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Goal

Quickly review some probability.

Introduction to Difference Equations.

Solving Difference Equations.

Roulette.
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Background
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Probability Review

Let X be random variable with density p(x):
⋄ p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

⋄ Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .
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Probability Review

Let X be random variable with density p(x):
⋄ p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

⋄ Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .
Mean µ =

∫∞
−∞ xp(x)dx .
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Probability Review

Let X be random variable with density p(x):
⋄ p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

⋄ Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .
Mean µ =

∫∞
−∞ xp(x)dx .

Variance σ2 =
∫∞
−∞(x − µ)2p(x)dx .
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Probability Review

Let X be random variable with density p(x):
⋄ p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

⋄ Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .
Mean µ =

∫∞
−∞ xp(x)dx .

Variance σ2 =
∫∞
−∞(x − µ)2p(x)dx .

Independence: knowledge of one random variable
gives no knowledge of the other.
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Central Limit Theorem

Normal N(µ, σ2) : p(x) = e−(x−µ)2/2σ2
/
√

2πσ2.

Theorem
If X1,X2, . . . independent, identically distributed random
variables (mean µ, variance σ2, finite moments) then

SN :=
X1 + · · ·+ XN − Nµ

σ
√

N
converges to N(0, 1).
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Central Limit Theorem: Sums of Uniform Random Variables
Xi ∼ Unif(−1/2,1/2)

Y1 = X1/σX1 vs N(0, 1).

Density of Y1 versus N(0, 1).9
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Central Limit Theorem: Sums of Uniform Random Variables
Xi ∼ Unif(−1/2,1/2)

Y2 = (X1 + X2)/σX1+X2 vs N(0, 1).

Density of Y2 versus N(0, 1).10
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Central Limit Theorem: Sums of Uniform Random Variables
Xi ∼ Unif(−1/2,1/2)

Y4 = (X1 + X2 + X3 + X4)/σX1+X2+X3+X4 vs N(0, 1).

Density of Y4 versus N(0, 1).11
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Central Limit Theorem: Sums of Uniform Random Variables
Xi ∼ Unif(−1/2,1/2)

Y8 = (X1 + · · ·+ X8)/σX1+···+X8 vs N(0, 1).

Density of Y4 versus N(0, 1).12
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Central Limit Theorem: Sums of Uniform Random Variables
Xi ∼ Unif(−1/2,1/2)

Density of Y4 = (X1 + · · ·+ X4)/σX1+···+X4.

(Don’t even think of asking to see Y8’s!)
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Introduction to
Difference Equations
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Difference Equations: Background

Discrete version of differential equations (discrete time
step).

an = f (an−1, an−2, . . . , an−L) and initial conditions.
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Difference Equations: Background

Discrete version of differential equations (discrete time
step).

an = f (an−1, an−2, . . . , an−L) and initial conditions.

Fibonaccis: Fn = Fn−1 + Fn−2. Often 0, 1 or 1, 2.
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Difference Equations: Background

Discrete version of differential equations (discrete time
step).

an = f (an−1, an−2, . . . , an−L) and initial conditions.

Fibonaccis: Fn = Fn−1 + Fn−2. Often 0, 1 or 1, 2.

Constant coefficient, fixed depth:

an = c1an−1 + · · ·+ cLan−L.
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Difference Equations: Background

Discrete version of differential equations (discrete time
step).

an = f (an−1, an−2, . . . , an−L) and initial conditions.

Fibonaccis: Fn = Fn−1 + Fn−2. Often 0, 1 or 1, 2.

Constant coefficient, fixed depth:

an = c1an−1 + · · ·+ cLan−L.

Can compute but expensive....
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Matrix Formulation

Consider Fibonacci numbers:
(

Fn+1

Fn

)

=

(

1 1
1 0

)(

Fn

Fn−1

)

.
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Matrix Formulation

Consider Fibonacci numbers:
(

Fn+1

Fn

)

=

(

1 1
1 0

)(

Fn

Fn−1

)

.

Leads to matrix formulation:
−→v n+1 = A−→v n
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Matrix Formulation

Consider Fibonacci numbers:
(

Fn+1

Fn

)

=

(

1 1
1 0

)(

Fn

Fn−1

)

.

Leads to matrix formulation:
−→v n+1 = A−→v n = A2−→v n−1
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Matrix Formulation

Consider Fibonacci numbers:
(

Fn+1

Fn

)

=

(

1 1
1 0

)(

Fn

Fn−1

)

.

Leads to matrix formulation:
−→v n+1 = A−→v n = A2−→v n−1 = · · · = An−→v 1.
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Matrix Formulation

Consider Fibonacci numbers:
(

Fn+1

Fn

)

=

(

1 1
1 0

)(

Fn

Fn−1

)

.

Leads to matrix formulation:
−→v n+1 = A−→v n = A2−→v n−1 = · · · = An−→v 1.

Can now use linear algebra to solve. In general if matrix is
diagonalizable with eigenvalues λi and eigenvectors −→u i ,
there are ci such that

−→v n+1 = c1λ
n
1
−→u 1 + · · ·+ cLλ

n
L
−→u 2.
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Matrix Formulation

Consider Fibonacci numbers:
(

Fn+1

Fn

)

=

(

1 1
1 0

)(

Fn

Fn−1

)

.

Leads to matrix formulation:
−→v n+1 = A−→v n = A2−→v n−1 = · · · = An−→v 1.

Can now use linear algebra to solve. In general if matrix is
diagonalizable with eigenvalues λi and eigenvectors −→u i ,
there are ci such that

−→v n+1 = c1λ
n
1
−→u 1 + · · ·+ cLλ

n
L
−→u 2.

Binet’s Formula:

Fn =
1√
5

(

1 +
√

5
2

)n

− 1√
5

(

1 −
√

5
2

)n

.
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Leslie Matrices: I

Imagine population of whales with following
assumptions:

Always die when turn four, never earlier.

Each pair becomes pregnant when turn one and
gives birth to two pairs when turn two.

Each pair becomes pregnant when turn two and gives
birth to one pair when turn three.
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Leslie Matrices: I

Imagine population of whales with following
assumptions:

Always die when turn four, never earlier.

Each pair becomes pregnant when turn one and
gives birth to two pairs when turn two.

Each pair becomes pregnant when turn two and gives
birth to one pair when turn three.

Can we figure out how many whales of each age at each
moment?
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Leslie Matrices: I

Imagine population of whales with following
assumptions:

Always die when turn four, never earlier.

Each pair becomes pregnant when turn one and
gives birth to two pairs when turn two.

Each pair becomes pregnant when turn two and gives
birth to one pair when turn three.

Can we figure out how many whales of each age at each
moment? Yes: Deterministic!
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Leslie Matrices: II

Will set up a system to describe population.

an: number of pairs born in year n.

bn: number of pairs of 1 year olds in year n.

cn: number of pairs of 2 year olds in year n.

dn: number of pairs of 3 year olds in year n.
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Leslie Matrices: III

Use information to set up system:

an+1 = 2bn + 1cn.

bn+1 = an.

cn+1 = bn.

dn+1 = cn.
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Leslie Matrices: III

Use information to set up system:

an+1 = 0an + 2bn + 1cn + 0dn.

bn+1 = 1an + 0bn + 0cn + 0dn.

cn+1 = 0an + 1bn + 0cn + 0dn.

dn+1 = 0an + 0bn + 1cn + 0dn.
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Leslie Matrices: III

Use information to set up system:









an+1

bn+1

cn+1

dn+1









=









0 2 1 0
1 0 0 0
0 1 0 0
0 0 1 0

















an

bn

cn

dn









= An+1









a0

b0

c0

d0









.

Can solve exactly! Call above a Leslie matrix:
http://en.wikipedia.org/wiki/Leslie_matrix
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Matrix Properties

What properties does A have? Is this form reasonable?








0 2 1 0
1 0 0 0
0 1 0 0
0 0 1 0









32



Background Difference Equations Efficient Computation Roulette Zeckendorf Decompositions (bonus)

Matrix Properties

What properties does A have? Is this form reasonable?








0 2 1 0
1 0 0 0
0 1 0 0
0 0 1 0









Figure: Mathematica code
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Problems With Model

What are some problems with this model?
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Problems With Model

What are some problems with this model?

Always live to four and then die!

Gives birth to exactly two pairs, then exactly one pair.

Assumes no problem with finite resources, grow
indefinitely.
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Problems With Model

What are some problems with this model?

Always live to four and then die!

Gives birth to exactly two pairs, then exactly one pair.

Assumes no problem with finite resources, grow
indefinitely.

What is the solution?
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Problems With Model

What are some problems with this model?

Always live to four and then die!

Gives birth to exactly two pairs, then exactly one pair.

Assumes no problem with finite resources, grow
indefinitely.

What is the solution? Random variables for entries!








0 2r1 r2 r3

s1 0 0 0
0 s2 0 0
0 0 s3 0









Multiply many matrices of this form with different choices.
37
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Random Variables and Random Matrices

Capital Letters for random variables, lowercase for values.
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Random Variables and Random Matrices

Capital Letters for random variables, lowercase for values.

Use Rn,1,Rn,2,Rn,3 for three birth rates at time n.

Use Sn,1,Sn2 ,Sn,3 for three survival rates at time n.
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Random Variables and Random Matrices

Capital Letters for random variables, lowercase for values.

Use Rn,1,Rn,2,Rn,3 for three birth rates at time n.

Use Sn,1,Sn2 ,Sn,3 for three survival rates at time n.









0 2rn,1 rn,2 rn,3

sn,1 0 0 0
0 sn,2 0 0
0 0 sn,3 0

















0 2rn−1,1 rn−1,2 rn−1,3

sn−1,1 0 0 0
0 sn−1,2 0 0
0 0 sn−1,3 0









· · ·









0 2r1,1 r1,2 r1,3

s1,1 0 0 0
0 s1,2 0 0
0 0 s1,3 0

















a0

b0

c0

d0









.

Central Limit Theorem: sums of random variables; here have products.
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Products of Matrices: I

Products of Matrices very difficult.

Define [A,B] = AB − BA (the commutator).

Define matrix exponential (for square matrices) by

eA =

∞
∑

k=0

1
k !

Ak .

http://en.wikipedia.org/wiki/Matrix_exponential

41

http://en.wikipedia.org/wiki/Matrix_exponential


Background Difference Equations Efficient Computation Roulette Zeckendorf Decompositions (bonus)

Products of Matrices: II

Baker–Campbell–Hausdorff

Consider n × n square matrices A,B. Then eA+B is

eAeB
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Products of Matrices: II

Baker–Campbell–Hausdorff

Consider n × n square matrices A,B. Then eA+B is

eAeBe−[A,B]/2
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Products of Matrices: II

Baker–Campbell–Hausdorff

Consider n × n square matrices A,B. Then eA+B is

eAeBe−[A,B]/2e(2[B,[A,B]]+[A,[A,B]])/6 · · ·

http://en.wikipedia.org/wiki/Baker%E2%80
%93Campbell%E2%80%93Hausdorff_formula.

See also fast multiplication / exponentiation for An, and
Strassen algorithm for AB.
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Efficient Computation
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Finding Binet’s Formula

Goal: Find Binet’s Formula: Method of Divine
Inspiration.
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Finding Binet’s Formula

Goal: Find Binet’s Formula: Method of Divine
Inspiration.

Fibonaccis: Fn = Fn−1 + Fn−2.
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Finding Binet’s Formula

Goal: Find Binet’s Formula: Method of Divine
Inspiration.

Fibonaccis: Fn = Fn−1 + Fn−2.

Find 2Fn−2 ≤ Fn ≤ 2Fn−1.
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Finding Binet’s Formula

Goal: Find Binet’s Formula: Method of Divine
Inspiration.

Fibonaccis: Fn = Fn−1 + Fn−2.

Find 2Fn−2 ≤ Fn ≤ 2Fn−1.

Thus
√

2
n ≤ Fn ≤ 2n, suggests exponential growth!

Try Fn = rn.
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1 − x − x2).
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1 − x − x2
=

1√
5

(

1+
√

5
2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)

.
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1 − x − x2
=

1√
5

(

1+
√

5
2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)

.

Coefficient of xn (power series expansion):

F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

- Binet’s Formula!

(using geometric series: 1
1−r = 1 + r + r2 + r3 + · · · ).
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Power of Generating Functions

Extremely important, bundle information in usable
manner.

Allow us to deduce numerous properties.
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Power of Generating Functions

Extremely important, bundle information in usable
manner.

Allow us to deduce numerous properties.

Example:
∑∞

n=0 Fn/3n = 3/5!
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Application: Roulette
YouTube: http://youtu.be/Esa2TYwDmwA

64
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Roulette

Probability p of red, 1 − p of not red (assume p = .5).
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Strategy: Double Plus One

Bet $1 on red, if win up $1 else down $1.
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Strategy: Double Plus One

Bet $1 on red, if win up $1 else down $1.

Bet $2 on red, if win up $1 else down $3.
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Strategy: Double Plus One

Bet $1 on red, if win up $1 else down $1.

Bet $2 on red, if win up $1 else down $3.

Bet $4 on red, if win up $1 else down $7.
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Strategy: Double Plus One

Bet $1 on red, if win up $1 else down $1.

Bet $2 on red, if win up $1 else down $3.

Bet $4 on red, if win up $1 else down $7.

Bet $8 on red, if win up $1 else down $15.
Lather, rinse, repeat.
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Strategy: Double Plus One

Bet $1 on red, if win up $1 else down $1.

Bet $2 on red, if win up $1 else down $3.

Bet $4 on red, if win up $1 else down $7.

Bet $8 on red, if win up $1 else down $15.
Lather, rinse, repeat.

Eventually up $1. Why am I not at Vegas?
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Issue 1: Bankroll
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Issue 1: Bankroll: Eccentric Rich Aunt / Uncle Hypothesis
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Issue 2: Table Limits
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Issue 2: Table Limits
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Analysis of Double Plus One Strategy
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Analysis of Double Plus One Strategy
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Analysis of Double Plus One Strategy
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Analysis of Double Plus One Strategy
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Analysis of Double Plus One Strategy

79



Background Difference Equations Efficient Computation Roulette Zeckendorf Decompositions (bonus)

Analysis of Double Plus One Strategy

80



Background Difference Equations Efficient Computation Roulette Zeckendorf Decompositions (bonus)

Solving the Recurrence: I

Pn =
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Solving the Recurrence: I

Pn =
1
2

Pn−1
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Solving the Recurrence: I

Pn =
1
2

Pn−1 +

(

1
2

)2

Pn−2
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Solving the Recurrence: I

Pn =
1
2

Pn−1 +

(

1
2

)2

Pn−2 + · · ·+
(

1
2

)5

Pn−5,
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Solving the Recurrence: I

Pn =
1
2

Pn−1 +

(

1
2

)2

Pn−2 + · · ·+
(

1
2

)5

Pn−5,

and initial conditions are P0 =
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Solving the Recurrence: I

Pn =
1
2

Pn−1 +

(

1
2

)2

Pn−2 + · · ·+
(

1
2

)5

Pn−5,

and initial conditions are P0 = 1
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Solving the Recurrence: I

Pn =
1
2

Pn−1 +

(

1
2

)2

Pn−2 + · · ·+
(

1
2

)5

Pn−5,

and initial conditions are P0 = 1 = P1 = P2 = P3 = P4.
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Solving the Recurrence: II

Can use Mathematica (as quintic need to numerically
approximate roots, use 1./2).
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Solving the Recurrence: III

Probability 5 consecutive blacks in 100 spins is 81.01%,
in 200 spins is 96.59%.
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Simulations
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Simulations
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Introduction to
Zeckendorf Decompositions
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =?
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 17 = F8 + 17.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 4 = F8 + F6 + 4.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + 1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.

99



Background Difference Equations Efficient Computation Roulette Zeckendorf Decompositions (bonus)

Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
Example: 83 = 55 + 21 + 5 + 2 = F9 + F7 + F4 + F2.
Observe: 51 miles ≈ 82.1 kilometers.
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Old Results

Central Limit Type Theorem
As n → ∞, the distribution of number of summands in
Zeckendorf decomposition for m ∈ [Fn,Fn+1) is Gaussian.

500 520 540 560 580 600

0.005

0.010

0.015

0.020

0.025

0.030

Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8, 13 . . . .
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8, 13 . . . .

Key to entire analysis: Fn+1 = Fn + Fn−1.

View as bins of size 1, cannot use two adjacent bins:

[1] [2] [3] [5] [8] [13] · · · .

Goal: How does the notion of legal decomposition
affect the sequence and results?
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf: Every positive integer can be written
uniquely as

∑

aiHi with natural constraints on the ai ’s
(e.g. cannot use the recurrence relation to remove
any summand).

Central Limit Type Theorem
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0, 1, . . . , 9} (1 ≤ i < m), am ∈ {1, . . . , 9}.
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0, 1, . . . , 9} (1 ≤ i < m), am ∈ {1, . . . , 9}.
For N ∈ [Hn,Hn+1), first term is anHn = an10n−1.
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0, 1, . . . , 9} (1 ≤ i < m), am ∈ {1, . . . , 9}.
For N ∈ [Hn,Hn+1), first term is anHn = an10n−1.
Ai : the corresponding random variable of ai . The Ai ’s
are independent.
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0, 1, . . . , 9} (1 ≤ i < m), am ∈ {1, . . . , 9}.
For N ∈ [Hn,Hn+1), first term is anHn = an10n−1.
Ai : the corresponding random variable of ai . The Ai ’s
are independent.
For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random
variables with mean 4.5 and variance 8.25.
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0, 1, . . . , 9} (1 ≤ i < m), am ∈ {1, . . . , 9}.
For N ∈ [Hn,Hn+1), first term is anHn = an10n−1.
Ai : the corresponding random variable of ai . The Ai ’s
are independent.
For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random
variables with mean 4.5 and variance 8.25.
Central Limit Theorem: A2 +A3 + · · ·+An → Gaussian
with mean 4.5n + O(1) and variance 8.25n + O(1).
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a
decomposition in [Fn,Fn+1) is of length g.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a
decomposition in [Fn,Fn+1) is of length g.

Bulk: What is P(g) = limn→∞ Pn(g)?

117



Background Difference Equations Efficient Computation Roulette Zeckendorf Decompositions (bonus)

Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a
decomposition in [Fn,Fn+1) is of length g.

Bulk: What is P(g) = limn→∞ Pn(g)?

Individual: Similar questions about gaps for a fixed
m ∈ [Fn,Fn+1): distribution of gaps, longest gap.
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New Results: Bulk Gaps: m ∈ [Fn,Fn+1) and φ = 1+
√

5
2

m =
∑k(m)=n

j=1 Fij , νm;n(x) =
1

k(m)−1

∑k(m)
j=2 δ (x − (ij − ij−1)) .

Theorem (Zeckendorf Gap Distribution)
Gap measures νm;n converge to average gap measure
where P(k) = 1/φk for k ≥ 2.
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Figure: Distribution of gaps in [F2010,F2011); F2010 ≈ 10420.
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New Results: Longest Gap

Fair coin: largest gap tightly concentrated around
log n/ log 2.

Theorem (Longest Gap)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest
gap less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)·logφ

• µn =
log

(

φ2

φ2+1)
n
)

logφ
+ γ

logφ
− 1

2 + Small Error.

• If f (n) grows slower (resp. faster ) than log n/ logφ,
then Prob(Ln(m) ≤ f (n)) goes to 0 (resp. 1).
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