Math/Stat 34I: Fall 2015 : sjm I @ williams.edu

```
(* Computing a 5-0 trump split among two hands *)
deck = {}; (* initialize deck to empty *)
    (* assign five 1s to the deck; the 1s represent the trump suit *)
(* then we assign 21 0s, these are the non-trump *)
(* taking time and coding well can save you a LOT of trouble *)
For[n = 1, n \leq 5, n++, deck = AppendTo[deck, 1]];
For[n=6, n \leq 26, n++, deck = AppendTo[deck, 0]];
Length[deck] (* makes sure got 26 cards *)
(* should have this in the program so we make sure we use the right deck,
and thus will paste it below! *)
```

Out $[8]=26$
$\ln [13]:=$ trumpsplit[numdo_] := Module[\{\},
count $=0$;
deck $=$ \{\}; (* initialize deck to empty *)
For $[\mathrm{n}=1, \mathrm{n} \leq 5, \mathrm{n}++$, deck = AppendTo[deck, 1]];
For $[\mathrm{n}=6, \mathrm{n} \leq 26, \mathrm{n}++$, deck = AppendTo[deck, 0]];
For $[\mathrm{n}=1, \mathrm{n} \leq$ numdo, $\mathrm{n}++$, (* main loop of code *)
\{
hand = RandomSample[deck, 13]; (* randomlly choose 13 cards *)
numtrump $=$ Sum [hand[[k]], $\{k, 1,13\}]$;
(* note numtrump is 0 or 5 if we have a $5-0$ split *)
If [numtrump $=0| |$ numtrump $=5$, count $=$ count +1];
(* count is our counter, counts how often have 5-0 *)
(* we use || for or;
would use $\& \&$ for and use two equal signs for comparison*)
\}]; (* end of n loop *)
Print["Two theories: 2(1/2)^5 gave ", 6.25, "\%, other gave 3.913\%."];
Print["We observe ", 100. count/numdo, "."];
];
In[10]:= Timing[trumpsplit[1000 000]]
Two theories: $2(1 / 2)^{\wedge} 5$ gave 6.25%, other gave 3.9%.
We observe 3.9166 .

```
ln[20]:=
    (* Getting exactly two kings *)
    twokings[numdo_] := Module[{},
        deck = {}; (* initialize deck to empty *)
        (* 1 is a king, 0 non-king *)
        For[n=1, n \leq 4, n++, deck = AppendTo[deck, 1]];
        For[n=5, n \leq 52, n++, deck = AppendTo[deck, 0]];
        count = 0; (* initialize num of successes to 0 *)
        For[n = 1, n s numdo, n++,
            {
            hand = RandomSample[deck, 5] ; (* 5 card hand *)
            numkings = Sum[hand[[k]], {k, 1, 5}];
            If[numkings == 2, count = count + 1];
            }]; (* end of n loop *)
        Print["Theory predicts prob exactly two kings is ",
            100.0 Binomial[4, 2] Binomial[48, 3]/ Binomial[52, 5] , "."];
        Print["Observed probability is ", 100.0 count/ numdo, "."];
        ];
In[22]:= Timing[twokings [1000 000]]
    Theory predicts prob exactly two kings is 3.99298.
    Observed probability is 3.9965.
Out[22]= {6.94204, Null}
ln[19]:= Length[deck]
Out[19]= 52
```

```
ln[28]:=
(* calculating probability of a full house, queens and kings *)
(* probability is VERY small so must do a lot of simulations! *)
(* sadly the more you want to compute, the worse Mathematica is *)
(* this is not a hard code, don't really need the special fns here *)
(* would want to shift to another language that is better *)
fullkingqueens[numdo_] := Module[{},
        deck = {}; (* initialize deck to empty *)
        (* 10 is a queen, 1 is a king, 0 non-king *)
        For[n=1, n \leq 4, n++, deck = AppendTo[deck, 1]];
        For[n = 5, n \leq 8, n++, deck = AppendTo[deck, 10]];
        For[n=9, n \leq 52, n++, deck = AppendTo[deck, 0]];
        count = 0; (* initialize num of successes to 0 *)
        For[n = 1, n s numdo, n++,
            {
            hand = RandomSample[deck, 5] ; (* 5 card hand *)
            numkings = Sum[hand[[k]], {k, 1, 5}];
            (* want full house of Qs and Ks *)
            (* sum is either 23 or 32! *)
            If[numkings == 32 || numkings == 23, count = count + 1];
            }]; (* end of n loop *)
            Print["Theory predicts prob full house (Qs and Ks) is ",
            100.0 Binomial[2, 1] Binomial[4, 3] Binomial[4, 2]/ Binomial[52, 5], "."];
            Print["Observed probability is ", 100.0 count/numdo, "."];
        ] ;
In[30]:= Timing[fullkingqueens[10 000 000]]
Theory predicts prob full house (Qs and Ks) is 0.00184689.
Observed probability is 0.00168.
Out[30]= {71.9165, Null}
ln[31]:= Timing[fullkingqueens[40000 000]]
Theory predicts prob full house (Qs and Ks) is 0.00184689.
Observed probability is 0.0018925.
Out[31]= {298.945, Null}
```

