Math/Stat 341: Probability First Lecture

Steven J Miller
Williams College

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller/public_html/341

Williams College

Introduction and Objectives

Introduction / Objectives

Probability theory: model the real world, predict likelihood of events.

One of the three most important quantitative classes (statistics, programming).

Introduction / Objectives

Probability theory: model the real world, predict likelihood of events.

One of the three most important quantitative classes (statistics, programming).

Objectives

- Obviously learn probability.
- Emphasize techniques / asking the right questions.
- Model problems and analyze model.
- Elegant solutions vs brute force (parameters in closed form versus numerical solutions).
- Looking at equations and getting a sense: $\log -5$ Method: $\frac{p \pm p q}{p+q \pm 2 p q}$.

Types of Problems

- Biology: will a species survive?
- Physics / Chemistry / Number Theory: Random Matrix Theory.
- Gambling: Double-plus-one.
- Economics: Stock market / economy.
- Finance: Monte Carlo integration.
- Marketing: Movie schedules.
- Cryptography: Markov Chain Monte Carlo.
- 8 ever 9 never (bridge).

My (applied) experiences

- Marketing: parameters for linear programming (SilverScreener).
- Data integrity: detecting fraud with Benford's Law (IRS, Iranian elections).
- Sabermetrics: Pythagorean Won-Loss Theorem.

Course Mechanics

Grading / Administrative

- Move at fast pace, responsible for reading before class: 5% of grade. HW: 15\%. Writing: 10\%. Midterm: 30% (if there are two exams only best counts). 'Final' exam: 40%. You may also do a project for 10% of your grade (which reduces all other categories proportionally).
- Pre-reqs: Calc III, basic combinatorics / set theory, linear algebra.

Office hours / feedback

- When l'm in my office (schedule online), rest TBD.
- Feedback ephsmath@gmail.com, password 1793williams.
- Webpage: numerous handouts, additional comments each day (mix of review and optional advanced material).
- Clickers: see how well we can estimate probabilities, always anonymous.
- Probability Lifesaver: opportunity to help write a book, lots of worked examples.
- Creating HW problems: mix of ones you can solve and ones you want to learn about.
- Gather and analyze some data set of interest.
- PREPARE FOR CLASS! Must do readings before each class.

Being Prepared

Never know when an opportunity presents itself....

S. J. Miller at the Sarnak 61 ${ }^{\text {st }}$ Dinner (copyright C. J. Mozzochi, Princeton N.J)

Being Prepared

- Your Job:
\diamond Be prepared for class: do reading, think about material.
\diamond Come to me, the TAs and each other with questions.
- My/TAs Job:
\diamond Provide resources, guiding questions.
\diamond Be available.

Other: Advice from Jeff Miller

- Party less than the person next to you.

Other: Advice from Jeff Miller

- Party less than the person next to you.
- Take advantage of office hours / mentoring.

Other: Advice from Jeff Miller

- Party less than the person next to you.
- Take advantage of office hours / mentoring.
- Learn to manage your time: no one else wants to.

Other: Advice from Jeff Miller

- Party less than the person next to you.
- Take advantage of office hours / mentoring.
- Learn to manage your time: no one else wants to.

Happy to do practice interviews, adjust deadlines....

Gambling

Gambling

Football Wager

2007: Friend of a favorite student bet $\$ 500$ at 1000:1 odds on Patriots going undefeated and winning the Superbowl.

Football Wager

2007: Friend of a favorite student bet $\$ 500$ at 1000:1 odds on Patriots going undefeated and winning the Superbowl.

Football Wager

2008: In third quarter, Pats leading, Vegas offers to buy back the bet at $300: 1$, told no....

WHAT WAS THE BETTOR'S MISTAKE?

Hedging

Pats win with probability p, Giants $q=1-p$.
Bet $\$ 1$ bet on Giants, if they win get $\$ x$. Already bet $\$ 500$ on Patriots, now bet $\$ B$ on the Giants.

Expected Winning:

$$
f(p, x, B)=p \cdot 500000+(1-p) B x-500-B .
$$

Guaranteed Winnings

By hedging can ensure some winnings:

$$
g(p, x, B)=\min (500000, B x)-500-B .
$$

Here $p=.8, x=3$.

Mathematica Code

```
f[\mp@subsup{p}{-}{\prime},\mp@subsup{x}{_}{\prime},\mp@subsup{B}{-}{\prime}]:= 500000p + (1-p) B x - 500 - B
g[p_, x_, B_] := Min[500000, Bx] - 500 - B
Plot[f[.8, 3, B], {B, 0, 500000}]
Plot[g[.8, 3, B], {B, 0, 500 000}]
Manipulate[Plot[g[p, x, B], {B, 0, 500000}], {p, 0, 1}, {x, 1, 10}]
```


Mathematica Code

Sabermetrics Club at Williams....

http://fivethirtyeight.com/features/

