Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	0000000000000	000000	00000000	00

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm – Theorems!

Steven J. Miller (MC'96)

http://www.williams.edu/Mathematics/sjmiller/public_html

Yale University, April 14, 2014

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs

Introduction

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
●○○○○○○	oooooooooooooo	oooooo	ooooooooo	
Goals of the	Talk			

- You can join in: minimal background needed!
- Ask questions: lots of natural problems ignored.
- Look for 'right' perspective: generating fns, partial fractions.
- End with open problems.

Joint with Olivia Beckwith, Amanda Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Philip Tosteson.

D	tere Backelitter				
Pre-requisites: Probability Review					

- Let X be random variable with density p(x):
 ◊ p(x) ≥ 0; ∫_{-∞}[∞] p(x)dx = 1;
 ◊ Prob (a ≤ X ≤ b) = ∫_a^b p(x)dx.
 Mean: μ = ∫_{-∞}[∞] xp(x)dx.
 Variance: σ² = ∫_{-∞}[∞] (x μ)²p(x)dx.
- Gaussian: Density $(2\pi\sigma^2)^{-1/2} \exp(-(x-\mu)^2/2\sigma^2)$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
○o●oooo	oooooooooooooo	000000	೦೦೦೦೦೦೦೦	00
Pre-requisit	es: Combinatorics	Review		

- *n*!: number of ways to order *n* people, order matters.
- $\frac{n!}{k!(n-k)!} = nCk = \binom{n}{k}$: number of ways to choose *k* from *n*, order doesn't matter.
- Stirling's Formula: $n! \approx n^n e^{-n} \sqrt{2\pi n}$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
○○○●○○○	০০০০০০০০০০০০০০	oooooo	೦೦೦೦೦೦೦೦	oo
Previous Re	sults			

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
○○○●○○○	ooooooooooooooo	೦೦೦೦೦೦		oo
Previous R	esults			

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
○○○●○○○	oooooooooooooo	oooooo	000000000	00
Previous Re	sults			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
○○○●○○○	00000000000000	೦೦೦೦೦೦	೦೦೦೦೦೦೦೦೦	
Previous F	Results			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1.$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
○○○●○○○	00000000000000	೦೦೦೦೦೦	೦೦೦೦೦೦೦೦೦	
Previous F	Results			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

 $2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1.$

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
○○○○●○○	oooooooooooooo	000000	೦೦೦೦೦೦೦೦	oo
Old Results				

Central Limit Type Theorem

As $n \to \infty$ distribution of number of summands in Zeckendorf decomposition for $m \in [F_n, F_{n+1})$ is Gaussian (normal).

Figure: Number of summands in $[F_{2010}, F_{2011})$; $F_{2010} \approx 10^{420}$.

$$m = \sum_{j=1}^{k(m)=n} F_{i_j}, \quad \nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta\left(x - (i_j - i_{j-1})\right).$$

Theorem (Zeckendorf Gap Distribution)

Gap measures $\nu_{m;n}$ converge almost surely to average gap measure where $P(k) = 1/\phi^k$ for $k \ge 2$.

Figure: Distribution of gaps in $[F_{1000}, F_{1001}); F_{2010} \approx 10^{208}$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	0000000000000	000000	00000000	00

New Results: Longest Gap

Theorem (Longest Gap)

As $n \to \infty$, the probability that $m \in [F_n, F_{n+1})$ has longest gap less than or equal to f(n) converges to

$$\operatorname{Prob}\left(L_n(m) \leq f(n)\right) \approx e^{-e^{\log n - f(n)/\log \phi}}$$

Immediate Corollary: If f(n) grows **slower** or **faster** than $\log n / \log \phi$, then $\operatorname{Prob}(L_n(m) \le f(n))$ goes to **0** or **1**, respectively.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000				

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000				

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000				

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000				

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000				

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
000000				

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
000000				

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
000000				

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n$, $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
000000				

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
000000				

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_p = C$ with $x_i > 0$ is $\binom{C+P-1}{P}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) \}$: the Zeckendorf decomposition of *N* has exactly *k* summands}.

For $N \in [F_n, F_{n+1}]$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \cdots + F_{i_{k-1}} + F_n,$ $1 < i_1 < i_2 < \cdots < i_{k-1} < i_k = n, i_i - i_{i-1} > 2.$ $d_1 := i_1 - 1, d_i := i_i - i_{i-1} - 2 (i > 1).$ $d_1 + d_2 + \cdots + d_k = n - 2k + 1, d_i \ge 0.$ Cookie counting $\Rightarrow p_{n,k} = \binom{n-2k+1+k-1}{k-1} = \binom{n-k}{k-1}$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs

Gaussian Behavior

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	000000000000			

Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

Sketch of proof: Use Stirling's formula,

$$n! \approx n^n e^{-n} \sqrt{2\pi n}$$

to approximates binomial coefficients, after a few pages of algebra find the probabilities are approximately Gaussian.

(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in $[F_n, F_{n+1})$ is $f_n(k) = \binom{n-1-k}{k}/F_{n-1}$. Consider the density for the n+1 case. Then we have, by Stirling

$$f_{n+1}(k) = \binom{n-k}{k} \frac{1}{F_n}$$

= $\frac{(n-k)!}{(n-2k)!k!} \frac{1}{F_n} = \frac{1}{\sqrt{2\pi}} \frac{(n-k)^{n-k+\frac{1}{2}}}{k^{(k+\frac{1}{2})}(n-2k)^{n-2k+\frac{1}{2}}} \frac{1}{F_n}$

plus a lower order correction term.

Also we can write $F_n = \frac{1}{\sqrt{5}} \phi^{n+1} = \frac{\phi}{\sqrt{5}} \phi^n$ for large *n*, where ϕ is the golden ratio (we are using relabeled Fibonacci numbers where $1 = F_1$ occurs once to help dealing with uniqueness and $F_2 = 2$). We can now split the terms that exponentially depend on *n*.

$$f_{n+1}(k) = \left(\frac{1}{\sqrt{2\pi}}\sqrt{\frac{(n-k)}{k(n-2k)}}\frac{\sqrt{5}}{\phi}\right) \left(\phi^{-n}\frac{(n-k)^{n-k}}{k^k(n-2k)^{n-2k}}\right).$$

Define

$$N_n = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{(n-k)}{k(n-2k)}} \frac{\sqrt{5}}{\phi}, \quad S_n = \phi^{-n} \frac{(n-k)^{n-k}}{k^k (n-2k)^{n-2k}}.$$

Thus, write the density function as

$$f_{n+1}(k) = N_n S_n$$

where N_n is the first term that is of order $n^{-1/2}$ and S_n is the second term with exponential dependence on n.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	000000000000			

Model the distribution as centered around the mean by the change of variable $k = \mu + x\sigma$ where μ and σ are the mean and the standard deviation, and depend on *n*. The discrete weights of $f_n(k)$ will become continuous. This requires us to use the change of variable formula to compensate for the change of scales:

$$f_n(k)dk = f_n(\mu + \sigma x)\sigma dx$$

Using the change of variable, we can write N_n as

$$\begin{split} N_n &= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{n-k}{k(n-2k)}} \frac{\phi}{\sqrt{5}} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-k/n}{(k/n)(1-2k/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-(\mu+\sigma x)/n}{((\mu+\sigma x)/n)(1-2(\mu+\sigma x)/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C-y}{(C+y)(1-2C-2y)}} \frac{\sqrt{5}}{\phi} \end{split}$$

where $C = \mu/n \approx 1/(\phi + 2)$ (note that $\phi^2 = \phi + 1$) and $y = \sigma x/n$. But for large *n*, the *y* term vanishes since $\sigma \sim \sqrt{n}$ and thus $y \sim n^{-1/2}$. Thus

$$N_n \approx \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C}{C(1-2C)}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{(\phi+1)(\phi+2)}{\phi}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{5(\phi+2)}{\phi}} = \frac{1}{\sqrt{2\pi\sigma^2}} \sqrt{\frac{1-C}{2}} \sqrt{\frac{1-C}{2}}$$

since $\sigma^2 = n \frac{\phi}{5(\phi+2)}$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	000000000000			

For the second term S_n , take the logarithm and once again change variables by $k = \mu + x\sigma$,

$$\begin{split} \log(S_n) &= & \log\left(\phi^{-n}\frac{(n-k)^{(n-k)}}{k^k(n-2k)^{(n-2k)}}\right) \\ &= & -n\log(\phi) + (n-k)\log(n-k) - (k)\log(k) \\ &- (n-2k)\log(n-2k) \\ &= & -n\log(\phi) + (n-(\mu+x\sigma))\log(n-(\mu+x\sigma)) \\ &- (\mu+x\sigma)\log(\mu+x\sigma) \\ &- (n-2(\mu+x\sigma))\log(n-2(\mu+x\sigma)) \\ &= & -n\log(\phi) \\ &+ (n-(\mu+x\sigma))\left(\log(n-\mu) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right) \\ &- (\mu+x\sigma)\left(\log(\mu) + \log\left(1+\frac{x\sigma}{\mu}\right)\right) \\ &- (n-2(\mu+x\sigma))\left(\log(n-2\mu) + \log\left(1-\frac{x\sigma}{n-2\mu}\right)\right) \\ &= & -n\log(\phi) \\ &+ (n-(\mu+x\sigma))\left(\log\left(\frac{n}{\mu}-1\right) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right) \\ &- (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) \\ &- (n-2(\mu+x\sigma))\left(\log\left(\frac{n}{\mu}-2\right) + \log\left(1-\frac{x\sigma}{n-2\mu}\right)\right) \end{split}$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	000000000000			

Note that, since $n/\mu = \phi + 2$ for large *n*, the constant terms vanish. We have log(S_n)

$$= -n\log(\phi) + (n-k)\log\left(\frac{n}{\mu}-1\right) - (n-2k)\log\left(\frac{n}{\mu}-2\right) + (n-(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-2\mu}\right)$$

$$= -n\log(\phi) + (n-k)\log(\phi+1) - (n-2k)\log(\phi) + (n-(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-2\mu}\right)$$

$$= n(-\log(\phi) + \log\left(\phi^2\right) - \log(\phi)) + k(\log(\phi^2) + 2\log(\phi)) + (n-(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1-2\frac{x\sigma}{n-2\mu}\right)$$

$$= (n-(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1+\frac{x\sigma}{\mu}\right)$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	000000000000			

Finally, we expand the logarithms and collect powers of $x\sigma/n$.

$$\begin{split} \log(S_n) &= (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n - \mu} - \frac{1}{2} \left(\frac{x\sigma}{n - \mu} \right)^2 + \dots \right) \\ &- (\mu + x\sigma) \left(\frac{x\sigma}{\mu} - \frac{1}{2} \left(\frac{x\sigma}{\mu} \right)^2 + \dots \right) \\ &- (n - 2(\mu + x\sigma)) \left(-2 \frac{x\sigma}{n - 2\mu} - \frac{1}{2} \left(2 \frac{x\sigma}{n - 2\mu} \right)^2 + \dots \right) \\ &= (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n \frac{(\phi+1)}{(\phi+2)}} - \frac{1}{2} \left(\frac{x\sigma}{n \frac{(\phi+1)}{(\phi+2)}} \right)^2 + \dots \right) \\ &- (\mu + x\sigma) \left(\frac{x\sigma}{\frac{\phi}{\phi+2}} - \frac{1}{2} \left(\frac{x\sigma}{\frac{\phi}{\phi+2}} \right)^2 + \dots \right) \\ &- (n - 2(\mu + x\sigma)) \left(-\frac{2x\sigma}{n \frac{\phi}{\phi+2}} - \frac{1}{2} \left(\frac{2x\sigma}{n \frac{\phi}{\phi+2}} \right)^2 + \dots \right) \\ &= \frac{x\sigma}{n} n \left(- \left(1 - \frac{1}{\phi+2} \right) \frac{(\phi+2)}{(\phi+1)} - 1 + 2 \left(1 - \frac{2}{\phi+2} \right) \frac{\phi+2}{\phi} \right) \\ &- \frac{1}{2} \left(\frac{x\sigma}{n} \right)^2 n \left(-2 \frac{\phi+2}{\phi+1} + \frac{\phi+2}{\phi+1} + 2(\phi+2) - (\phi+2) + 4 \frac{\phi+2}{\phi} \right) \\ &+ O \left(n(x\sigma/n)^3 \right) \end{split}$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	000000000000			

$$\begin{split} \log(S_n) &= \frac{x\sigma}{n} n \left(-\frac{\phi+1}{\phi+2} \frac{\phi+2}{\phi+1} - 1 + 2 \frac{\phi}{\phi+2} \frac{\phi+2}{\phi} \right) \\ &- \frac{1}{2} \left(\frac{x\sigma}{n} \right)^2 n(\phi+2) \left(-\frac{1}{\phi+1} + 1 + \frac{4}{\phi} \right) \\ &+ O\left(n \left(\frac{x\sigma}{n} \right)^3 \right) \\ &= -\frac{1}{2} \frac{(x\sigma)^2}{n} (\phi+2) \left(\frac{3\phi+4}{\phi(\phi+1)} + 1 \right) + O\left(n \left(\frac{x\sigma}{n} \right)^3 \right) \\ &= -\frac{1}{2} \frac{(x\sigma)^2}{n} (\phi+2) \left(\frac{3\phi+4+2\phi+1}{\phi(\phi+1)} \right) + O\left(n \left(\frac{x\sigma}{n} \right)^3 \right) \\ &= -\frac{1}{2} x^2 \sigma^2 \left(\frac{5(\phi+2)}{\phi n} \right) + O\left(n (x\sigma/n)^3 \right). \end{split}$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	000000000000			

But recall that

$$\sigma^2 = \frac{\phi n}{5(\phi+2)}.$$

Also, since $\sigma \sim n^{-1/2}$, $n\left(\frac{x\sigma}{n}\right)^3 \sim n^{-1/2}$. So for large *n*, the $O\left(n\left(\frac{x\sigma}{n}\right)^3\right)$ term vanishes. Thus we are left with

$$\log S_n = -\frac{1}{2}x^2$$
$$S_n = e^{-\frac{1}{2}x^2}$$

Hence, as n gets large, the density converges to the normal distribution:

$$f_n(k)dk = N_n S_n dk$$

= $\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}x^2} \sigma dx$
= $\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx.$

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_nH_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as ∑ a_iH_i with natural constraints on the a_i's (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker
- Central Limit Type Theorem

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	০০০●০০০০০০০০০	୦୦୦୦୦୦	ooooooooo	
Generalizin	g Lekkerkerker			

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in $[H_n, H_{n+1})$ tends to Cn + d as $n \to \infty$, where C > 0 and d are computable constants determined by the c_i 's.

$$C = -\frac{y'(1)}{y(1)} = \frac{\sum_{m=0}^{L-1} (s_m + s_{m+1} - 1)(s_{m+1} - s_m)y^m(1)}{2\sum_{m=0}^{L-1} (m+1)(s_{m+1} - s_m)y^m(1)}$$

$$s_0 = 0, s_m = c_1 + c_2 + \dots + c_m.$$

$$y(x) \text{ is the root of } 1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}.$$

$$y(1) \text{ is the root of } 1 - c_1 y - c_2 y^2 - \dots - c_L y^L.$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

Central Limit Type Theorem

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands, i.e., $a_1 + a_2 + \cdots + a_m$ in the generalized Zeckendorf decomposition $\sum_{i=1}^{m} a_i H_i$ for integers in $[H_n, H_{n+1})$ is Gaussian.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	000000000000			

Example: the Special Case of L = 1, $c_1 = 10$

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$

• Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$:

$$\mathbf{a}_i \in \{0, 1, \dots, 9\} \ (1 \leq i < m), \ \mathbf{a}_m \in \{1, \dots, 9\}.$$

- For $N \in [H_n, H_{n+1})$, m = n, i.e., first term is $a_n H_n = a_n 10^{n-1}$.
- *A_i*: the corresponding random variable of *a_i*. The *A_i*'s are independent.
- For large *n*, the contribution of *A_n* is immaterial.
 A_i (1 ≤ *i* < *n*) are identically distributed random variables
 with mean 4.5 and variance 8.25.
- Central Limit Theorem: $A_2 + A_3 + \cdots + A_n \rightarrow$ Gaussian with mean 4.5n + O(1) and variance 8.25n + O(1).
| Intro | Gaussianity | Gaps (Bulk) | Longest Gap | Future / Refs |
|-------|--------------|-------------|-------------|---------------|
| | 000000000000 | | | |

Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_n$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Example:
$$1900 = F_{17} - F_{14} - F_{10} + F_6 + F_2$$
.

K: # of positive terms, *L*: # of negative terms.

Generalized Lekkerkerker's Theorem

As
$$n \to \infty$$
, $E[K]$ and $E[L] \to n/10$.
 $E[K] - E[L] = \varphi/2 \approx .809$.

Central Limit Type Theorem

As $n \to \infty$, *K* and *L* converges to a bivariate Gaussian.

• corr(*K*, *L*) =
$$-(21 - 2\varphi)/(29 + 2\varphi) \approx -.551$$
,

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

(1)

• Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{-1 + \sqrt{5}}{2} \right)^n \right].$$

(1)

• Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$

• Generating function: $g(x) = \sum_{n>0} F_n x^n$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

(1)
$$\Rightarrow \sum_{n\geq 2} \boldsymbol{F}_{n+1} \boldsymbol{x}^{n+1} = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 2} \boldsymbol{F}_{n-1} \boldsymbol{x}^{n+1}$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

(1)
$$\Rightarrow \sum_{n\geq 2} \boldsymbol{F}_{n+1} \boldsymbol{x}^{n+1} = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 2} \boldsymbol{F}_{n-1} \boldsymbol{x}^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \boldsymbol{F}_n \boldsymbol{x}^n = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 1} \boldsymbol{F}_n \boldsymbol{x}^{n+2}$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} \mathbf{x}^{n+1} = \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} \mathbf{x}^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n \mathbf{x}^n = \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n\geq 1} \mathbf{F}_n \mathbf{x}^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n \mathbf{x}^n = \mathbf{x} \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^n + \mathbf{x}^2 \sum_{n\geq 1} \mathbf{F}_n \mathbf{x}^n$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $F_{n+1} = F_n + F_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} \mathbf{x}^{n+1} = \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} \mathbf{x}^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n \mathbf{x}^n = \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n\geq 1} \mathbf{F}_n \mathbf{x}^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n \mathbf{x}^n = \mathbf{x} \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^n + \mathbf{x}^2 \sum_{n\geq 1} \mathbf{F}_n \mathbf{x}^n$$
$$\Rightarrow g(\mathbf{x}) - \mathbf{F}_1 \mathbf{x} - \mathbf{F}_2 \mathbf{x}^2 = \mathbf{x} (g(\mathbf{x}) - \mathbf{F}_1 \mathbf{x}) + \mathbf{x}^2 g(\mathbf{x})$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $F_{n+1} = F_n + F_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$$
$$\Rightarrow g(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(g(x) - \mathbf{F}_1 x) + x^2 g(x)$$
$$\Rightarrow g(x) = x/(1 - x - x^2).$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

• Generating function:
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

• Generating function:
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$

• Partial fraction expansion:

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

• Generating function:
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$

• Partial fraction expansion:

$$\Rightarrow g(x) = \frac{x}{1-x-x^2} = \frac{1}{\sqrt{5}} \left(\frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right)$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

• Generating function:
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$

• Partial fraction expansion:

$$\Rightarrow g(x) = \frac{x}{1-x-x^2} = \frac{1}{\sqrt{5}} \left(\frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right)$$

Coefficient of *x*^{*n*} (power series expansion):

$$\boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right] \text{ - Binet's Formula!}$$
(using geometric series: $\frac{1}{1-r} = 1 + r + r^2 + r^3 + \cdots$).

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000			

Differentiating Identities and Method of Moments

Differentiating identities

Example: Given a random variable X such that

 $Pr(X = 1) = \frac{1}{2}, Pr(X = 2) = \frac{1}{4}, Pr(X = 3) = \frac{1}{8}, \dots$ then what's the mean of X (i.e., E[X])? Solution: Let $f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots = \frac{1}{1-x/2} - 1$. $f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \dots$. $f'(1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \dots = E[X]$.

Method of moments: Random variables X₁, X₂,
 If lth moments E[X_n^l] converges those of standard normal then X_n converges to a Gaussian.

Standard normal distribution:

 $2m^{\text{th}}$ moment: $(2m-1)!! = (2m-1)(2m-3)\cdots 1$, $(2m-1)^{\text{th}}$ moment: 0.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	000000000000000			

New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

• Recurrence relation:

$$N \in [F_{n+1}, F_{n+2})$$
: $N = F_{n+1} + F_t + \cdots, t \le n-1$.
 $p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	000000000000000000000000000000000000000			

New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

• Recurrence relation:

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

• Recurrence relation:

Λ

$$V \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$

New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

• Recurrence relation:

Λ

$$V \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$

• Generating function: $\sum_{n,k>0} p_{n,k} x^k y^n = \frac{y}{1-y-xy^2}$. • Partial fraction expansion:

$$\frac{y}{1 - y - xy^2} = -\frac{y}{y_1(x) - y_2(x)} \left(\frac{1}{y - y_1(x)} - \frac{1}{y - y_2(x)}\right)$$

where $y_1(x)$ and $y_2(x)$ are the roots of $1 - y - xy^2 = 0$.

Coefficient of y^n : $g(x) = \sum_{k>0} p_{n,k} x^k$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	000000000000000			

New Approach: Case of Fibonacci Numbers (Continued)

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{k>0} p_{n,k} x^k$.

• Differentiating identities:

$$\begin{split} g(1) &= \sum_{k>0} p_{n,k} = F_{n+1} - F_n, \\ g'(x) &= \sum_{k>0} k p_{n,k} x^{k-1}, \ g'(1) = g(1) E[K_n] \\ (xg'(x))' &= \sum_{k>0} k^2 p_{n,k} x^{k-1}, \\ (xg'(x))' &|_{x=1} = g(1) E[K_n^2], \\ (x (xg'(x))')' &|_{x=1} = g(1) E[K_n^3], \dots \end{split}$$

Similar results hold for the centralized K_n : $K'_n = K_n - E[K_n].$

• Method of moments (for normalized K'_n): $E[(K'_n)^{2m}]/(SD(K'_n))^{2m} \rightarrow (2m-1)!!,$ $E[(K'_n)^{2m-1}]/(SD(K'_n))^{2m-1} \rightarrow 0. \Rightarrow K_n \rightarrow \text{Gaussian}.$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
	0000000000000000			

New Approach: General Case

Let $p_{n,k} = \# \{ N \in [H_n, H_{n+1}) \}$: the generalized Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

• Recurrence relation:

Fibonacci: $p_{n+1,k+1} = p_{n,k+1} + p_{n,k}$. General: $p_{n+1,k} = \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} p_{n-m,k-j}$. where $s_0 = 0$, $s_m = c_1 + c_2 + \dots + c_m$.

• Generating function:

Fibonacci:
$$\frac{y}{1-y-xy^2}$$
.
General:

$$\frac{\sum_{n \le L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n}{1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}}$$

0000000 00000000000 000000 000000 000000	

New Approach: General Case (Continued)

• Partial fraction expansion:

Fibonacci:
$$-\frac{y}{y_1(x)-y_2(x)} \left(\frac{1}{y-y_1(x)} - \frac{1}{y-y_2(x)}\right)$$
.
General:
 $-\frac{1}{\sum_{j=s_{L-1}}^{s_{L}-1} x^j} \sum_{i=1}^{L} \frac{B(x,y)}{(y-y_i(x)) \prod_{j \neq i} (y_j(x) - y_i(x))}$.
 $B(x,y) = \sum_{n \leq L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n$,
 $y_i(x)$: root of $1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} = 0$.

Coefficient of y^n : $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

- Differentiating identities
- Method of moments: implies $K_n \rightarrow$ Gaussian.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs

Gaps in the Bulk

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	0000000000000	●○○○○○	೦೦೦೦೦೦೦೦	oo
Distributior	of Gaps			

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	০০০০০০০০০০০০০০০০	●○○○○○	೦೦೦೦೦೦೦೦೦	oo
Distributio	on of Gaps			

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length *k*.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	0000000000000	●○○○○○		00
Distributio	n of Gaps			

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1}]$ is of length *k*.

What is $P(k) = \lim_{n \to \infty} P_n(k)$?

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	0000000000000	●○○○○○		00
Distributio	n of Gaps			

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length *k*.

What is $P(k) = \lim_{n \to \infty} P_n(k)$?

Can ask similar questions about binary or other expansions: $2012 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^2$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	0000000000000	○●○○○○	೦೦೦೦೦೦೦೦೦	oo
Main Resu	llts			

Theorem (Base *B* Gap Distribution)

For base *B* decompositions, $P(0) = \frac{(B-1)(B-2)}{B^2}$, and for $k \ge 1$, $P(k) = c_B B^{-k}$, with $c_B = \frac{(B-1)(3B-2)}{B^2}$.

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, $P(k) = \frac{\phi(\phi-1)}{\phi^k}$ for $k \ge 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	00000000000000	00000	00000000	00

Main Results

Theorem

Let $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_LH_{n+1-L}$ be a positive linear recurrence of length L where $c_i \ge 1$ for all $1 \le i \le L$. Then P(j) =

$$\begin{cases} 1 - (\frac{a_1}{C_{Lek}})(\lambda_1^{-n+2} - \lambda_1^{-n+1} + 2\lambda_1^{-1} + a_1^{-1} - 3) & j = 0\\ \lambda_1^{-1}(\frac{1}{C_{Lek}})(\lambda_1(1 - 2a_1) + a_1) & j = 1\\ (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right)\lambda_1^{-j} & j \ge 2 \end{cases}$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	oooooooooooooo	○○●○○○	೦೦೦೦೦೦೦೦	oo
Proof of Fi	bonacci Result			

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	೦೦೦೦೦೦೦೦೦೦೦೦೦	○○○●○○		00
Calculating	y X _{i,i+k}			

Number of choices is $F_{n-k-2-i}F_{i-1}$:

Number of choices is $F_{n-k-2-i}F_{i-1}$:

For the indices less than *i*: F_{i-1} choices. Why? Have F_i , don't have F_{i-1} . Follows by Zeckendorf: like the interval $[F_i, F_{i+1})$ as have F_i , number elements is $F_{i+1} - F_i = F_{i-1}$.

Number of choices is $F_{n-k-2-i}F_{i-1}$:

For the indices less than *i*: F_{i-1} choices. Why? Have F_i , don't have F_{i-1} . Follows by Zeckendorf: like the interval $[F_i, F_{i+1})$ as have F_i , number elements is $F_{i+1} - F_i = F_{i-1}$.

For the indices greater than i + k: $F_{n-k-i-2}$ choices. Why? Have F_n , don't have F_{i+k+1} . Like Zeckendorf with potential summands F_{i+k+2}, \ldots, F_n . Shifting, like summands $F_1, \ldots, F_{n-k-i-1}$, giving $F_{n-k-i-2}$.
Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	ooooooooooooo	○○○○●○	୦୦୦୦୦୦୦୦	oo
Determining	P(k)			

$$\sum_{i=1}^{n-k} X_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1}F_{n-k-i-2}$$

- $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^2$, where g(x) is the generating function of the Fibonaccis.
- Alternatively, use Binet's formula and get sums of geometric series.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	oooooooooooooo	○○○○●○	ooooooooo	oo
Determining	P(k)			

$$\sum_{i=1}^{n-k} X_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1}F_{n-k-i-2}$$

- $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^2$, where g(x) is the generating function of the Fibonaccis.
- Alternatively, use Binet's formula and get sums of geometric series.

$$P(k) = C/\phi^k$$
 for a constant C, so $P(k) = 1/\phi^k$.

ntro 000000	Gaussianity 0000000000000	Gaps (Bulk) ○○○○○●	Longest Gap	Future / Refs

•
$$m = \sum_{j=1}^{k(m)} F_{i_j},$$

 $\nu_{m;n}(\mathbf{x}) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta(\mathbf{x} - (i_j - i_{j-1})).$

•
$$\mu_{m,n}(t) = \int \mathbf{x}^t \mathrm{d}\nu_{m;n}(\mathbf{x}).$$

- Show $\mathbb{E}_m[\mu_{m;n}(t)]$ equals average gap moments, $\mu(t)$.
- Show $\mathbb{E}_m[(\mu_{m;n}(t) \mu(t))^2]$ and $\mathbb{E}_m[(\mu_{m;n}(t) \mu(t))^4]$ tend to zero.

Key ideas: (1) Replace k(m) with average (Gaussianity); (2) use $X_{i,i+g_1,j,j+g_2}$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs

Longest Gap

For most recurrences, our central result is

Theorem (Mean and Variance of Longest Gap)

Let λ_1 be the largest eigenvalue of the recurrence, γ be Euler's constant, and K a constant that is a polynomial in λ_1 . Then the mean and variance of the longeset gap are:

$$\mu_n = \frac{\log (nK)}{\log \lambda_1} + \frac{\gamma}{\log \lambda_1} - \frac{1}{2} + o(1)$$

$$\sigma_n^2 = \frac{\pi^2}{6(\log \lambda_1)^2} + o(1).$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	0000000000000	০০০০০০	○●○○○○○○○	
Strategy				

Our argument follows three main steps:

- Find a rational generating function S_f(x) for the number of m ∈ (H_n, H_{n+1}] with longest gap less than f.
- Obtain an approximate formula for the CDF of the longest gap.
- Estimate the mean and variance using Partial Summation and the Euler Maclaurin Formula.

For the fibonacci numbers, our generating function is

$$\mathsf{S}_{\mathsf{f}}(x) = rac{x}{1-x-x^2+x^{\mathsf{f}}}.$$

From this we obtain

Theorem (Longest Gap Asymptotic CDF)

As $n \to \infty$, the probability that $m \in [F_n, F_{n+1})$ has longest gap less than or equal to f(n) converges to

$$\operatorname{Prob}\left(L_n(m) \leq f(n)\right) \approx e^{-e^{\log n - f(n)/\log \phi}}.$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	೦೦೦೦೦೦೦೦೦೦೦೦೦	000000	○○○●○○○○○	oo
Generatin	g Function: I			

For *k* fixed the number of $m \in [F_n, F_{n+1})$ with *k* summands and **longest gap less than** *f* equals the coefficient of x^n for in the expression

$$\frac{1}{1-x}\left[\sum_{j=2}^{f(n)-2}x^j\right]^{k-1}$$

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	ooooooooooooooo	000000	○○○○●○○○○	oo
Generatin	g Function: II			

Why the *n*th coefficient of
$$\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1}$$
?

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	০০০০০০০০০০০০০০০০	೦೦೦೦೦೦	○○○○●○○○○	00
Generati	na Function: II			

Why the *n*th coefficient of
$$\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1}$$
?
Let $m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\cdots-g_{n-1}}$. The gaps uniquely identify *m* because of Zeckendorf's Theorem! And we have the following:

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	০০০০০০০০০০০০০০০০	೦೦೦೦೦೦	○○○○●○○○○	00
Generati	na Function: II			

Why the *n*th coefficient of
$$\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1}$$
?

Let $m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\cdots-g_{n-1}}$. The gaps uniquely identify *m* because of Zeckendorf's Theorem! And we have the following:

• The sum of the gaps of x is $\leq n$.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	০০০০০০০০০০০০০০০০	೦೦೦೦೦೦	○○○○●○○○○	00
Generati	na Function: II			

Why the *n*th coefficient of
$$\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1}$$
?

Let $m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\dots-g_{n-1}}$. The gaps uniquely identify *m* because of Zeckendorf's Theorem! And we have the following:

- The sum of the gaps of x is $\leq n$.
- Each gap is \geq 2.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	০০০০০০০০০০০০০০০	೦೦೦೦೦೦	○○○○●○○○○	oo
Generatir	na Function: II			

Why the *n*th coefficient of
$$\frac{1}{1-x} \left(\sum_{j=2}^{f(n)-1} x^j \right)^{k-1}$$
?

Let $m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\dots-g_{n-1}}$. The gaps uniquely identify *m* because of Zeckendorf's Theorem! And we have the following:

- The sum of the gaps of x is $\leq n$.
- Each gap is \geq 2.
- Each gap is < f.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	0000000000000	oooooo	○○○○○●○○○	00
Generating	Function: III			

If we **sum** over *k* we get the total **number** of $m \in [F_n, F_{n+1})$ with longest gap < f. It's the *n*th coefficient of

$$F(x) = \frac{1}{1-x} \sum_{k=1}^{\infty} \left(\frac{x^2 - x^{f-2}}{1-x} \right)^{k-1} = \frac{x}{1-x - x^2 + x^f}.$$

We analyze asymptotic behavior of the coefficients of

$$S_f(x) = \frac{x}{1-x-x^2+x^f}$$

as *n*, *f* vary.

- Use a partial fraction decomposition.
- Problem: What happens to the roots of $1 x x^2 + x^f$ as *f* varies?
- Solution: $1 x x^2 + x^f$ has a unique smallest root α_f which converges to $1/\phi$ for large *f*.
- The contribution of α_f dominates, allowing us to obtain an approximate *CDF*.

Convergence to mean is at best approximately $n^{-\delta}$ for some small $\delta > 0$. Computing numerics is difficult:

 $F_{n+1} = F_n + F_{n-1}$: Sampling 100 numbers from $[F_n, F_{n+1}]$ with n = 1,000,000.

- Mean predicted : 28.73 vs. observed: 28.51
- Variance predicted : 2.67 vs. observed: 2.44

 $a_{n+1} = 2a_n + 4a_{n-1}$: Sampling 100 numbers from $[a_n, a_{n+1})$ with n = 51, 200.

- Mean predicted : 9.95 vs. observed: 9.91
- Variance predicted : 1.09 vs. observed: 1.22

 $F_{n+1} = F_n + F_{n-1}$: Sampling 20 numbers from $[F_n, F_{n+1}]$ with n = 10,000,000.

- Mean predicted : 33.52 vs. observed: 33.60
- Variance predicted : 2.67 vs. observed: 2.33

 $a_{n+1} = 2a_n + 4a_{n-1}$: Sampling 100 numbers from $[a_n, a_{n+1})$ with n = 102, 400.

- Mean predicted : 10.54 vs. observed: 10.45
- Variance predicted : 1.09 vs. observed: 1.10

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	oooooooooooooo	000000	೦೦೦೦೦೦೦೦೦	

Future Work and References

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	০০০০০০০০০০০০০০০০	000000	೦೦೦೦೦೦೦೦	●○
Future Res	earch			

Future Research

- Generalizing results to all PLRS and signed decompositions.
- Other systems such as f-Decompositions of Demontigny, Do, Miller and Varma.

Intro	Gaussianity	Gaps (Bulk)	Longest Gap	Future / Refs
0000000	oooooooooooooo	000000	ooooooooo	○●
References				

References

 Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson: The Average Gap Distribution for Generalized Zeckendorf Decompositions. The Fibonacci Quarterly 51 (2013), 13–27.

http://arxiv.org/abs/1208.5820.

 Bower, Insoft, Li, Miller and Tosteson: Distribution of gaps in generalized Zeckendorf decompositions, preprint 2014. http://arxiv.org/abs/1402.3912.

 Kologlu, Kopp, Miller and Wang: On the number of summands in Zeckendorf decompositions, Fibonacci Quarterly 49 (2011), no. 2, 116–130.

http://arxiv.org/pdf/1008.3204.

 Miller and Wang: Gaussian Behavior in Generalized Zeckendorf Decompositions, to appear in the conference proceedings of the 2011 Combinatorial and Additive Number Theory Conference.

http://arxiv.org/pdf/1107.2718.pdf.