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Introduction
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Goals of the Talk

You can join in: minimal background needed!

Ask questions: lots of natural problems ignored.

Look for ‘right’ perspective: generating fns, partial fractions.

End with open problems.

Joint with Olivia Beckwith, Amanda Bower, Louis Gaudet,
Rachel Insoft, Shiyu Li, Philip Tosteson.
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Pre-requisites: Probability Review
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Let X be random variable with density p(x):
⋄ p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

⋄ Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .

Mean: µ =
∫∞
−∞ xp(x)dx .

Variance: σ2 =
∫∞
−∞(x − µ)2p(x)dx .

Gaussian: Density (2πσ2)−1/2 exp(−(x − µ)2/2σ2).
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Pre-requisites: Combinatorics Review

n!: number of ways to order n people, order matters.

n!
k !(n−k)! = nCk =

(n
k

)

: number of ways to choose k from n,
order doesn’t matter.

Stirling’s Formula: n! ≈ nne−n
√

2πn.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Old Results

Central Limit Type Theorem

As n → ∞ distribution of number of summands in Zeckendorf
decomposition for m ∈ [Fn,Fn+1) is Gaussian (normal).
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Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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New Results: Bulk Gaps: m ∈ [Fn,Fn+1) and φ = 1+
√

5
2

m =

k(m)=n
∑

j=1

Fij , νm;n(x) =
1

k(m)− 1

k(m)
∑

j=2

δ
(

x − (ij − ij−1)
)

.

Theorem (Zeckendorf Gap Distribution)

Gap measures νm;n converge almost surely to average gap
measure where P(k) = 1/φk for k ≥ 2.
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Figure: Distribution of gaps in [F1000,F1001); F2010 ≈ 10208.
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New Results: Longest Gap

Theorem (Longest Gap)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log φ
.

Immediate Corollary: If f (n) grows slower or faster than
log n/ logφ, then Prob(Ln(m) ≤ f (n)) goes to 0 or 1,
respectively.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):

18



Intro Gaussianity Gaps (Bulk) Longest Gap Future / Refs

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1 + k−1

k−1

)

=
(n−k

k−1

)

.
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Gaussian Behavior
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Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,

n! ≈ nne−n
√

2πn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fn , Fn+1) is

fn(k) =
(

n−1−k
k

)

/Fn−1. Consider the density for the n + 1 case. Then we have, by Stirling

fn+1(k) =

(

n − k

k

)

1

Fn

=
(n − k)!

(n − 2k)!k !

1

Fn
=

1
√

2π

(n − k)n−k+ 1
2

k(k+ 1
2 )

(n − 2k)n−2k+ 1
2

1

Fn

plus a lower order correction term.

Also we can write Fn = 1
√

5
φn+1 = φ

√

5
φn for large n, where φ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F1 occurs once to help dealing with uniqueness and F2 = 2). We can now split the
terms that exponentially depend on n.

fn+1(k) =

(

1
√

2π

√

(n − k)

k(n − 2k)

√
5

φ

)(

φ
−n (n − k)n−k

kk (n − 2k)n−2k

)

.

Define

Nn =
1

√
2π

√

(n − k)

k(n − 2k)

√
5

φ
, Sn = φ

−n (n − k)n−k

kk (n − 2k)n−2k
.

Thus, write the density function as
fn+1(k) = NnSn

where Nn is the first term that is of order n−1/2 and Sn is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable k = µ + xσ where µ and σ are the
mean and the standard deviation, and depend on n. The discrete weights of fn(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fn(k)dk = fn(µ + σx)σdx.

Using the change of variable, we can write Nn as

Nn =
1

√
2π

√

n − k

k(n − 2k)

φ
√

5

=
1

√
2πn

√

1 − k/n

(k/n)(1 − 2k/n)

√
5

φ

=
1

√
2πn

√

1 − (µ + σx)/n

((µ + σx)/n)(1 − 2(µ + σx)/n)

√
5

φ

=
1

√
2πn

√

1 − C − y

(C + y)(1 − 2C − 2y)

√
5

φ

where C = µ/n ≈ 1/(φ + 2) (note that φ2 = φ + 1) and y = σx/n. But for large n, the y term vanishes since

σ ∼
√

n and thus y ∼ n−1/2. Thus

Nn ≈
1

√
2πn

√

1 − C

C(1 − 2C)

√
5

φ
=

1
√

2πn

√

(φ + 1)(φ + 2)

φ

√
5

φ
=

1
√

2πn

√

5(φ + 2)

φ
=

1
√

2πσ2

since σ2 = n φ
5(φ+2) .
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(Sketch of the) Proof of Gaussianity

For the second term Sn , take the logarithm and once again change variables by k = µ + xσ,

log(Sn) = log

(

φ
−n (n − k)(n−k)

kk (n − 2k)(n−2k)

)

= −n log(φ) + (n − k) log(n − k) − (k) log(k)

− (n − 2k) log(n − 2k)

= −n log(φ) + (n − (µ + xσ)) log(n − (µ + xσ))

− (µ + xσ) log(µ + xσ)

− (n − 2(µ + xσ)) log(n − 2(µ + xσ))

= −n log(φ)

+ (n − (µ + xσ))

(

log(n − µ) + log
(

1 −
xσ

n − µ

))

− (µ + xσ)

(

log(µ) + log
(

1 +
xσ

µ

))

− (n − 2(µ + xσ))

(

log(n − 2µ) + log
(

1 −
xσ

n − 2µ

))

= −n log(φ)

+ (n − (µ + xσ))

(

log
(

n

µ
− 1
)

+ log
(

1 −
xσ

n − µ

))

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ))

(

log
(

n

µ
− 2
)

+ log
(

1 −
xσ

n − 2µ

))

.
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(Sketch of the) Proof of Gaussianity

Note that, since n/µ = φ + 2 for large n, the constant terms vanish. We have log(Sn)

= −n log(φ) + (n − k) log
(

n

µ
− 1

)

− (n − 2k) log
(

n

µ
− 2
)

+ (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 −
xσ

n − 2µ

)

= −n log(φ) + (n − k) log (φ + 1) − (n − 2k) log (φ) + (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 −
xσ

n − 2µ

)

= n(− log(φ) + log
(

φ
2
)

− log (φ)) + k(log(φ2
) + 2 log(φ)) + (n − (µ + xσ)) log

(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 − 2
xσ

n − 2µ

)

= (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 − 2
xσ

n − 2µ

)

.
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(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of xσ/n.

log(Sn) = (n − (µ + xσ))

(

−
xσ

n − µ
−

1

2

(

xσ

n − µ

)2
+ . . .

)

− (µ + xσ)

(

xσ

µ
−

1

2

(

xσ

µ

)2
+ . . .

)

− (n − 2(µ + xσ))

(

−2
xσ

n − 2µ
−

1

2

(

2
xσ

n − 2µ

)2
+ . . .

)

= (n − (µ + xσ))



−
xσ

n (φ+1)
(φ+2)

−
1

2





xσ

n (φ+1)
(φ+2)





2

+ . . .





− (µ + xσ)





xσ
n

φ+2

−
1

2





xσ
n

φ+2





2

+ . . .





− (n − 2(µ + xσ))



−
2xσ

n φ
φ+2

−
1

2





2xσ

n φ
φ+2





2

+ . . .





=
xσ

n
n

(

−

(

1 −
1

φ + 2

)

(φ + 2)

(φ + 1)
− 1 + 2

(

1 −
2

φ + 2

)

φ + 2

φ

)

−
1

2

(

xσ

n

)2
n
(

−2
φ + 2

φ + 1
+

φ + 2

φ + 1
+ 2(φ + 2) − (φ + 2) + 4

φ + 2

φ

)

+O
(

n (xσ/n)3
)
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(Sketch of the) Proof of Gaussianity

log(Sn) =
xσ

n
n
(

−
φ + 1

φ + 2

φ + 2

φ + 1
− 1 + 2

φ

φ + 2

φ + 2

φ

)

−
1

2

(

xσ

n

)2
n(φ + 2)

(

−
1

φ + 1
+ 1 +

4

φ

)

+O

(

n
(

xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(

3φ + 4

φ(φ + 1)
+ 1

)

+ O

(

n
(

xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(

3φ + 4 + 2φ + 1

φ(φ + 1)

)

+ O

(

n
(

xσ

n

)3
)

= −
1

2
x2

σ
2
(

5(φ + 2)

φn

)

+ O
(

n (xσ/n)3
)

.
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(Sketch of the) Proof of Gaussianity

But recall that

σ
2
=

φn

5(φ + 2)
.

Also, since σ ∼ n−1/2, n
(

xσ
n

)3
∼ n−1/2. So for large n, the O

(

n
(

xσ
n

)3
)

term vanishes. Thus we are left

with

log Sn = −
1

2
x2

Sn = e−
1
2 x2

.

Hence, as n gets large, the density converges to the normal distribution:

fn(k)dk = NnSndk

=
1

√
2πσ2

e−
1
2 x2

σdx

=
1

√
2π

e−
1
2 x2

dx.

�
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf: Every positive integer can be written
uniquely as

∑

aiHi with natural constraints on the ai ’s
(e.g. cannot use the recurrence relation to remove
any summand).
Lekkerkerker
Central Limit Type Theorem
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Generalizing Lekkerkerker

Generalized Lekkerkerker’s Theorem
The average number of summands in the generalized
Zeckendorf decomposition for integers in [Hn,Hn+1) tends
to Cn + d as n → ∞, where C > 0 and d are computable
constants determined by the ci ’s.

C = −y ′(1)
y(1)

=

∑L−1
m=0(sm + sm+1 − 1)(sm+1 − sm)ym(1)

2
∑L−1

m=0(m + 1)(sm+1 − sm)ym(1)
.

s0 = 0, sm = c1 + c2 + · · ·+ cm.

y(x) is the root of 1 −
∑L−1

m=0

∑sm+1−1
j=sm

x jym+1.

y(1) is the root of 1 − c1y − c2y2 − · · · − cLyL.
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Central Limit Type Theorem

Central Limit Type Theorem
As n → ∞, the distribution of the number of summands,
i.e., a1 + a2 + · · ·+ am in the generalized Zeckendorf
decomposition

∑m
i=1 aiHi for integers in [Hn,Hn+1) is

Gaussian.

1000 1050 1100 1150 1200

0.005

0.010

0.015

0.020
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0, 1, . . . , 9} (1 ≤ i < m), am ∈ {1, . . . , 9}.
For N ∈ [Hn,Hn+1), m = n, i.e., first term is
anHn = an10n−1.
Ai : the corresponding random variable of ai .
The Ai ’s are independent.
For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random
variables
with mean 4.5 and variance 8.25.
Central Limit Theorem: A2 +A3 + · · ·+An → Gaussian
with mean 4.5n + O(1)
and variance 8.25n + O(1).
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the
±Fn’s, such that every two terms of the same (opposite)
sign differ in index by at least 4 (3).

Example: 1900 = F17 − F14 − F10 + F6 + F2.

K : # of positive terms, L: # of negative terms.
Generalized Lekkerkerker’s Theorem
As n → ∞, E [K ] and E [L] → n/10.
E [K ] − E [L] = ϕ/2 ≈ .809.

Central Limit Type Theorem
As n → ∞, K and L converges to a bivariate Gaussian.

corr(K , L) = −(21 − 2ϕ)/(29 + 2ϕ) ≈ −.551,
ϕ =

√
5+1
2 .

K + L and K − L are independent.
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1 − x − x2).
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1 − x − x2
=

1√
5

(

1+
√

5
2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)

.
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1 − x − x2
=

1√
5

(

1+
√

5
2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)

.

Coefficient of xn (power series expansion):

F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

- Binet’s Formula!

(using geometric series: 1
1−r = 1 + r + r2 + r3 + · · · ).
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Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Pr(X = 1) = 1
2 , Pr(X = 2) = 1

4 , Pr(X = 3) = 1
8 , ....

then what’s the mean of X (i.e., E [X ])?

Solution: Let f (x) = 1
2x + 1

4x2 + 1
8x3 + · · · = 1

1−x/2 − 1.

f ′(x) = 1 · 1
2 + 2 · 1

4x + 3 · 1
8x2 + · · · .

f ′(1) = 1 · 1
2 + 2 · 1

4 + 3 · 1
8 + · · · = E [X ].

Method of moments: Random variables X1, X2, . . . .
If ℓth moments E [X ℓ

n ] converges those of standard
normal then Xn converges to a Gaussian.

Standard normal distribution :
2mth moment: (2m − 1)!! = (2m − 1)(2m − 3) · · ·1,
(2m − 1)th moment: 0.
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
pn,k+1 = pn−2,k + pn−3,k + · · ·
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
pn,k+1 = pn−2,k + pn−3,k + · · ·

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
pn,k+1 = pn−2,k + pn−3,k + · · ·

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0 pn,kxkyn = y
1−y−xy2 .

Partial fraction expansion:
y

1 − y − xy2
= − y

y1(x)− y2(x)

(

1
y − y1(x)

− 1
y − y2(x)

)

where y1(x) and y2(x) are the roots of 1 − y − xy2 = 0.

Coefficient of yn: g(x) =
∑

k>0 pn,kxk .
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New Approach: Case of Fibonacci Numbers (Continued)
Kn: the corresponding random variable associated with k .
g(x) =

∑

k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],

(xg′(x))′ =
∑

k>0 k2pn,kxk−1,

(xg′(x))′ |x=1 = g(1)E [K 2
n ],

(

x (xg′(x))′
)′ |x=1 = g(1)E [K 3

n ], ...

Similar results hold for the centralized Kn:
K ′

n = Kn − E [Kn].
Method of moments (for normalized K ′

n):

E [(K ′
n)

2m]/(SD(K ′
n))

2m → (2m − 1)!!,

E [(K ′
n)

2m−1]/(SD(K ′
n))

2m−1 → 0. ⇒ Kn → Gaussian.
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New Approach: General Case

Let pn,k = # {N ∈ [Hn,Hn+1): the generalized Zeckendorf
decomposition of N has exactly k summands}.

Recurrence relation:
Fibonacci: pn+1,k+1 = pn,k+1 + pn,k .

General: pn+1,k =
∑L−1

m=0

∑sm+1−1
j=sm

pn−m,k−j .

where s0 = 0, sm = c1 + c2 + · · ·+ cm.

Generating function:
Fibonacci: y

1−y−xy2 .

General:
∑

n≤L pn,kxkyn −
∑L−1

m=0

∑sm+1−1
j=sm

x jym+1
∑

n<L−m pn,kxkyn

1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1
.
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(

1
y−y1(x)

− 1
y−y2(x)

)

.

General:

− 1
∑sL−1

j=sL−1
x j

L
∑

i=1

B(x , y)
(y − yi(x))

∏

j 6=i (yj(x)− yi(x))
.

B(x , y) =
∑

n≤L

pn,kxkyn −
L−1
∑

m=0

sm+1−1
∑

j=sm

x jym+1
∑

n<L−m

pn,kxkyn,

yi(x): root of 1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1 = 0.

Coefficient of yn: g(x) =
∑

n,k>0 pn,kxk .

Differentiating identities

Method of moments: implies Kn → Gaussian.
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Gaps in the Bulk
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition
in [Fn,Fn+1) is of length k .
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition
in [Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition
in [Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?

Can ask similar questions about binary or other
expansions: 2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.
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Main Results

Theorem (Base B Gap Distribution)

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for

k ≥ 1, P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P(k) = φ(φ−1)
φk for k ≥ 2,

with φ = 1+
√

5
2 the golden mean.
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Main Results

Theorem
Let Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn+1−L be a positive
linear recurrence of length L where ci ≥ 1 for all 1 ≤ i ≤ L.
Then P(j) =














1 − ( a1
CLek

)(λ−n+2
1 − λ−n+1

1 + 2λ−1
1 + a−1

1 − 3) j = 0

λ−1
1 ( 1

CLek
)(λ1(1 − 2a1) + a1) j = 1

(λ1 − 1)2
(

a1
CLek

)

λ−j
1 j ≥ 2
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi ,j = #{m ∈ [Fn,Fn+1): decomposition of m includes
Fi , Fj , but not Fq for i < q < j}.
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi ,j = #{m ∈ [Fn,Fn+1): decomposition of m includes
Fi , Fj , but not Fq for i < q < j}.

P(k) = lim
n→∞

∑n−k
i=1 Xi ,i+k

Fn−1
n

φ2+1

.
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

Number of choices is Fn−k−2−iFi−1:
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

Number of choices is Fn−k−2−iFi−1:

For the indices less than i : Fi−1 choices. Why? Have Fi ,
don’t have Fi−1. Follows by Zeckendorf: like the interval
[Fi ,Fi+1) as have Fi , number elements is Fi+1 − Fi = Fi−1.
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

Number of choices is Fn−k−2−iFi−1:

For the indices less than i : Fi−1 choices. Why? Have Fi ,
don’t have Fi−1. Follows by Zeckendorf: like the interval
[Fi ,Fi+1) as have Fi , number elements is Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why?
Have Fn, don’t have Fi+k+1. Like Zeckendorf with potential
summands Fi+k+2, . . . ,Fn. Shifting, like summands
F1, . . . ,Fn−k−i−1, giving Fn−k−i−2.
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Determining P(k)

n−k
∑

i=1

Xi ,i+k = Fn−k−1 +

n−k−2
∑

i=1

Fi−1Fn−k−i−2

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2,

where g(x) is the generating function of the
Fibonaccis.

Alternatively, use Binet’s formula and get sums of
geometric series.
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Determining P(k)

n−k
∑

i=1

Xi ,i+k = Fn−k−1 +

n−k−2
∑

i=1

Fi−1Fn−k−i−2

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2,

where g(x) is the generating function of the
Fibonaccis.

Alternatively, use Binet’s formula and get sums of
geometric series.

P(k) = C/φk for a constant C, so P(k) = 1/φk .
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Proof sketch of almost sure convergence

m =
∑k(m)

j=1 Fij ,

νm;n(x) = 1
k(m)−1

∑k(m)
j=2 δ (x − (ij − ij−1)) .

µm,n(t) =
∫

x tdνm;n(x).

Show Em[µm;n(t)] equals average gap moments, µ(t).

Show Em[(µm;n(t)− µ(t))2] and Em[(µm;n(t)− µ(t))4]
tend to zero.

Key ideas: (1) Replace k(m) with average (Gaussianity);
(2) use Xi ,i+g1,j ,j+g2.
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Longest Gap
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Longest Gap

For most recurrences, our central result is

Theorem (Mean and Variance of Longest Gap)

Let λ1 be the largest eigenvalue of the recurrence, γ be
Euler’s constant, and K a constant that is a polynomial in
λ1. Then the mean and variance of the longeset gap are:

µn =
log (nK )

logλ1
+

γ

log λ1
− 1

2
+ o(1)

σ2
n =

π2

6(log λ1)2
+ o(1).
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Strategy

Our argument follows three main steps:

Find a rational generating function Sf (x) for the
number of m ∈ (Hn,Hn+1] with longest gap less than
f .

Obtain an approximate formula for the CDF of the
longest gap.

Estimate the mean and variance using Partial
Summation and the Euler Maclaurin Formula.
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Fibonacci case

For the fibonacci numbers, our generating function is

Sf (x) =
x

1 − x − x2 + x f
.

From this we obtain

Theorem (Longest Gap Asymptotic CDF)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest
gap less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log φ

.
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Generating Function: I

For k fixed the number of m ∈ [Fn,Fn+1) with k summands
and longest gap less than f equals the coefficient of xn

for in the expression

1
1 − x





f (n)−2
∑

j=2

x j





k−1

.
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Generating Function: II

Why the nth coefficient of 1
1−x

(

∑f (n)−1
j=2 x j

)k−1
?
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Generating Function: II

Why the nth coefficient of 1
1−x

(

∑f (n)−1
j=2 x j

)k−1
?

Let m = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1. The
gaps uniquely identify m because of Zeckendorf’s
Theorem! And we have the following:
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Generating Function: II

Why the nth coefficient of 1
1−x

(

∑f (n)−1
j=2 x j

)k−1
?

Let m = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1. The
gaps uniquely identify m because of Zeckendorf’s
Theorem! And we have the following:

The sum of the gaps of x is ≤ n.
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Generating Function: II

Why the nth coefficient of 1
1−x

(

∑f (n)−1
j=2 x j

)k−1
?

Let m = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1. The
gaps uniquely identify m because of Zeckendorf’s
Theorem! And we have the following:

The sum of the gaps of x is ≤ n.
Each gap is ≥ 2.
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Generating Function: II

Why the nth coefficient of 1
1−x

(

∑f (n)−1
j=2 x j

)k−1
?

Let m = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1. The
gaps uniquely identify m because of Zeckendorf’s
Theorem! And we have the following:

The sum of the gaps of x is ≤ n.
Each gap is ≥ 2.
Each gap is < f .
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Generating Function: III

If we sum over k we get the total number of
m ∈ [Fn,Fn+1) with longest gap < f . It’s the nth coefficient
of

F (x) =
1

1 − x

∞
∑

k=1

(

x2 − x f−2

1 − x

)k−1

=
x

1 − x − x2 + x f
.
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Obtaining the CDF

We analyze asymptotic behavior of the coefficients of

Sf (x) =
x

1 − x − x2 + x f

as n, f vary.

Use a partial fraction decomposition.
Problem: What happens to the roots of
1 − x − x2 + x f as f varies?
Solution: 1 − x − x2 + x f has a unique smallest root
αf which converges to 1/φ for large f .
The contribution of αf dominates, allowing us to
obtain an approximate CDF .
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Numerical Results

Convergence to mean is at best approximately n−δ for
some small δ > 0. Computing numerics is difficult :

Fn+1 = Fn + Fn−1: Sampling 100 numbers from [Fn,Fn+1)
with n = 1, 000, 000.

Mean predicted : 28.73 vs. observed: 28.51
Variance predicted : 2.67 vs. observed: 2.44

an+1 = 2an + 4an−1: Sampling 100 numbers from
[an, an+1) with n = 51, 200.

Mean predicted : 9.95 vs. observed: 9.91
Variance predicted : 1.09 vs. observed: 1.22
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Numerical Results pt 2

Fn+1 = Fn + Fn−1: Sampling 20 numbers from [Fn,Fn+1)
with n = 10, 000, 000.

Mean predicted : 33.52 vs. observed: 33.60
Variance predicted : 2.67 vs. observed: 2.33

an+1 = 2an + 4an−1: Sampling 100 numbers from
[an, an+1) with n = 102, 400.

Mean predicted : 10.54 vs. observed: 10.45
Variance predicted : 1.09 vs. observed: 1.10
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Future Work
and References
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Future Research

Future Research

Generalizing results to all PLRS and signed
decompositions.

Other systems such as f-Decompositions of
Demontigny, Do, Miller and Varma.
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