Cookie Monster Meets the Fibonacci Numbers. Mmmmmm - Theorems!

Steven J. Miller (MC'96)

http://www.williams.edu/Mathematics/sjmiller/public_html
Yale University, April 14, 2014

Introduction

Goals of the Talk

- You can join in: minimal background needed!
- Ask questions: lots of natural problems ignored.
- Look for 'right' perspective: generating fns, partial fractions.
- End with open problems.

Joint with Olivia Beckwith, Amanda Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Philip Tosteson.

Pre-requisites: Probability Review

- Let X be random variable with density $p(x)$: $\diamond p(x) \geq 0 ; \int_{-\infty}^{\infty} p(x) d x=1$;
$\diamond \operatorname{Prob}(a \leq X \leq b)=\int_{a}^{b} p(x) d x$.
- Mean: $\mu=\int_{-\infty}^{\infty} x p(x) d x$.
- Variance: $\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x$.
- Gaussian: Density $\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right)$.

Pre-requisites: Combinatorics Review

- n!: number of ways to order n people, order matters.
- $\frac{n!}{k!(n-k)!}=n C k=\binom{n}{k}$: number of ways to choose k from n, order doesn't matter.
- Stirling's Formula: $n!\approx n^{n} e^{-n} \sqrt{2 \pi n}$.

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
$F_{1}=1, F_{2}=2, F_{3}=3, F_{4}=5, \ldots$

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
$F_{1}=1, F_{2}=2, F_{3}=3, F_{4}=5, \ldots$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
$F_{1}=1, F_{2}=2, F_{3}=3, F_{4}=5, \ldots$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2012=1597+377+34+3+1=F_{16}+F_{13}+F_{8}+F_{3}+F_{1}$.

Previous Results

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
$F_{1}=1, F_{2}=2, F_{3}=3, F_{4}=5, \ldots$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2012=1597+377+34+3+1=F_{16}+F_{13}+F_{8}+F_{3}+F_{1}$.

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $\left[F_{n}, F_{n+1}\right]$ tends to $\frac{n}{\varphi^{2}+1} \approx .276 n$, where $\varphi=\frac{1+\sqrt{5}}{2}$ is the golden mean.

Old Results

Central Limit Type Theorem

As $n \rightarrow \infty$ distribution of number of summands in Zeckendorf decomposition for $m \in\left[F_{n}, F_{n+1}\right.$) is Gaussian (normal).

Figure: Number of summands in $\left[F_{2010}, F_{2011}\right) ; F_{2010} \approx 10^{420}$.

New Results: Bulk Gaps: $m \in\left[F_{n}, F_{n+1}\right)$ and $\phi=\frac{1+\sqrt{5}}{2}$

$$
m=\sum_{j=1}^{k(m)=n} F_{i j}, \quad \nu_{m ; n}(x)=\frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta\left(x-\left(i_{j}-i_{j-1}\right)\right) .
$$

Theorem (Zeckendorf Gap Distribution)

Gap measures $\nu_{m ; n}$ converge almost surely to average gap measure where $P(k)=1 / \phi^{k}$ for $k \geq 2$.

Figure: Distribution of gaps in $\left[F_{1000}, F_{1001}\right) ; F_{2010} \approx 10^{208}$.

New Results: Longest Gap

Theorem (Longest Gap)

As $n \rightarrow \infty$, the probability that $m \in\left[F_{n}, F_{n+1}\right)$ has longest gap less than or equal to $f(n)$ converges to

$$
\operatorname{Prob}\left(L_{n}(m) \leq f(n)\right) \approx e^{-e^{\log n-t(n) / \log \phi}} .
$$

Immediate Corollary: If $f(n)$ grows slower or faster than $\log n / \log \phi$, then $\operatorname{Prob}\left(L_{n}(m) \leq f(n)\right)$ goes to $\mathbf{0}$ or $\mathbf{1}$, respectively.

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider $C+P-1$ cookies in a line.
Cookie Monster eats $P-1$ cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider $C+P-1$ cookies in a line.
Cookie Monster eats $P-1$ cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.
Example: 8 cookies and 5 people ($C=8, P=5$):

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider $C+P-1$ cookies in a line.
Cookie Monster eats $P-1$ cookies: $\binom{C+P-1}{P-1}$ ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people ($C=8, P=5$):

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider $C+P-1$ cookies in a line.
Cookie Monster eats $P-1$ cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.
Example: 8 cookies and 5 people ($C=8, P=5$):

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_{1}+\cdots+x_{P}=C$ with $x_{i} \geq 0$ is $\binom{C+P-1}{P-1}$.

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_{1}+\cdots+x_{P}=C$ with $x_{i} \geq 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_{1}+\cdots+x_{P}=C$ with $x_{i} \geq 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in\left[F_{n}, F_{n+1}\right)$, the largest summand is F_{n}.

$$
N=F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{k-1}}+F_{n}
$$

$$
1 \leq i_{1}<i_{2}<\cdots<i_{k-1}<i_{k}=n, i_{j}-i_{j-1} \geq 2
$$

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_{1}+\cdots+x_{P}=C$ with $x_{i} \geq 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in\left[F_{n}, F_{n+1}\right)$, the largest summand is F_{n}.

$$
\begin{gathered}
N=F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{k-1}}+F_{n} \\
1 \leq i_{1}<i_{2}<\cdots<i_{k-1}<i_{k}=n, i_{j}-i_{j-1} \geq 2 . \\
d_{1}:=i_{1}-1, d_{j}:=i_{j}-i_{j-1}-2(j>1) . \\
d_{1}+d_{2}+\cdots+d_{k}=n-2 k+1, d_{j} \geq 0 .
\end{gathered}
$$

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_{1}+\cdots+x_{P}=C$ with $x_{i} \geq 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in\left[F_{n}, F_{n+1}\right)$, the largest summand is F_{n}.

$$
\begin{gathered}
N=F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{k-1}}+F_{n} \\
1 \leq i_{1}<i_{2}<\cdots<i_{k-1}<i_{k}=n, i_{j}-i_{j-1} \geq 2 . \\
d_{1}:=i_{1}-1, d_{j}:=i_{j}-i_{j-1}-2(j>1) . \\
d_{1}+d_{2}+\cdots+d_{k}=n-2 k+1, d_{j} \geq 0 .
\end{gathered}
$$

Cookie counting $\Rightarrow p_{n, k}=\binom{n-2 k+1+k-1}{k-1}=\binom{n-k}{k-1}$.

Gaussian Behavior

Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As $n \rightarrow \infty$, the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

Sketch of proof: Use Stirling's formula,

$$
n!\approx n^{n} e^{-n} \sqrt{2 \pi n}
$$

to approximates binomial coefficients, after a few pages of algebra find the probabilities are approximately Gaussian.

(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in $\left[F_{n}, F_{n+1}\right)$ is $f_{n}(k)=\binom{n-1-k}{k} / F_{n-1}$. Consider the density for the $n+1$ case. Then we have, by Stirling

$$
\begin{aligned}
f_{n+1}(k) & =\binom{n-k}{k} \frac{1}{F_{n}} \\
& =\frac{(n-k)!}{(n-2 k)!k!} \frac{1}{F_{n}}=\frac{1}{\sqrt{2 \pi}} \frac{(n-k)^{n-k+\frac{1}{2}}}{k^{\left(k+\frac{1}{2}\right)}(n-2 k)^{n-2 k+\frac{1}{2}}} \frac{1}{F_{n}}
\end{aligned}
$$

plus a lower order correction term.
Also we can write $F_{n}=\frac{1}{\sqrt{5}} \phi^{n+1}=\frac{\phi}{\sqrt{5}} \phi^{n}$ for large n, where ϕ is the golden ratio (we are using relabeled Fibonacci numbers where $1=F_{1}$ occurs once to help dealing with uniqueness and $F_{2}=2$). We can now split the terms that exponentially depend on n.

$$
f_{n+1}(k)=\left(\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{(n-k)}{k(n-2 k)}} \frac{\sqrt{5}}{\phi}\right)\left(\phi^{-n} \frac{(n-k)^{n-k}}{k^{k}(n-2 k)^{n-2 k}}\right)
$$

Define

$$
N_{n}=\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{(n-k)}{k(n-2 k)}} \frac{\sqrt{5}}{\phi}, \quad S_{n}=\phi^{-n} \frac{(n-k)^{n-k}}{k^{k}(n-2 k)^{n-2 k}} .
$$

Thus, write the density function as

$$
f_{n+1}(k)=N_{n} S_{n}
$$

where N_{n} is the first term that is of order $n^{-1 / 2}$ and S_{n} is the second term with exponential dependence on n.

(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable $k=\mu+x \sigma$ where μ and σ are the mean and the standard deviation, and depend on n. The discrete weights of $f_{n}(k)$ will become continuous. This requires us to use the change of variable formula to compensate for the change of scales:

$$
f_{n}(k) d k=f_{n}(\mu+\sigma x) \sigma d x .
$$

Using the change of variable, we can write N_{n} as

$$
\begin{aligned}
N_{n} & =\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{n-k}{k(n-2 k)}} \frac{\phi}{\sqrt{5}} \\
& =\frac{1}{\sqrt{2 \pi n}} \sqrt{\frac{1-k / n}{(k / n)(1-2 k / n)}} \frac{\sqrt{5}}{\phi} \\
& =\frac{1}{\sqrt{2 \pi n}} \sqrt{\frac{1-(\mu+\sigma x) / n}{((\mu+\sigma x) / n)(1-2(\mu+\sigma x) / n)}} \frac{\sqrt{5}}{\phi} \\
& =\frac{1}{\sqrt{2 \pi n}} \sqrt{\frac{1-C-y}{(C+y)(1-2 C-2 y)}} \frac{\sqrt{5}}{\phi}
\end{aligned}
$$

where $C=\mu / n \approx 1 /(\phi+2)$ (note that $\phi^{2}=\phi+1$) and $y=\sigma x / n$. But for large n, the y term vanishes since $\sigma \sim \sqrt{n}$ and thus $y \sim n^{-1 / 2}$. Thus

$$
N_{n} \approx \frac{1}{\sqrt{2 \pi n}} \sqrt{\frac{1-C}{C(1-2 C)}} \frac{\sqrt{5}}{\phi}=\frac{1}{\sqrt{2 \pi n}} \sqrt{\frac{(\phi+1)(\phi+2)}{\phi}} \frac{\sqrt{5}}{\phi}=\frac{1}{\sqrt{2 \pi n}} \sqrt{\frac{5(\phi+2)}{\phi}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}}
$$

since $\sigma^{2}=n \frac{\phi}{5(\phi+2)}$.

(Sketch of the) Proof of Gaussianity

For the second term S_{n}, take the logarithm and once again change variables by $k=\mu+x \sigma$,

$$
\begin{aligned}
\log \left(S_{n}\right)= & \log \left(\phi^{-n} \frac{(n-k)^{(n-k)}}{k^{k}(n-2 k)^{(n-2 k)}}\right) \\
= & -n \log (\phi)+(n-k) \log (n-k)-(k) \log (k) \\
& -(n-2 k) \log (n-2 k) \\
= & -n \log (\phi)+(n-(\mu+x \sigma)) \log (n-(\mu+x \sigma)) \\
& -(\mu+x \sigma) \log (\mu+x \sigma) \\
& -(n-2(\mu+x \sigma)) \log (n-2(\mu+x \sigma)) \\
= & -n \log (\phi) \\
& +(n-(\mu+x \sigma))\left(\log (n-\mu)+\log \left(1-\frac{x \sigma}{n-\mu}\right)\right) \\
& -(\mu+x \sigma)\left(\log (\mu)+\log \left(1+\frac{x \sigma}{\mu}\right)\right) \\
& -(n-2(\mu+x \sigma))\left(\log (n-2 \mu)+\log \left(1-\frac{x \sigma}{n-2 \mu}\right)\right) \\
= & -n \log (\phi) \\
& +(n-(\mu+x \sigma))\left(\log \left(\frac{n}{\mu}-1\right)+\log \left(1-\frac{x \sigma}{n-\mu}\right)\right) \\
& -(\mu+x \sigma) \log \left(1+\frac{x \sigma}{\mu}\right) \\
& -(n-2(\mu+x \sigma))\left(\log \left(\frac{n}{\mu}-2\right)+\log \left(1-\frac{x \sigma}{n-2 \mu}\right)\right) .
\end{aligned}
$$

(Sketch of the) Proof of Gaussianity

Note that, since $n / \mu=\phi+2$ for large n, the constant terms vanish. We have $\log \left(S_{n}\right)$

$$
\begin{aligned}
= & -n \log (\phi)+(n-k) \log \left(\frac{n}{\mu}-1\right)-(n-2 k) \log \left(\frac{n}{\mu}-2\right)+(n-(\mu+x \sigma)) \log \left(1-\frac{x \sigma}{n-\mu}\right) \\
& -(\mu+x \sigma) \log \left(1+\frac{x \sigma}{\mu}\right)-(n-2(\mu+x \sigma)) \log \left(1-\frac{x \sigma}{n-2 \mu}\right) \\
= & -n \log (\phi)+(n-k) \log (\phi+1)-(n-2 k) \log (\phi)+(n-(\mu+x \sigma)) \log \left(1-\frac{x \sigma}{n-\mu}\right) \\
& -(\mu+x \sigma) \log \left(1+\frac{x \sigma}{\mu}\right)-(n-2(\mu+x \sigma)) \log \left(1-\frac{x \sigma}{n-2 \mu}\right) \\
= & n\left(-\log (\phi)+\log \left(\phi^{2}\right)-\log (\phi)\right)+k\left(\log \left(\phi^{2}\right)+2 \log (\phi)\right)+(n-(\mu+x \sigma)) \log \left(1-\frac{x \sigma}{n-\mu}\right) \\
& -(\mu+x \sigma) \log \left(1+\frac{x \sigma}{\mu}\right)-(n-2(\mu+x \sigma)) \log \left(1-2 \frac{x \sigma}{n-2 \mu}\right) \\
= & (n-(\mu+x \sigma)) \log \left(1-\frac{x \sigma}{n-\mu}\right)-(\mu+x \sigma) \log \left(1+\frac{x \sigma}{\mu}\right) \\
& -(n-2(\mu+x \sigma)) \log \left(1-2 \frac{x \sigma}{n-2 \mu}\right) .
\end{aligned}
$$

(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of $x \sigma / n$.

$$
\begin{aligned}
\log \left(S_{n}\right)= & (n-(\mu+x \sigma))\left(-\frac{x \sigma}{n-\mu}-\frac{1}{2}\left(\frac{x \sigma}{n-\mu}\right)^{2}+\ldots\right) \\
& -(\mu+x \sigma)\left(\frac{x \sigma}{\mu}-\frac{1}{2}\left(\frac{x \sigma}{\mu}\right)^{2}+\ldots\right) \\
& -(n-2(\mu+x \sigma))\left(-2 \frac{x \sigma}{n-2 \mu}-\frac{1}{2}\left(2 \frac{x \sigma}{n-2 \mu}\right)^{2}+\ldots\right) \\
= & (n-(\mu+x \sigma))\left(-\frac{x \sigma}{n \frac{(\phi+1)}{(\phi+2)}}-\frac{1}{2}\left(\frac{x \sigma}{n \frac{(\phi+1)}{(\phi+2)}}\right)^{2}+\ldots\right) \\
& -(\mu+x \sigma)\left(\frac{x \sigma}{\frac{n}{\phi+2}}-\frac{1}{2}\left(\frac{x \sigma}{\frac{n}{\phi+2}}\right)^{2}+\ldots\right) \\
& -(n-2(\mu+x \sigma))\left(-\frac{2 x \sigma}{n \frac{\phi}{\phi+2}}-\frac{1}{2}\left(\frac{2 x \sigma}{n \frac{\phi}{\phi+2}}\right)^{2}+\ldots\right) \\
= & \frac{x \sigma}{n} n\left(-\left(1-\frac{1}{\phi+2}\right) \frac{(\phi+2)}{(\phi+1)}-1+2\left(1-\frac{2}{\phi+2}\right) \frac{\phi+2}{\phi}\right) \\
& -\frac{1}{2}\left(\frac{x \sigma}{n}\right)^{2} n\left(-2 \frac{\phi+2}{\phi+1}+\frac{\phi+2}{\phi+1}+2(\phi+2)-(\phi+2)+4 \frac{\phi+2}{\phi}\right) \\
& +O\left(n(x \sigma / n)^{3}\right)
\end{aligned}
$$

(Sketch of the) Proof of Gaussianity

$$
\begin{aligned}
\log \left(S_{n}\right)= & \frac{x \sigma}{n} n\left(-\frac{\phi+1}{\phi+2} \frac{\phi+2}{\phi+1}-1+2 \frac{\phi}{\phi+2} \frac{\phi+2}{\phi}\right) \\
& -\frac{1}{2}\left(\frac{x \sigma}{n}\right)^{2} n(\phi+2)\left(-\frac{1}{\phi+1}+1+\frac{4}{\phi}\right) \\
& +O\left(n\left(\frac{x \sigma}{n}\right)^{3}\right) \\
= & -\frac{1}{2} \frac{(x \sigma)^{2}}{n}(\phi+2)\left(\frac{3 \phi+4}{\phi(\phi+1)}+1\right)+O\left(n\left(\frac{x \sigma}{n}\right)^{3}\right) \\
= & -\frac{1}{2} \frac{(x \sigma)^{2}}{n}(\phi+2)\left(\frac{3 \phi+4+2 \phi+1}{\phi(\phi+1)}\right)+O\left(n\left(\frac{x \sigma}{n}\right)^{3}\right) \\
= & -\frac{1}{2} x^{2} \sigma^{2}\left(\frac{5(\phi+2)}{\phi n}\right)+O\left(n(x \sigma / n)^{3}\right) .
\end{aligned}
$$

(Sketch of the) Proof of Gaussianity

But recall that

$$
\sigma^{2}=\frac{\phi n}{5(\phi+2)} .
$$

Also, since $\sigma \sim n^{-1 / 2}, n\left(\frac{x \sigma}{n}\right)^{3} \sim n^{-1 / 2}$. So for large n, the $O\left(n\left(\frac{x \sigma}{n}\right)^{3}\right)$ term vanishes. Thus we are left with

$$
\begin{aligned}
\log S_{n} & =-\frac{1}{2} x^{2} \\
S_{n} & =e^{-\frac{1}{2} x^{2}}
\end{aligned}
$$

Hence, as n gets large, the density converges to the normal distribution:

$$
\begin{aligned}
f_{n}(k) d k & =N_{n} S_{n} d k \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} x^{2}} \sigma d x \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x .
\end{aligned}
$$

Generalizations

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$
H_{n+1}=c_{1} H_{n}+c_{2} H_{n-1}+\cdots+c_{L} H_{n-L+1}, n \geq L
$$

with $H_{1}=1, H_{n+1}=c_{1} H_{n}+c_{2} H_{n-1}+\cdots+c_{n} H_{1}+1, n<L$, coefficients $c_{i} \geq 0 ; c_{1}, c_{L}>0$ if $L \geq 2 ; c_{1}>1$ if $L=1$.

- Zeckendorf: Every positive integer can be written uniquely as $\sum a_{i} H_{i}$ with natural constraints on the a_{i} 's (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker
- Central Limit Type Theorem

Generalizing Lekkerkerker

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in $\left[H_{n}, H_{n+1}\right.$) tends to $C n+d$ as $n \rightarrow \infty$, where $C>0$ and d are computable constants determined by the c_{i} 's.

$$
\begin{gathered}
C=-\frac{y^{\prime}(1)}{y(1)}=\frac{\sum_{m=0}^{L-1}\left(s_{m}+s_{m+1}-1\right)\left(s_{m+1}-s_{m}\right) y^{m}(1)}{2 \sum_{m=0}^{L-1}(m+1)\left(s_{m+1}-s_{m}\right) y^{m}(1)} . \\
s_{0}=0, s_{m}=c_{1}+c_{2}+\cdots+c_{m} .
\end{gathered}
$$

$y(x)$ is the root of $1-\sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} x^{j} y^{m+1}$.
$y(1)$ is the root of $1-c_{1} y-c_{2} y^{2}-\cdots-c_{L} y^{L}$.

Central Limit Type Theorem

Central Limit Type Theorem

As $n \rightarrow \infty$, the distribution of the number of summands, i.e., $a_{1}+a_{2}+\cdots+a_{m}$ in the generalized Zeckendorf decomposition $\sum_{i=1}^{m} a_{i} H_{i}$ for integers in $\left[H_{n}, H_{n+1}\right)$ is Gaussian.

Example: the Special Case of $L=1, c_{1}=10$

$$
H_{n+1}=10 H_{n}, H_{1}=1, H_{n}=10^{n-1} .
$$

- Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_{i} H_{i}$:

$$
a_{i} \in\{0,1, \ldots, 9\}(1 \leq i<m), a_{m} \in\{1, \ldots, 9\} .
$$

- For $N \in\left[H_{n}, H_{n+1}\right), m=n$, i.e., first term is $a_{n} H_{n}=a_{n} 10^{n-1}$.
- A_{i} : the corresponding random variable of a_{i}. The A_{i} 's are independent.
- For large n, the contribution of A_{n} is immaterial. $A_{i}(1 \leq i<n)$ are identically distributed random variables
with mean 4.5 and variance 8.25.
- Central Limit Theorem: $A_{2}+A_{3}+\cdots+A_{n} \rightarrow$ Gaussian with mean $4.5 n+O(1)$ and variance $8.25 n+O(1)$.

Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_{n}$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Example: $1900=F_{17}-F_{14}-F_{10}+F_{6}+F_{2}$.
K : \# of positive terms, L : \# of negative terms.
Generalized Lekkerkerker's Theorem
As $n \rightarrow \infty, E[K]$ and $E[L] \rightarrow n / 10$.
$E[K]-E[L]=\varphi / 2 \approx .809$.

Central Limit Type Theorem

As $n \rightarrow \infty, K$ and L converges to a bivariate Gaussian.

- $\operatorname{corr}(K, L)=-(21-2 \varphi) /(29+2 \varphi) \approx-.551$,

$$
\varphi=\frac{\sqrt{5}+1}{2} .
$$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] .
$$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$
- Generating function: $g(x)=\sum_{n>0} F_{n} x^{n}$.

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$
- Generating function: $g(x)=\sum_{n>0} \boldsymbol{F}_{n} x^{n}$.
(1) $\Rightarrow \sum_{n \geq 2} \boldsymbol{F}_{n+1} x^{n+1}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 2} \boldsymbol{F}_{n-1} x^{n+1}$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$
- Generating function: $g(x)=\sum_{n>0} \boldsymbol{F}_{n} x^{n}$.
(1) $\Rightarrow \sum_{n \geq 2} \boldsymbol{F}_{n+1} x^{n+1}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 2} \boldsymbol{F}_{n-1} x^{n+1}$

$$
\Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 1} \boldsymbol{F}_{n} x^{n+2}
$$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$
- Generating function: $g(x)=\sum_{n>0} \boldsymbol{F}_{n} x^{n}$.
(1) $\Rightarrow \sum_{n \geq 2} \boldsymbol{F}_{n+1} x^{n+1}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 2} \boldsymbol{F}_{n-1} x^{n+1}$
$\Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 1} \boldsymbol{F}_{n} x^{n+2}$
$\Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=x \sum_{n \geq 2} \boldsymbol{F}_{n} x^{n}+x^{2} \sum_{n \geq 1} \boldsymbol{F}_{n} x^{n}$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$
- Generating function: $g(x)=\sum_{n>0} \boldsymbol{F}_{n} x^{n}$.
(1) $\Rightarrow \sum_{n \geq 2} \boldsymbol{F}_{n+1} x^{n+1}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 2} \boldsymbol{F}_{n-1} x^{n+1}$

$$
\begin{aligned}
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 1} \boldsymbol{F}_{n} x^{n+2} \\
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=x \sum_{n \geq 2} \boldsymbol{F}_{n} x^{n}+x^{2} \sum_{n \geq 1} \boldsymbol{F}_{n} x^{n} \\
& \Rightarrow g(x)-\boldsymbol{F}_{1} x-\boldsymbol{F}_{2} x^{2}=x\left(g(x)-\boldsymbol{F}_{1} x\right)+x^{2} g(x)
\end{aligned}
$$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$
\begin{equation*}
\boldsymbol{F}_{1}=\boldsymbol{F}_{2}=1 ; \boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] . \tag{1}
\end{equation*}
$$

- Recurrence relation: $\boldsymbol{F}_{n+1}=\boldsymbol{F}_{n}+\boldsymbol{F}_{n-1}$
- Generating function: $g(x)=\sum_{n>0} \boldsymbol{F}_{n} x^{n}$.

$$
\begin{aligned}
(1) & \Rightarrow \sum_{n \geq 2} \boldsymbol{F}_{n+1} x^{n+1}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 2} \boldsymbol{F}_{n-1} x^{n+1} \\
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=\sum_{n \geq 2} \boldsymbol{F}_{n} x^{n+1}+\sum_{n \geq 1} \boldsymbol{F}_{n} x^{n+2} \\
& \Rightarrow \sum_{n \geq 3} \boldsymbol{F}_{n} x^{n}=x \sum_{n \geq 2} \boldsymbol{F}_{n} x^{n}+x^{2} \sum_{n \geq 1} \boldsymbol{F}_{n} x^{n} \\
& \Rightarrow g(x)-\boldsymbol{F}_{1} x-\boldsymbol{F}_{2} x^{2}=x\left(g(x)-\boldsymbol{F}_{1} x\right)+x^{2} g(x) \\
& \Rightarrow g(x)=x /\left(1-x-x^{2}\right) .
\end{aligned}
$$

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x)=\sum_{n>0} F_{n} x^{n}=\frac{x}{1-x-x^{2}}$.

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x)=\sum_{n>0} F_{n} x^{n}=\frac{x}{1-x-x^{2}}$.
- Partial fraction expansion:

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x)=\sum_{n>0} F_{n} x^{n}=\frac{x}{1-x-x^{2}}$.
- Partial fraction expansion:

$$
\Rightarrow g(x)=\frac{x}{1-x-x^{2}}=\frac{1}{\sqrt{5}}\left(\frac{\frac{1+\sqrt{5}}{2} x}{1-\frac{1+\sqrt{5}}{2} x}-\frac{\frac{-1+\sqrt{5}}{2} x}{1-\frac{-1+\sqrt{5}}{2} x}\right) .
$$

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x)=\sum_{n>0} F_{n} x^{n}=\frac{x}{1-x-x^{2}}$.
- Partial fraction expansion:

$$
\Rightarrow g(x)=\frac{x}{1-x-x^{2}}=\frac{1}{\sqrt{5}}\left(\frac{\frac{1+\sqrt{5}}{2} x}{1-\frac{1+\sqrt{5}}{2} x}-\frac{\frac{-1+\sqrt{5}}{2} x}{1-\frac{-1+\sqrt{5}}{2} x}\right) .
$$

Coefficient of x^{n} (power series expansion):

$$
\boldsymbol{F}_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{-1+\sqrt{5}}{2}\right)^{n}\right] \text { - Binet's Formula! }
$$

(using geometric series: $\frac{1}{1-r}=1+r+r^{2}+r^{3}+\cdots$).

Differentiating Identities and Method of Moments

- Differentiating identities

Example: Given a random variable X such that
$\operatorname{Pr}(X=1)=\frac{1}{2}, \operatorname{Pr}(X=2)=\frac{1}{4}, \operatorname{Pr}(X=3)=\frac{1}{8}, \ldots$.
then what's the mean of X (i.e., $E[X])$?
Solution: Let $f(x)=\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\cdots=\frac{1}{1-x / 2}-1$.

$$
\begin{gathered}
f^{\prime}(x)=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4} x+3 \cdot \frac{1}{8} x^{2}+\cdots . \\
f^{\prime}(1)=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{8}+\cdots=E[X] .
\end{gathered}
$$

- Method of moments: Random variables X_{1}, X_{2}, \ldots. If $\ell^{\text {th }}$ moments $E\left[X_{n}^{\ell}\right]$ converges those of standard normal then X_{n} converges to a Gaussian.
Standard normal distribution:
$2 m^{\text {th }}$ moment: $(2 m-1)!!=(2 m-1)(2 m-3) \cdots 1$,
$(2 m-1)^{\text {th }}$ moment: 0 .

New Approach: Case of Fibonacci Numbers

$p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

- Recurrence relation:

$$
\begin{gathered}
N \in\left[F_{n+1}, F_{n+2}\right): N=F_{n+1}+F_{t}+\cdots, t \leq n-1 . \\
p_{n+1, k+1}=p_{n-1, k}+p_{n-2, k}+\cdots .
\end{gathered}
$$

New Approach: Case of Fibonacci Numbers

$p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

- Recurrence relation:

$$
\begin{aligned}
& N \in\left[F_{n+1}, F_{n+2}\right): N=F_{n+1}+F_{t}+\cdots, t \leq n-1 . \\
& p_{n+1, k+1}=p_{n-1, k}+p_{n-2, k}+\cdots \\
& p_{n, k+1}=p_{n-2, k}+p_{n-3, k}+\cdots .
\end{aligned}
$$

New Approach: Case of Fibonacci Numbers

$p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

- Recurrence relation:

$$
\begin{aligned}
& N \in\left[F_{n+1}, F_{n+2}\right): N=F_{n+1}+F_{t}+\cdots, t \leq n-1 . \\
& p_{n+1, k+1}=p_{n-1, k}+p_{n-2, k}+\cdots \\
& p_{n, k+1}=p_{n-2, k}+p_{n-3, k}+\cdots \\
& \Rightarrow p_{n+1, k+1}=p_{n, k+1}+p_{n-1, k} .
\end{aligned}
$$

New Approach: Case of Fibonacci Numbers

$p_{n, k}=\#\left\{N \in\left[F_{n}, F_{n+1}\right)\right.$: the Zeckendorf decomposition of N has exactly k summands $\}$.

- Recurrence relation:

$$
\begin{aligned}
N \in\left[F_{n+1}, F_{n+2}\right): N= & F_{n+1}+F_{t}+\cdots, t \leq n-1 . \\
p_{n+1, k+1} & =p_{n-1, k}+p_{n-2, k}+\cdots \\
p_{n, k+1} & =p_{n-2, k}+p_{n-3, k}+\cdots \\
\Rightarrow p_{n+1, k+1} & =p_{n, k+1}+p_{n-1, k}
\end{aligned}
$$

- Generating function: $\sum_{n, k>0} p_{n, k} x^{k} y^{n}=\frac{y}{1-y-x y^{2}}$.
- Partial fraction expansion:

$$
\frac{y}{1-y-x y^{2}}=-\frac{y}{y_{1}(x)-y_{2}(x)}\left(\frac{1}{y-y_{1}(x)}-\frac{1}{y-y_{2}(x)}\right)
$$

where $y_{1}(x)$ and $y_{2}(x)$ are the roots of $1-y-x y^{2}=0$.
Coefficient of $y^{n}: g(x)=\sum_{k>0} p_{n, k} x^{k}$.

New Approach: Case of Fibonacci Numbers (Continued)

 K_{n} : the corresponding random variable associated with k. $g(x)=\sum_{k>0} p_{n, k} x^{k}$.- Differentiating identities:

$$
\begin{aligned}
& g(1)=\sum_{k>0} p_{n, k}=F_{n+1}-F_{n} \\
& g^{\prime}(x)=\sum_{k>0} k p_{n, k} x^{k-1}, g^{\prime}(1)=g(1) E\left[K_{n}\right] \\
& \left(x g^{\prime}(x)\right)^{\prime}=\sum_{k>0} k^{2} p_{n, k} x^{k-1} \\
& \left.\left(x g^{\prime}(x)\right)^{\prime}\right|_{x=1}=g(1) E\left[K_{n}^{2}\right] \\
& \left.\left(x\left(x g^{\prime}(x)\right)^{\prime}\right)^{\prime}\right|_{x=1}=g(1) E\left[K_{n}^{3}\right], \ldots
\end{aligned}
$$

Similar results hold for the centralized K_{n} : $K_{n}^{\prime}=K_{n}-E\left[K_{n}\right]$.

- Method of moments (for normalized K_{n}^{\prime}):
$E\left[\left(K_{n}^{\prime}\right)^{2 m}\right] /\left(S D\left(K_{n}^{\prime}\right)\right)^{2 m} \rightarrow(2 m-1)!$!,
$E\left[\left(K_{n}^{\prime}\right)^{2 m-1}\right] /\left(S D\left(K_{n}^{\prime}\right)\right)^{2 m-1} \rightarrow 0$
$\Rightarrow K_{n} \rightarrow$ Gaussian.

New Approach: General Case

Let $p_{n, k}=\#\left\{N \in\left[H_{n}, H_{n+1}\right)\right.$: the generalized Zeckendorf decomposition of N has exactly k summands $\}$.

- Recurrence relation:

Fibonacci: $p_{n+1, k+1}=p_{n, k+1}+p_{n, k}$.
General: $p_{n+1, k}=\sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} p_{n-m, k-j}$. where $s_{0}=0, s_{m}=c_{1}+c_{2}+\cdots+c_{m}$.

- Generating function:

Fibonacci: $\frac{y}{1-y-x y^{2}}$.
General:

$$
\frac{\sum_{n \leq L} p_{n, k} x^{k} y^{n}-\sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} x^{j} y^{m+1} \sum_{n<L-m} p_{n, k} x^{k} y^{n}}{1-\sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} x^{j} y^{m+1}}
$$

New Approach: General Case (Continued)

- Partial fraction expansion:

Fibonacci: $-\frac{y}{y_{1}(x)-y_{2}(x)}\left(\frac{1}{y-y_{1}(x)}-\frac{1}{y-y_{2}(x)}\right)$.
General:

$$
\begin{aligned}
& \text { General: } \frac{1}{\sum_{j=s_{L-1}}^{s_{L}-1} x^{j}} \sum_{i=1}^{L} \frac{B(x, y)}{\left(y-y_{i}(x)\right) \prod_{j \neq i}\left(y_{j}(x)-y_{i}(x)\right)} . \\
& B(x, y)=\sum_{n \leq L} p_{n, k} x^{k} y^{n}-\sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} x^{j} y^{m+1} \sum_{n<L-m} p_{n, k} x^{k} y^{n}, \\
& y_{i}(x) \text { : root of } 1-\sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} x^{j} y^{m+1}=0 .
\end{aligned}
$$

Coefficient of $y^{n}: g(x)=\sum_{n, k>0} p_{n, k} x^{k}$.

- Differentiating identities
- Method of moments: implies $K_{n} \rightarrow$ Gaussian.

Gaps in the Bulk

Distribution of Gaps

For $F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{n}}$, the gaps are the differences
$i_{n}-i_{n-1}, i_{n-1}-i_{n-2}, \ldots, i_{2}-i_{1}$.

Distribution of Gaps

For $F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{n}}$, the gaps are the differences
$i_{n}-i_{n-1}, i_{n-1}-i_{n-2}, \ldots, i_{2}-i_{1}$.
Example: For $F_{1}+F_{8}+F_{18}$, the gaps are 7 and 10.

Distribution of Gaps

For $F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{n}}$, the gaps are the differences $i_{n}-i_{n-1}, i_{n-1}-i_{n-2}, \ldots, i_{2}-i_{1}$.

Example: For $F_{1}+F_{8}+F_{18}$, the gaps are 7 and 10 .
Let $P_{n}(k)$ be the probability that a gap for a decomposition in $\left[F_{n}, F_{n+1}\right)$ is of length k.

Distribution of Gaps

For $F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{n}}$, the gaps are the differences $i_{n}-i_{n-1}, i_{n-1}-i_{n-2}, \ldots, i_{2}-i_{1}$.

Example: For $F_{1}+F_{8}+F_{18}$, the gaps are 7 and 10 .
Let $P_{n}(k)$ be the probability that a gap for a decomposition in $\left[F_{n}, F_{n+1}\right)$ is of length k.

What is $P(k)=\lim _{n \rightarrow \infty} P_{n}(k)$?

Distribution of Gaps

For $F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{n}}$, the gaps are the differences
$i_{n}-i_{n-1}, i_{n-1}-i_{n-2}, \ldots, i_{2}-i_{1}$.
Example: For $F_{1}+F_{8}+F_{18}$, the gaps are 7 and 10 .
Let $P_{n}(k)$ be the probability that a gap for a decomposition in $\left[F_{n}, F_{n+1}\right)$ is of length k.

What is $P(k)=\lim _{n \rightarrow \infty} P_{n}(k)$?
Can ask similar questions about binary or other expansions: $2012=2^{10}+2^{9}+2^{8}+2^{7}+2^{6}+2^{4}+2^{3}+2^{2}$.

Main Results

Theorem (Base B Gap Distribution)

For base B decompositions, $P(0)=\frac{(B-1)(B-2)}{B^{2}}$, and for $k \geq 1, P(k)=c_{B} B^{-k}$, with $c_{B}=\frac{(B-1)(3 B-2)}{B^{2}}$.

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, $P(k)=\frac{\phi(\phi-1)}{\phi^{k}}$ for $k \geq 2$, with $\phi=\frac{1+\sqrt{5}}{2}$ the golden mean.

Main Results

Theorem

Let $H_{n+1}=c_{1} H_{n}+c_{2} H_{n-1}+\cdots+c_{L} H_{n+1-L}$ be a positive linear recurrence of length L where $c_{i} \geq 1$ for all $1 \leq i \leq L$. Then $P(j)=$

$$
\begin{cases}1-\left(\frac{a_{1}}{C_{L e k}}\right)\left(\lambda_{1}^{-n+2}-\lambda_{1}^{-n+1}+2 \lambda_{1}^{-1}+a_{1}^{-1}-3\right) & j=0 \\ \lambda_{1}^{-1}\left(\frac{1}{c_{\text {Lek }}}\right)\left(\lambda_{1}\left(1-2 a_{1}\right)+a_{1}\right) & j=1 \\ \left(\lambda_{1}-1\right)^{2}\left(\frac{a_{1}}{C_{L e k}}\right) \lambda_{1}^{-j} & j \geq 2\end{cases}
$$

Proof of Fibonacci Result

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^{2}+1}$.

Proof of Fibonacci Result

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^{2}+1}$.
Let $X_{i, j}=\#\left\{m \in\left[F_{n}, F_{n+1}\right)\right.$: decomposition of m includes
F_{i}, F_{j}, but not F_{q} for $\left.i<q<j\right\}$.

Proof of Fibonacci Result

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^{2}+1}$.
Let $X_{i, j}=\#\left\{m \in\left[F_{n}, F_{n+1}\right)\right.$: decomposition of m includes F_{i}, F_{j}, but not F_{q} for $\left.i<q<j\right\}$.

$$
P(k)=\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n-k} X_{i, i+k}}{F_{n-1} \frac{n}{\phi^{2}+1}} .
$$

Calculating $X_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?

Calculating $X_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?
Number of choices is $F_{n-k-2-i} F_{i-1}$:

Calculating $X_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?
Number of choices is $F_{n-k-2-i} F_{i-1}$:
For the indices less than i : F_{i-1} choices. Why? Have F_{i}, don't have F_{i-1}. Follows by Zeckendorf: like the interval [F_{i}, F_{i+1}) as have F_{i}, number elements is $F_{i+1}-F_{i}=F_{i-1}$.

Calculating $X_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?
Number of choices is $F_{n-k-2-i} F_{i-1}$:
For the indices less than i : F_{i-1} choices. Why? Have F_{i}, don't have F_{i-1}. Follows by Zeckendorf: like the interval [F_{i}, F_{i+1}) as have F_{i}, number elements is $F_{i+1}-F_{i}=F_{i-1}$.

For the indices greater than $i+k: F_{n-k-i-2}$ choices. Why? Have F_{n}, don't have F_{i+k+1}. Like Zeckendorf with potential summands F_{i+k+2}, \ldots, F_{n}. Shifting, like summands $F_{1}, \ldots, F_{n-k-i-1}$, giving $F_{n-k-i-2}$.

Determining $P(k)$

$$
\sum_{i=1}^{n-k} X_{i, i+k}=F_{n-k-1}+\sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2}
$$

- $\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^{2}$, where $g(x)$ is the generating function of the Fibonaccis.
- Alternatively, use Binet's formula and get sums of geometric series.

Determining $P(k)$

$$
\sum_{i=1}^{n-k} X_{i, i+k}=F_{n-k-1}+\sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2}
$$

- $\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^{2}$, where $g(x)$ is the generating function of the Fibonaccis.
- Alternatively, use Binet's formula and get sums of geometric series.
$P(k)=C / \phi^{k}$ for a constant C, so $P(k)=1 / \phi^{k}$.

Proof sketch of almost sure convergence

- $m=\sum_{j=1}^{k(m)} F_{i j}$,
$\nu_{m ; n}(x)=\frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta\left(x-\left(i_{j}-i_{j-1}\right)\right)$.
- $\mu_{m, n}(t)=\int x^{t} \mathrm{~d} \nu_{m ; n}(x)$.
- Show $\mathbb{E}_{m}\left[\mu_{m ; n}(t)\right]$ equals average gap moments, $\mu(t)$.
- Show $\mathbb{E}_{m}\left[\left(\mu_{m ; n}(t)-\mu(t)\right)^{2}\right]$ and $\mathbb{E}_{m}\left[\left(\mu_{m ; n}(t)-\mu(t)\right)^{4}\right]$ tend to zero.

Key ideas: (1) Replace $k(m)$ with average (Gaussianity);
(2) use $X_{i, i+g_{1}, j, j+g_{2}}$.

Longest Gap

Longest Gap

For most recurrences, our central result is

Theorem (Mean and Variance of Longest Gap)

Let λ_{1} be the largest eigenvalue of the recurrence, γ be Euler's constant, and K a constant that is a polynomial in λ_{1}. Then the mean and variance of the longeset gap are:

$$
\begin{aligned}
\mu_{n} & =\frac{\log (n K)}{\log \lambda_{1}}+\frac{\gamma}{\log \lambda_{1}}-\frac{1}{2}+o(1) \\
\sigma_{n}^{2} & =\frac{\pi^{2}}{6\left(\log \lambda_{1}\right)^{2}}+o(1) .
\end{aligned}
$$

Strategy

Our argument follows three main steps:

- Find a rational generating function $S_{f}(x)$ for the number of $m \in\left(H_{n}, H_{n+1}\right]$ with longest gap less than f.
- Obtain an approximate formula for the CDF of the longest gap.
- Estimate the mean and variance using Partial Summation and the Euler Maclaurin Formula.

Fibonacci case

For the fibonacci numbers, our generating function is

$$
S_{f}(x)=\frac{x}{1-x-x^{2}+x^{f}} .
$$

From this we obtain

Theorem (Longest Gap Asymptotic CDF)

As $n \rightarrow \infty$, the probability that $m \in\left[F_{n}, F_{n+1}\right)$ has longest gap less than or equal to $f(n)$ converges to

$$
\operatorname{Prob}\left(L_{n}(m) \leq f(n)\right) \approx e^{-e^{\log n-f(n) / \log \phi}} .
$$

Generating Function: I

For k fixed the number of $m \in\left[F_{n}, F_{n+1}\right)$ with k summands and longest gap less than f equals the coefficient of x^{n} for in the expression

$$
\frac{1}{1-x}\left[\sum_{j=2}^{f(n)-2} x^{j}\right]^{k-1}
$$

Generating Function: II

Why the $n^{\text {th }}$ coefficient of $\frac{1}{1-x}\left(\sum_{j=2}^{f(n)-1} x^{j}\right)^{k-1} ?$

Generating Function: II

Why the $n^{\text {th }}$ coefficient of $\frac{1}{1-x}\left(\sum_{j=2}^{f(n)-1} x^{j}\right)^{k-1}$?
Let $m=F_{n}+F_{n-g_{1}}+F_{n-g_{1}-g_{2}}+\cdots+F_{n-g_{1}-\cdots-g_{n-1}}$. The gaps uniquely identify m because of Zeckendorf's Theorem! And we have the following:

Generating Function: II

Why the $n^{\text {th }}$ coefficient of $\frac{1}{1-x}\left(\sum_{j=2}^{f(n)-1} x^{j}\right)^{k-1}$?
Let $m=F_{n}+F_{n-g_{1}}+F_{n-g_{1}-g_{2}}+\cdots+F_{n-g_{1}-\cdots-g_{n-1}}$. The gaps uniquely identify m because of Zeckendorf's Theorem! And we have the following:

- The sum of the gaps of x is $\leq n$.

Generating Function: II

Why the $n^{\text {th }}$ coefficient of $\frac{1}{1-x}\left(\sum_{j=2}^{f(n)-1} x^{j}\right)^{k-1}$?
Let $m=F_{n}+F_{n-g_{1}}+F_{n-g_{1}-g_{2}}+\cdots+F_{n-g_{1}-\cdots-g_{n-1}}$. The gaps uniquely identify m because of Zeckendorf's Theorem! And we have the following:

- The sum of the gaps of x is $\leq n$.
- Each gap is ≥ 2.

Generating Function: II

Why the $n^{\text {th }}$ coefficient of $\frac{1}{1-x}\left(\sum_{j=2}^{f(n)-1} x^{j}\right)^{k-1}$?
Let $m=F_{n}+F_{n-g_{1}}+F_{n-g_{1}-g_{2}}+\cdots+F_{n-g_{1}-\cdots-g_{n-1}}$. The gaps uniquely identify m because of Zeckendorf's Theorem! And we have the following:

- The sum of the gaps of x is $\leq n$.
- Each gap is ≥ 2.
- Each gap is $<f$.

Generating Function: III

If we sum over k we get the total number of $m \in\left[F_{n}, F_{n+1}\right)$ with longest gap $<f$. It's the $n^{\text {th }}$ coefficient of

$$
F(x)=\frac{1}{1-x} \sum_{k=1}^{\infty}\left(\frac{x^{2}-x^{f-2}}{1-x}\right)^{k-1}=\frac{x}{1-x-x^{2}+x^{f}}
$$

Obtaining the CDF

We analyze asymptotic behavior of the coefficients of

$$
S_{f}(x)=\frac{x}{1-x-x^{2}+x^{f}}
$$

as n, f vary.

- Use a partial fraction decomposition.
- Problem: What happens to the roots of $1-x-x^{2}+x^{f}$ as f varies?
- Solution: $1-x-x^{2}+x^{f}$ has a unique smallest root α_{f} which converges to $1 / \phi$ for large f.
- The contribution of α_{f} dominates, allowing us to obtain an approximate CDF.

Numerical Results

Convergence to mean is at best approximately $n^{-\delta}$ for some small $\delta>0$. Computing numerics is difficult:
$F_{n+1}=F_{n}+F_{n-1}$: Sampling 100 numbers from $\left[F_{n}, F_{n+1}\right)$ with $n=1,000,000$.

- Mean predicted : 28.73 vs. observed: 28.51
- Variance predicted : 2.67 vs. observed: 2.44
$a_{n+1}=2 a_{n}+4 a_{n-1}$: Sampling 100 numbers from $\left[a_{n}, a_{n+1}\right)$ with $n=51,200$.
- Mean predicted : 9.95 vs. observed: 9.91
- Variance predicted : 1.09 vs. observed: 1.22

Numerical Results pt 2

$F_{n+1}=F_{n}+F_{n-1}$: Sampling 20 numbers from $\left[F_{n}, F_{n+1}\right)$ with $n=10,000,000$.

- Mean predicted : 33.52 vs. observed: 33.60
- Variance predicted : 2.67 vs. observed: 2.33
$a_{n+1}=2 a_{n}+4 a_{n-1}$: Sampling 100 numbers from [a_{n}, a_{n+1}) with $n=102,400$.
- Mean predicted : 10.54 vs. observed: 10.45
- Variance predicted : 1.09 vs. observed: 1.10

Future Work and References

Future Research

Future Research

- Generalizing results to all PLRS and signed decompositions.
- Other systems such as f-Decompositions of Demontigny, Do, Miller and Varma.

References

References

- Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson: The Average Gap Distribution for Generalized Zeckendorf Decompositions. The Fibonacci Quarterly 51 (2013), 13-27.
http://arxiv.org/abs/1208.5820.
- Bower, Insoft, Li, Miller and Tosteson: Distribution of gaps in generalized Zeckendorf decompositions, preprint 2014.
http://arxiv.org/abs/1402.3912.
- Kologlu, Kopp, Miller and Wang: On the number of summands in Zeckendorf decompositions, Fibonacci Quarterly 49 (2011), no. 2, 116-130.

$$
\text { http://arxiv.org/pdf/1008. } 3204 .
$$

- Miller and Wang: Gaussian Behavior in Generalized Zeckendorf Decompositions, to appear in the conference proceedings of the 2011 Combinatorial and Additive Number Theory Conference.
http://arxiv.org/pdf/1107.2718.pdf.

