Math/Stat 341: Probability Least Squares Lecture

Steven J Miller Williams College

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller/public_html/

Williams College

2

Introduction

Spring Test

Spring Test

Data from $x_n = 5 + .2n$, $y_n = 5x_n$ plus an error randomly drawn from a normal distribution with mean zero and standard deviation 4. Best fit line of y = 4.99x + .48; thus a = 4.99 and b = .48.

Introduction

Spring Test (continued)

Our value of *b* is significantly off: a = 4.99 and b = .48.

Spring Test (continued)

Our value of *b* is significantly off: a = 4.99 and b = .48.

Using absolute values for errors gives best fit value of *a* is 5.03 and the best fit value of *b* is less than 10^{-10} in absolute value.

Spring Test (continued)

Our value of *b* is significantly off: a = 4.99 and b = .48.

Using absolute values for errors gives best fit value of *a* is 5.03 and the best fit value of *b* is less than 10^{-10} in absolute value.

The difference between these values and those from the Method of Least Squares is in the best fit value of b (the least important of the two parameters), and is due to the different ways of weighting the errors.

8

Zipf's Law

The twenty-five most populous cities (I believe this is American cities from a few years ago):

1,540,351	912,062	754,885	620,535
1,351,305	808,976	703,073	613,190
1,279,910	807,815	687,456	604,477
1,279,329	798,382	669,651	598,707
948,279	757,688	636,919	598,541
	1,540,351 1,351,305 1,279,910 1,279,329 948,279	1,540,351912,0621,351,305808,9761,279,910807,8151,279,329798,382948,279757,688	1,540,351912,062754,8851,351,305808,976703,0731,279,910807,815687,4561,279,329798,382669,651948,279757,688636,919

Figure: Plot of rank versus population

Figure: Plot of rank versus log(population)

Figure: Plot of log(rank) versus log(population)

Plot of 100 most populous cities

Figure: Plot of rank versus population

Plot of 100 most populous cities: log-log plot

Figure: Plot of log(rank) versus log(population)

Word Counts

Figure: Plot of rank versus occurrences

Word Counts

Figure: Plot of log(rank) versus log(occurrences)

Word Counts

The First Hundred						
1. the 2. of 3. and 4. a 5. to 6. in 7. is 8. you 9. that 10. it 11. he 12. was 13. for 14. on 15. are 16. as 17. with 18. his 19. they 20. I	21. at 22. be 23. this 24. have 25. from 26. or 27. one 28. had 29. by 30. word 31. but 32. not 33. what 34. all 35. were 36. we 37. when 38. your 39. can 40. said	41. there 42. use 43. an 44. each 45. which 46. she 47. do 48. how 49. their 50. if 51. will 52. up 53. other 54. about 55. out 56. many 57. then 58. them 59. these 60. so	61. some 62. her 63. would 64. make 65. like 66. him 67. into 68. time 69. has 70. look 71. two 72. more 73. write 74. go 75. see 76. number 77. no 78. way 79. could 80. people	81. my 82. than 83. first 84. water 85. been 86. call 87. who 88. oil 89. its 90. now 91. find 92. long 93. down 94. day 95. did 96. get 97. come 98. made 99. may 100. art		

Coin Problem

- Toss n die, each k-sides, numbers 1, 2, ...,
 k all equally likely.
- Take largest number as result, call it m.

• Get
$$1 - \frac{m}{k}$$
.

• Theory predicts....

Coin Problem

- Toss n die, each k-sides, numbers 1, 2, ...,
 k all equally likely.
- Take largest number as result, call it m.

• Get
$$1 - \frac{m}{k}$$
.

• Theory predicts....
$$e^{-n/k}/(n+1)$$
.

Numerical Data (semi-log plot, using 1/k)

Least Squares Analysis

```
In[289]:= Clear[x]
     lm = LinearModelFit[list, x, x]
     Clear[x]
     llm = LinearModelFit[loglist, x, x]
     Clear[x]
     slm = LinearModelFit[semiloglist, x, x]
Out[270]= FittedModel 0.00990019-0.518556 x
Out[272]= FittedModel _-4.88236 -0.0314637 x
Out[274]= FittedModel __4.61468 - 54.2127 x
     Answer should be Exp[-n/k] / (n+1)
     As n = 100 this gives y = Exp[-100 / k] / 101
     We took logs so get log (y) = -100 (1/k) - log (100)
\ln[301] = \{-Log[100.], -100\}
Out[301] = \{-4.60517. -100\}
```

Note answer is very good in constant term but slope is off by almost a factor of 2!