02 04 06 08 10

@ Let X be random variable with density p(x):
o p(x) 2 0;
o [Z p(x)dx = 1;
o Prob(a < X <b :fabp
@ Mean p = f (x)dx.
@ Variance o2 = f ~ (X — p)?p(x)dx.
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Probability Review

@ Let X be random variable with density p(x):
o p(x) > 0;
o [Z p(x)dx = 1;
o Prob(a < X <b) = [°p(x)dx.
@ Mean = [ xp(x)dx.
@ Variance o2 = [7_(x — p)?p(x)dx.
@ Independence: knowledge of one random variable
gives no knowledge of the other.
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Modeling the Real World

Guidelines for Modeling:

@ Model should capture key features of the system;
@ Model should be mathematically tractable (solvable).
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Modeling the Real World (cont)

Possible Model:

@ Runs Scored and Runs Allowed independent random
variables;

o frs(X), Ora(Y): probability density functions for runs
scored (allowed).
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Modeling the Real World (cont)

Possible Model:

@ Runs Scored and Runs Allowed independent random
variables;

o frs(X), Ora(Y): probability density functions for runs
scored (allowed).

Won-Loss formula follows from computing

/X ) [ /y SXfRs(X)gRA(y)dy} dx or i [ZfRs(i)gRA(J)]-

=0 j<i
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Problems with the Model

Reduced to calculating

/X {/ygx fRs(X)gRA(y)dy] dx or ; !j;fRS(i)gRA(j)] :

=0
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Problems with the Model

Reduced to calculating

| Uygxf“(x’gwy)dy] o > | Y tesli)onal)

=0 i=0 | j<i

Problems with the model:
@ What are explicit formulas for frs and gra?

@ Are the runs scored and allowed independent random
variables?

@ Can the integral (or sum) be computed in closed
form?
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Choices for frs and ggra

0.20+

0.15+

0.10

Uniform Distribution on [0, 10].
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Choices for frs and ggra
0.207
0.15:
0.10:

0.05

5 ‘ ‘ ‘ ‘ 10
Normal Distribution: mean 4, standard deviation 2.
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Choices for frs and ggra

1 2 3 4 5 6
Exponential Distribution: e™.
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Three Parameter Weibull

Weibull distribution:
1 (A8 T e (=) ifx > 3
0 otherwise.

f(x;a,8,7) = {

@ «: scale (variance: meters versus centimeters);
@ (. origin (mean: translation, zero point);
@ 7: shape (behavior near g and at infinity).

Various values give different shapes, but can we find
a, 3,7 such that it fits observed data? Is the Weibull

justifiable by some reasonable hypotheses?
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Weibull Plots: Parameters  (a, 3,7):

0] otherwise.

f(x;a,8,7) = {

Red:(1, 0, 1) (exponential); Green:(1, O, 2); Cyan:(1, 2, 2);
Blue(1, 2, 4)
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Three Parameter Weibull: Applications

1 (x=B\T o= ((x=B)/a)  ifx >
f(X;o,8,7) = - (55 —ﬁ.
0 otherwise.

Arises in many places, such as survival analysis.
@ ~ < 1: high infant mortality;
@ v = 1: constant failure rate;
@ v > 1: aging process.
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The Gamma Distribution and Weibulls

@ For s > 0, define the I'-function by

@ Generalizes factorial function: I'(n) = (n — 1)! for
n > 1 an integer.

A Weibull distribution with parameters «, 3, v has:
@ Mean: al (1+1/v)+ B.
@ Variance: o2l (1+2/7) — o2l (1 +1/7)°.
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Weibull Integrations

00 X — v-1
Hopry = /x~1( ﬁ) e~ ((x=A)/a)" gx
8 (6]
s

(6%
o0 _ _ 7-1
_ /ax .l(x 5) e~ (=Dl gy 1 .
8 (8% (8%

Change variables: u = (*£)”, so du = 2 (X;)%l dx and

fapry = aut7. e tMdu +
0

— a/ooeu ulJrl/’y d_U + 6
0 u
= al(1+1/9) + 8.

A similar calculation rmin he variance.
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The Pythagorean Theorem
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S@ANGINGs as of jJun Y|
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B4 v TB, W51

B4 @BOS, L1-5
B4@NYY, L1-5
Bidv TOR, W 51
Bid @ MIN, L 57

B4 v KC, W -4
Bidv BAL, WT7-5
64 @ TEX, W 15-9
B4 @ OAK, L 2-10
B/4 @ CWS, L 4-6

B/4 @ SEA, W 5-4
6/4 v DET, W 10-2
64 v CLE, L5915

x| awn x| peg

East W L PCT GB L10 STRK INT HOME ROAD XWL LAST GAME MEXT GAME

65 v TB, 8:05P

65 @ BOS, 6:05P
65 @ NYY, 1:05P
&/ v TOR, 1:05P
&/ @ MIN, 1:10P

65 v KC, 8:11P
65w BAL, 1:10P
&/5 @ TEX, 8:05P
&/6 v CLE, T:08P
&/5 @ CWs, 8:111P

68 @ OAK, 10:05P
878 w LAA, 10:05P
6/5 v CLE, 8:05P

Boston 7 25 597 - 64 Wz 30 235 14-20 36-26
Tampa Bay 35 24 583 05 64 L2 1-2 2410 11-14 32-27
Toronto 32 28 525 45 64 L1 21 151 17-18 34-27
New York 23 30 492 65 55 Wi 02 1513 1417 28-31
Baltimore 28 30 483 70 46 L1 21 171 1119 27-31
Chicago 32 26 552 - 64 W2 30 158 1717 34-24
Minnesota 31 28 525 15 73 W 12 1%15 12-13 2930
Cleveland 27 32 458 55 46 Wi 03 16-16 11-16 31-28
Detroit 24 35 407 B85S 37 L3 1-2 1214 1221 27-32
Kansas City 23 36 390 85 28 12 21 1218 11-20 23-36
Los Angeles 37 24 607 - 7-3 W5 21 1813 18-11 31-30
Oakland 33 27 550 35 84 Wi 1-2  20-13 13-14 35-25
Texas 30 31 492 70 55 L1 21 1514 1517 29-32
Seattle 21 33 35 155 37 L4 21 1418 7-20 24-38

Bid v LAM L 45

8/8 @ BOS, 7:05P

East W L PCT GB Li0 STRK INT HOME ROAD XWL LAST GAME NEXT GAME

Philadelphia as
Flerida 2z
New York n
Allanta N
‘Washington 24

[N
® oo o

i)
35

574

407

15
35
35
100

82
4-8
73
4-8
37

L1
w1
w2
L1
L2

12
1-2
20
21
1-2

2013
1812
17-1
24-8

1316

15-13
14-14
1317
721

118

36-25
28-28
30-28
35-25
23-38

Bidv CIN, LO-2
B4 @ ATL, W B-4
B4 @ SF, W53
64 v FLA, L4-6
B4 v STL, PFD

6/5 v CIN, 1:05P
65 @ ATL. T.00P
65 @ S0, 10:05P
6/5 v FLA, 7.00P
65w STL, T10P

Central W L PCT GB L0 STRK INT HOME ROAD XWL LASTGAME NEXT GAME
7 s
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Building Intuition: The log5 Method

Assume team A wins p percent of their games, and team
B wins g percent of their games. Which formula do you
think does a good job of predicting the probability that
team A beats team B?

p+pg p+pg
P+q+2pq° p-+q-—2pg
P — pq P —pq

P+dq+2pg° p+4q-—2pq
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Building intuition: A wins p percent, B wins ¢ percent

P+ pq P+ pq
P+aq+2pq’° p+9-—2pq
P —pq P —pq

P+d+2pg° p+9-2pqg
Consider special cases:
© Prob(A beats B) + Prob(B beats A) = 1.
Q@ If p = q then the probability A beats B is 50%.
© Ifp=1andq # 0,1 then A always beats B.
© Iip=0andq # 0,1 then A always loses to B.
@ Ifp>1/2andqg < 1/2 then Prob(A beats B) > p.
© Ifg=1/2prob Awinsisp (p = 1/2 the prob B wins is q).
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- . . .-y . . . pqu
Building intuition: Sketch of proof: ST

o - \o
:/ N :/ \.

Aloses A wins

@ A beats B has probability p(1 — q).
@ A and B do not have the same outcome has
probability p(1 — q) + (1 — p)q.

_ p(1-q) _ _b-pq
° Prob(A beats B) ~ p(1-9)+(1-p)a ~ p+g-2pq°

A
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RS}

~ obs ~
RS hsTRA gbs

obs

Pythagorean Won—Loss Formula:

Theorem: Pythagorean Won-Loss Formula (Miller '06)

Let the runs scored and allowed per game be two
independent random variables drawn from Weibull
distributions (ags, 5,7) and (agra, 5,7); ars and ara are
chosen so that the Weibull means are the observed
sample values RS and RA. If v > 0 then the Won-Loss

i (RS-B)7
Percentage Is RS=5) T (RA=F) "

A1
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7ngbs ~
RS +RAobs

obs

Pythagorean Won—Loss Formula:

Theorem: Pythagorean Won-Loss Formula (Miller '06)

Let the runs scored and allowed per game be two
independent random variables drawn from Weibull
distributions (ags, 5,7) and (agra, 5,7); ars and ara are
chosen so that the Weibull means are the observed
sample values RS and RA. If v > 0 then the Won-Loss

i (RS-B)7
Percentage Is RS=5) T (RA=F) "

Take p = —1/2 (since runs must be integers).

RS — 3 estimates average runs scored, RA — (5 estimates
average runs allowed.

Weibull with parameters («, 3, ) has mean

al (1+1/y)+ 6.

A
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Proof of the Pythagorean Won-Loss Formula

Let X and Y be independent random variables with Weibull
distributions (ars, 5,7) and (ara, 8,7) respectively. To have means of
RS — g and RA — 3 our calculations for the means imply

RS— RA — 3

BT M TS vl

We need only calculate the probability that X exceeds Y. We use the
integral of a probability density is 1.

AR
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Proof of the Pythagorean Won—Loss Formula (cont)

[e'e] X
Prob(X >Y) = / / f(x; ars, B8,7)f(Y; ara, 8,7)dy dx
x=8 Jy=p

A
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Proof of the Pythagorean Won—Loss Formula (cont)

[e'e] X
Prob(X >Y) = / / f(x; ars, B8,7)f(Y; ara, 8,7)dy dx
x=8 Jy=p

— /Oo /X N (X —6)7_1e(2R§)71 (y _B)V_leoawf)wdydx
B JB ORS \ OGRS QRA \ ORA

AT
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Proof of the Pythagorean Won—Loss Formula (cont)

[e'e] X
Prob(X >Y) = / / f(x; ars, B8,7)f(Y; ara, 8,7)dy dx
x=8 Jy=p
v—1 w_ g\ _ v—1 8\
/ / ( ) e () (y 5) e (52) dyax
QRS \ ORS QRA \ ORA
v-1 « \7 X y-1 y
:/ _r <L) e7<TRS) [/ 0 <L> e%ﬁ) dy] dx
x=0 QRS \ ORS y=0 ORA \ O'RA

AR
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Proof of the Pythagorean Won—Loss Formula (cont)

[e'e] X
Prob(X >Y) = / / f(x; ars, B8,7)f(Y; ara, 8,7)dy dx
x=8 Jy=p
v-1 cg\ 7 e\
L) 0 <y ) e o
QRS QRs QRA
v—1 5
=/ — <L () [ > e*<$) dy] dx
x=0 QRS \ ORS oOéRA QRA
:/00 l(i) —(x/ars)” { —(X/cra) }dX
x=0 @RS \ ORS

A
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Proof of the Pythagorean Won—Loss Formula (cont)

[e'e] X
Prob(X >Y) = / / f(x; ars, B8,7)f(Y; ara, 8,7)dy dx
x=8Jy=p
y-1 x—B8\7 _ y—-1 —s\"
/ / ( ) e7<aR§) a (y 6) e7<ﬁ) dy dx
QRs \ (Rs ORA
y—1 5
:/ _ <L) aRs [ > e7<$) dy} dx
x=0 QRS \ ORS oOéRA QRA
:/00 0 (L) e—(X/ars)” { _ e~ (x/ara) }dX
x=0 @RS \ XRS
:1/001<L> e~ (/)" gy
x=0 Q@RS \ RS

where we have set

¥ ¥
1 _ 1 1 ofstop
o ol P
ay Qrs  Opp ARsORA
A
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Proof of the Pythagorean Won—Loss Formula (cont)

v-1 5
Prob(X >Y) = 1-— J (i) a(x/)" gy

. ——.L———————— N
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Proof of the Pythagorean Won—Loss Formula (cont)

Y oo x\7v—1 5
Prob(X >Y) = 1_0‘T l(_) a(x/)" gy
Qps Jo @& \&
Y
— 1_0‘T
QRs
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Proof of the Pythagorean Won—Loss Formula (cont)

Y oo x\7v—1 5
Prob(X >Y) = 1_0‘7/ l(_) e (/@) gy
Ops.Jo &\«
2
- 1_0‘T
ORs
— 17i ORsOga

Y Y 4
ORg Qrs T ORa
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Proof of the Pythagorean Won—Loss Formula (cont)

¥y oo N1 3
Prob(X >Y) = 1-— O‘_/ ol (i) a(x/)" gy
0
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Proof of the Pythagorean Won—Loss Formula (cont)

ot [ x\71
Prob(X >Y) = 1-— 2 (—) e*/®)" dx
Qrs Jo @ \&
o
ORrs
24 2
- 1_ 1 opsopa
- 24 24 + a’)’
QOrs ORs RA
y
_ YRs
Ogs + Oa

We substitute the relations for ars and ara and find that

(RS- B)
(RS—B) +(RA-B)

Note RS — g estimates RSyys, RA — g estimates RA gys.

Prob(X >Y) =
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Pl ot s of RS (predictedvs observed) and RA (predi ct ed vs observed) f or t he Bost on Red Sox

25 20
20
15
15 -
10
10
I ]
5 10 15 20 5 10 15 20

Using as bins [-.5,.5] U [.5,1.5] U --- U [7.5,8.5]
U [8.5,9.5] U[9.5,11.5] U [11.5, ).




Analysis of '04
°

Best Fit Weibulls to Data: Method of Least Squares

@ Bin(k) is the k' bin;

@ RSys(k) (resp. RAgs(k)) the observed number of
games with the number of runs scored (allowed) in
Bin(k);

o A(a,,k) the area under the Weibull with parameters
(o, —1/2,7) in Bin(k).

Find the values of (ags, ara, ) that minimize

#Bins
> (RSus(k) — #Games - Aags, 7. k))?
! #Bins
+ Z (RAons(k) — #Games - A(ara, 7, k))z'
k=1
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Pl ot s of RS (predictedvs observed) and RA (predi ct ed vs observed) f or t he Bost on Red Sox

25 20
20
15
15 -
10
10
I ]
5 10 15 20 5 10 15 20

Using as bins [-.5,.5] U [.5,1.5] U --- U [7.5,8.5]
U [8.5,9.5] U[9.5,11.5] U [11.5, ).
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Pl ot s of RS (predictedvs observed) and RA (predi ct ed vs observed) for t he NewYor k Yankees

20 25
20
15
15
10
10
5 7_
—
5 10 15 20 5 10 15 20

Using as bins [-.5,.5] U [.5,1.5] U --- U [7.5,8.5]
U [8.5,9.5] U[9.5,11.5] U [11.5, ).
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Pl ot s of RS (predictedvs observed) and RA (predi ct edvs observed) for theBal timore Oriol es

25 20
20 15
15
- 1064
10 {
5 10 15 20 5 10 15 20

Using as bins [-.5,.5] U [.5,1.5] U --- U [7.5,8.5]
U[8.5,9.5] U[9.5,11.5] U[11.5,0).




Analysis of '04
00000

Best Fit Weibulls to Data (Method of Maximum Likelihood)

Pl ot s of RS (predictedvs observed) and RA (predi ct ed vs observed) for t he Tanpa Bay Devi | Rays

25 25
20 20
15 15
10 10
i
7 _ ]
5 10 15 20 5 10 15 20

Using as bins [-.5,.5] U [.5,1.5] U --- U [7.5,8.5]
U[8.5,9.5] U[9.5,11.5] U[11.5,0).

GO
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Pl ot s of RS (predictedvs observed) and RA (predi ct ed vs observed) for t he Tor ont 0 Bl ue Jays

25 25
20 20
15 15
10} 107
1 7 _
5 10 15 20 5 10 15 20

Using as bins [-.5,.5] U [.5,1.5] U --- U [7.5,8.5]
U[8.5,9.5] U[9.5,11.5] U[11.5,0).

¢
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Bonferroni Adjustments

Fair coin: 1,000,000 flips, expect 500,000 heads.

R
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Bonferroni Adjustments

Fair coin: 1,000,000 flips, expect 500,000 heads.
About 95% have 499, 000 < #Heads < 501, 000.
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Adv Theory
[ 1]

Bonferroni Adjustments

Fair coin: 1,000,000 flips, expect 500,000 heads.
About 95% have 499, 000 < #Heads < 501, 000.

Consider N independent experiments of flipping a fair
coin 1,000,000 times. What is the probability that at least
one of set doesn’t have 499, 000 < #Heads < 501, 0007

N Probability
5 22.62

14 51.23

50 92.31

See unlikely events happen as N increases!

RE
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Data Analysis: y? Tests (20 and 109 degrees of freedom)

Team RS+RA x2:20d.f. Indep x2: 109 d.f
Bost on Red Sox 15. 63 83.19
New York Yankees 12. 60 129.13
Baltinore Orioles 29.11 116. 88
Tanpa Bay Devil Rays 13. 67 111. 08
Toronto Blue Jays 41.18 100. 11
M nnesota Twi ns 17. 46 97.93
Chi cago Wite Sox 22.51 153. 07
C evel and I ndi ans 17.88 107. 14
Detroit Tigers 12.50 131. 27
Kansas City Royal s 28.18 111. 45
Los Angel es Angel s 23.19 125.13
Cakl and Athletics 30. 22 133.72
Texas Rangers 16. 57 111. 96
Seattle Mariners 21.57 141. 00

20 d.f.: 31.41 (at the 95% level) and 37.57 (at the 99% level).
109 d.f.: 134.4 (at the 95% level) and 146.3 (at the 99% level).
Bonferroni Adjustment:

20 d.f.: 41.14 (at the 95% level) and 46.38 (at the 99% level).
109 d.f.: 152.9 (atthe 95% level) and 162.2 (at the 99% level).

AR
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Data Analysis: Structural Zeros

@ For independence of runs scored and allowed, use
bins [0,1) U [1,2) U[2,3) U--- U[8,9) UJ9,10)
U [10,11) U [11, c0).

@ Have an r x ¢ contingency table with structural zeros
(runs scored and allowed per game are never equal).

@ (Essentially) O,, = 0 for all r, use an iterative fitting
procedure to obtain maximum likelihood estimators
for E, . (expected frequency of cell (r, c) assuming
that, given runs scored and allowed are distinct, the
runs scored and allowed are independent).

¢
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Testing the Model: Data from Method of Maximum Likelihood

Team Obs Wins Pred Wins ObsPerc PredPerc GamesDiff Y

Boston Red Sox 98 93.0 0. 605 0.574 5.03 1.82
New York Yankees 101 87.5 0.623 0. 540 13.49 1.78
Baltinmore Orioles 78 83.1 0.481 0.513 -5.08 1.66
Tanpa Bay Devil Rays 70 69.6 0.435 0.432 0.38 1.83
Toronto Blue Jays 67 74.6 0.416 0. 464 -7.65 1.97
M nnesota Twins 92 84.7 0.568 0.523 7.31 1.79
Chi cago Wiite Sox 83 85.3 0.512 0.527 2.33 1.73
C evel and | ndi ans 80 80.0 0. 494 0.494 0. 1.79
Detroit Tigers 72 80.0 0. 444 0.494 -8.02 1.78
Kansas City Royal s 58 68.7 0. 358 0. 424 -10. 65 1.76
Los Angel es Angels 92 87.5 0. 568 0.540 4.53 1.71
Qakl and Athletics 91 84.0 0. 562 0.519 6.99 1.76
Texas Rangers 89 87.3 0.549 0.539 1.71 1.90
Seattle Mariners 63 70.7 0. 389 0.436 -7.66 1.78

~: mean = 1.74, standard deviation = .06, median = 1.76;
close to numerically observed value of 1.82.




Summary
°

Conclusions

@ Find parameters such that Weibulls are good fits;

@ Runs scored and allowed per game are statistically
independent;

@ Pythagorean Won-Loss Formula is a consequence of
our model;

@ Best v (both close to observed best 1.82):
© Method of Least Squares: 1.79;
© Method of Maximum Likelihood: 1.74.

y



Summary
°

Future Work

@ Micro-analysis: runs scored and allowed aren’t
independent (big lead, close game), run production
smaller for inter-league games in NL parks, ....

@ Other sports: Does the same model work? Basketball
has v between 14 and 16.5.

@ Closed forms: Are there other probability distributions
that give integrals which can be determined in closed
form?

@ Valuing Runs: Pythagorean formula used to value
players (10 runs equals 1 win); better model leads to

better team.
2SS
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Appendix I: Proof of the Pythagorean Won—Loss Formula

Let X and Y be independent random variables with Weibull
distributions (ars, 5,7) and (ara, 8,7) respectively. To have means of
RS — g and RA — 3 our calculations for the means imply

RS— RA — 3

BT M TS vl

We need only calculate the probability that X exceeds Y. We use the
integral of a probability density is 1.

V- EEEEEOOSTSTSSSSSSS L —-—S
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Appendix I: Proof of the Pythagorean Won—Loss Formula (cont

[e'e] X
Prob(X >Y) = / / f(x; ars, B8,7)f(Y; ara, 8,7)dy dx
x=8Jy=p
y-1 x—B8\7 _ y—-1 —s\"
/ / ( ) e7<aR§) a (y 6) e7<ﬁ) dy dx
QRs \ (Rs ORA
y—1 5
:/ _ <L) aRs [ > e7<$) dy} dx
x=0 QRS \ ORS oOéRA QRA
:/00 0 (L) e—(X/ars)” { _ e~ (x/ara) }dX
x=0 @RS \ XRS
:1/001<L> e~ (/)" gy
x=0 Q@RS \ RS

where we have set

Y Y
11 1 ajstaga
@ ok o odeal,

RS RA RS™RA
y
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Appendix I: Proof of the Pythagorean Won—Loss Formula (cont

aY [y xy\71
Prob(X >Y) = 1-- 1(—) e(</2)" dx
ags Jo o \a
a’y
= 177
QRrs
v 5
_ 9 1 ORsOpA
o e afe+ o
Rs Ors T Qra
S
— __%s
- 4 Yo
Opg T+ Qgp

We substitute the relations for ars and ara and find that

(RS—9)
(RS—B) +(RA-B)

Prob(X >Y) =

Note RS — 3 estimates RSy, RA — 3 estimates RA gps.

y
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Appendix II: Best Fit Weibulls and Structural Zeros

The fits look good, but are they? Do y?-tests:

@ Let Bin(k) denote the k' bin.

@ O, : the observed number of games where the
team’s runs scored is in Bin(r) and the runs allowed
are in Bin(c).

Zc’ O, ! Er’ Oy K

S Gares is the expected frequency of cell

° Erc—

(r,c).

@ Then
#Rows #Columns

orc—Erc
> Ore ~Evo)

is a x? distribution with (#Rows — 1)(#Columns — 1)
degrees of freedom.

y
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Appendix II: Best Fit Weibulls and Structural Zeros (cont)

For independence of runs scored and allowed, use bins

[0,1) U [1,2) U [2,3) U--- U [8,9) U [9,10) U [10,11) U [11, co).

Have anr x c contingency table (with r = ¢ = 12); however, there are structural zeros (runs scored and allowed
per game can never be equal).

(Essentially) Or , = 0 for all r. We use the iterative fitting procedure to obtain maximum likelihood estimators for the
Er ¢, the expected frequency of cell (r, c) under the assumption that, given that the runs scored and allowed are
distinct, the runs scored and allowed are independent.

Forl1 <r,c <12 1etE® = 1ifr #cand0ifr = c. Set

r,c —

12 12
Xr+ = Zor,c, Xic = Zor,c~
c=1 r=1

Then
B/ T2 EETY it eisodd
g@ - 17
T,c
Er(,[cil)XJr,c /T Er(,['cil) if ¢ iseven,
and ©
Erc = [imooErvc;

the iterations converge very quickly. (If we had a complete two-dimensional contingency table, then the iteration
reduces to the standard values, namely Ey ¢ = >-./ O, ./ - >°,/ O,/ . / #Games). Note

12 12 2
(Or,c — Erc)
r=1 c=1 Erc
CHr

y
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Appendix Ill: Central Limit Theorem

Convolution of f and g:
hy) = (o)) = [ 160aly —xs = [ 1= y)g0os.
X1 and X, independent random variables with probability density p.

X+AX
Prob(X; € [x, x + Ax]) = / POt ~ p(x)AxX.

oo X+Ax—x1
Pobx; +Xz) € ox+ax = [T f p(x1)p(X2)ciacliy
Xp=—00 Jxp=X—xq

As Ax — 0 we obtain the convolution of p with itself:

b
Prob(X; +Xp € [a,b]) = / (P * P)(2)dz.

Exercise to show non-negative and integratesto 1.
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Appendix Ill: Statement of Central Limit Theorem

@ For simplicity, assume p has mean zero, variance one, finite third moment and is of sufficiently rapid decay
so that all convolution integrals that arise converge: p an infinitely differentiable function satisfying

oo o, o
/ xp(x)dx = 0, / x“p(x)dx = 1, / [X["p(x)dx < oo.
— 00 — 00 — 00

@ Assume X1, Xz, . . . are independent identically distributed random variables drawn from p.
@ Define SNy = ZiN:I X;.

. . . _x2
@ standard Gaussian (mean zero, variance one) is —t—e~*"/2,
V2

Central Limit Theorem Let X;, Sy be as above and assume the third moment of each X; is finite. Then Sy /v/N
converges in probability to the standard Gaussian:

lim F’rob(s—\/NN € [a.b]) = % /.be’Xz/zdx.

N— oo 27 Ja
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Appendix IlI: Proof of the Central Limit Theorem

@ The Fourier transform of pis
oo ;
) = [T pbeF M ax.
—o0
@ Derivative of g is the Fourier transform of 27ixg(x); differentiation (hard) is converted to multiplication

(easy).
gy = /Oo 2mix - g(x)e 2V g,

If g is a probability density, §’(0) = 2iE[x] and §”/(0) = —4x2E[x?].

@ Natural to use the Fourier transform to analyze probability distributions. The mean and variance are simple
multiples of the derivatives of P at zero: p’(0) = 0, p’’(0) = —4r2.

@ we Taylor expand p (need technical conditions on p):

- p”'(0)
Ply) = 14—y 4 = 1-2ny? 4oy,

Near the origin, the above shows p looks like a concave down parabola.
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Appendix IlI: Proof of the Central Limit Theorem (cont)

Prob(Xy + - - + Xy € [a,b]) = [P(p - % p)(z)dz.

The Fourier transform converts convolution to multiplication. If FT[f](y) denotes the Fourier transform of f
evaluated at y:
FTlp * - - % pl(y) = P(Y)---B(Y)-

Do not want the distribution of X; + - - - + Xy = X, but rather
_ XXy
Sy = N =X.

If B(x) = A(cx) for some fixed ¢ # 0, then §(y) = %Z\ (%)
Prob (X1EEN — ) = (VNp x5 VR)(x V).

FT[(Wp -« VRV ) = [B(2%)]"

000e000
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Appendix IlI: Proof of the Central Limit Theorem (cont)

@ Can find the Fourier transform of the distribution of Sn:

~ Yy \N
P(R)]
@ Take the limit as N — oo for fixed y.
@ Knowp(y) = 1 — 272y2 + O(y3). Thus study

@ Foranyfixed y,

2n2y2 y3 N y?
lim |1— (o) - =e ™.
N— 0o { N + N3/2

2 2
@ Fourier transform of e =27 atx is —L_ e ~X“/2
V2r ’
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Appendix IlI: Proof of the Central Limit Theorem (co

We have shown:
2
@ the Fourier transform of the distribution of Sy converges to e 2%,

2
1 o—X /2

2
@ the Fourier transform of e =2™Y* is
the Fourier transform of e =

2
Therefore the distribution of Sy equalling x converges to % e x/2,
™

We need complex analysis to justify this conclusion. Must be careful: Consider

e 1/%% ity 4o
X =
o) {0 ifx = 0.

All the Taylor coefficients about x = 0 are zero, but the function is not identically zero in a neighborhood of x = 0.
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Appendix 1V: Best Fit Weibulls from Method of Maximum
Likelihood

The likelihood function depends on: ars, ara, 8 = —.5,7.

Let A(a, —.5,7, k) denote the area in Bin(k) of the Weibull with
parameters «, —.5,~. The sample likelihood function

L(ars, ara, —-5,7) is

#Games #Bins
. A(ars, —.5, v, k)RSws(k)
(RSobs(l),...,RSobs(#Blns)> kH:1 (ars, =5,7,k)
#Bins
#Games ) RAaps(k
. . Alagra, —.5, 7, k)RAosk)
(Rr(t) FcnBing 11 Atems =5:7.)

For each team we find the values of the parameters ags, ara and ~
that maximize the likelihood. Computationally, it is equivalent to
maximize the logarithm of the likelihood, and we may ignore the
multinomial coefficients are they are independent of the parameters.
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