BackgroundDifference Equations0000000000000

fficient Computation

Roulette

Zeckendorf Decompositions (bonus)

Math/Stat 341 and Math 433 Probability and Mathematical Modeling I: Discrete Systems

Steven J Miller Williams College

sjm1@williams.edu

http://www.williams.edu/Mathematics/sjmiller/public_html/341

Lawrence 231 Williams College, February 18, 2015

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)
Goal				

- Quickly review some probability.
- Introduction to Difference Equations.
- Solving Difference Equations.
- Roulette.

Background Difference Equations Efficient Computation Roulette Zeckendorf 000 000000000 0000 00000000 00000000 00000000	Decompositions (bonus)

Background

Background ●○○	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)

• Let X be random variable with density p(x): $\diamond p(x) \ge 0$; $\int_{-\infty}^{\infty} p(x) dx = 1$; $\diamond \operatorname{Prob} (a \le X \le b) = \int_{a}^{b} p(x) dx$.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
000				

Let X be random variable with density p(x):
◇ p(x) ≥ 0; ∫[∞]_{-∞} p(x)dx = 1;
◇ Prob (a ≤ X ≤ b) = ∫^b_a p(x)dx.
Mean μ = ∫[∞]_{-∞} xp(x)dx.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
000				

Let X be random variable with density p(x):
◊ p(x) ≥ 0; ∫_{-∞}[∞] p(x)dx = 1;
◊ Prob (a ≤ X ≤ b) = ∫_a^b p(x)dx.
Mean μ = ∫_{-∞}[∞] xp(x)dx.
Variance σ² = ∫_{-∞}[∞] (x - μ)²p(x)dx.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
000 ⁻				

- Let X be random variable with density p(x):
 ◇ p(x) ≥ 0; ∫[∞]_{-∞} p(x)dx = 1;
 ◇ Prob (a ≤ X ≤ b) = ∫^b_a p(x)dx.
 Mean μ = ∫[∞]_{-∞} xp(x)dx.
- Variance $\sigma^2 = \int_{-\infty}^{\infty} (x \mu)^2 p(x) dx$.
- Independence: knowledge of one random variable gives no knowledge of the other.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
000				

Central Limit Theorem

Normal
$$N(\mu, \sigma^2)$$
: $p(x) = e^{-(x-\mu)^2/2\sigma^2}/\sqrt{2\pi\sigma^2}$.

Theorem

If $X_1, X_2, ...$ independent, identically distributed random variables (mean μ , variance σ^2 , finite moments) then

$$S_N := \frac{X_1 + \cdots + X_N - N\mu}{\sigma\sqrt{N}}$$
 converges to $N(0, 1)$.

Central Limit Theorem: Sums of Uniform Random Variables $X_i \sim \text{Unif}(-1/2, 1/2)$

Zeckendorf Decompositions (bonus)

Central Limit Theorem: Sums of Uniform Random Variables $X_i \sim \text{Unif}(-1/2, 1/2)$

Central Limit Theorem: Sums of Uniform Random Variables $X_i \sim \text{Unif}(-1/2, 1/2)$

 $Y_4 = (X_1 + X_2 + X_3 + X_4) / \sigma_{X_1 + X_2 + X_3 + X_4}$ vs N(0, 1).

Central Limit Theorem: Sums of Uniform Random Variables $X_i \sim \text{Unif}(-1/2, 1/2)$

Background Differe

Difference Equations

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

Central Limit Theorem: Sums of Uniform Random Variables $X_i \sim \text{Unif}(-1/2, 1/2)$

Density of $Y_4 = (X_1 + \dots + X_4) / \sigma_{X_1 + \dots + X_4}$.

$$\begin{cases} \frac{1}{27} \left(18 + 9 \sqrt{3} \text{ y} - \sqrt{3} \text{ y}^3 \right) & \text{y} == 0 \\ \frac{1}{18} \left(12 - 6 \text{ y}^2 - \sqrt{3} \text{ y}^3 \right) & -\sqrt{3} < \text{y} < 0 \\ \frac{1}{54} \left(72 - 36 \sqrt{3} \text{ y} + 18 \text{ y}^2 - \sqrt{3} \text{ y}^3 \right) & \sqrt{3} < \text{y} < 2 \sqrt{3} \\ \frac{1}{54} \left(18 \sqrt{3} \text{ y} - 18 \text{ y}^2 + \sqrt{3} \text{ y}^3 \right) & \text{y} == \sqrt{3} \\ \frac{1}{18} \left(12 - 6 \text{ y}^2 + \sqrt{3} \text{ y}^3 \right) & 0 < \text{y} < \sqrt{3} \\ \frac{1}{54} \left(72 + 36 \sqrt{3} \text{ y} + 18 \text{ y}^2 + \sqrt{3} \text{ y}^3 \right) & -2 \sqrt{3} < \text{y} \le -\sqrt{3} \\ 0 & \text{True} \\ \hline \sqrt{3} \end{cases}$$

(Don't even think of asking to see Y_8 's!)

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)

Introduction to Difference Equations

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
	000000000			
Difference Equati	ions: Background			

• $a_n = f(a_{n-1}, a_{n-2}, \dots, a_{n-L})$ and initial conditions.

Background	Difference Equations ●○○○○○○○○	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)
Difference Equati	ons: Background			

•
$$a_n = f(a_{n-1}, a_{n-2}, \ldots, a_{n-L})$$
 and initial conditions.

• Fibonaccis:
$$F_n = F_{n-1} + F_{n-2}$$
. Often 0, 1 or 1, 2.

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)
Difference Equation	ons: Background			

•
$$a_n = f(a_{n-1}, a_{n-2}, \ldots, a_{n-L})$$
 and initial conditions.

• Fibonaccis: $F_n = F_{n-1} + F_{n-2}$. Often 0, 1 or 1, 2.

• Constant coefficient, fixed depth:

$$a_n = c_1 a_{n-1} + \cdots + c_L a_{n-L}.$$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
Difference Equati	ons: Background			

•
$$a_n = f(a_{n-1}, a_{n-2}, \ldots, a_{n-L})$$
 and initial conditions.

• Fibonaccis: $F_n = F_{n-1} + F_{n-2}$. Often 0, 1 or 1, 2.

• Constant coefficient, fixed depth:

$$a_n = c_1 a_{n-1} + \cdots + c_L a_{n-L}.$$

• Can compute but expensive....

Backg	round

Difference Equations

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

Matrix Formulation

Consider Fibonacci numbers:

$$\left(\begin{array}{c}F_{n+1}\\F_n\end{array}\right) = \left(\begin{array}{c}1 & 1\\1 & 0\end{array}\right) \left(\begin{array}{c}F_n\\F_{n-1}\end{array}\right).$$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
	000000000			

Consider Fibonacci numbers:

$$\left(\begin{array}{c}F_{n+1}\\F_n\end{array}\right) = \left(\begin{array}{c}1 & 1\\1 & 0\end{array}\right) \left(\begin{array}{c}F_n\\F_{n-1}\end{array}\right).$$

Leads to matrix formulation:

$$\overrightarrow{v}_{n+1} = A\overrightarrow{v}_n$$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
	000000000			

Consider Fibonacci numbers:

$$\left(\begin{array}{c}F_{n+1}\\F_n\end{array}\right) = \left(\begin{array}{c}1 & 1\\1 & 0\end{array}\right) \left(\begin{array}{c}F_n\\F_{n-1}\end{array}\right).$$

Leads to matrix formulation:

$$\overrightarrow{v}_{n+1} = A\overrightarrow{v}_n = A^2\overrightarrow{v}_{n-1}$$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
	000000000			

Consider Fibonacci numbers:

$$\left(\begin{array}{c}F_{n+1}\\F_n\end{array}\right) = \left(\begin{array}{c}1 & 1\\1 & 0\end{array}\right) \left(\begin{array}{c}F_n\\F_{n-1}\end{array}\right).$$

Leads to matrix formulation:

$$\overrightarrow{V}_{n+1} = A\overrightarrow{V}_n = A^2\overrightarrow{V}_{n-1} = \cdots = A^n\overrightarrow{V}_1.$$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
	00000000			

Consider Fibonacci numbers:

$$\left(\begin{array}{c}F_{n+1}\\F_n\end{array}\right) = \left(\begin{array}{c}1 & 1\\1 & 0\end{array}\right) \left(\begin{array}{c}F_n\\F_{n-1}\end{array}\right).$$

Leads to matrix formulation:

$$\overrightarrow{V}_{n+1} = A\overrightarrow{V}_n = A^2\overrightarrow{V}_{n-1} = \cdots = A^n\overrightarrow{V}_1.$$

Can now use linear algebra to solve. In general if matrix is diagonalizable with eigenvalues λ_i and eigenvectors \vec{u}_i , there are c_i such that

$$\overrightarrow{V}_{n+1} = c_1 \lambda_1^n \overrightarrow{u}_1 + \cdots + c_L \lambda_L^n \overrightarrow{u}_2.$$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
	000000000			

Consider Fibonacci numbers:

$$\left(\begin{array}{c}F_{n+1}\\F_n\end{array}\right) = \left(\begin{array}{c}1 & 1\\1 & 0\end{array}\right) \left(\begin{array}{c}F_n\\F_{n-1}\end{array}\right).$$

Leads to matrix formulation:

$$\overrightarrow{V}_{n+1} = A\overrightarrow{V}_n = A^2\overrightarrow{V}_{n-1} = \cdots = A^n\overrightarrow{V}_1.$$

Can now use linear algebra to solve. In general if matrix is diagonalizable with eigenvalues λ_i and eigenvectors \vec{u}_i , there are c_i such that

$$\overrightarrow{V}_{n+1} = c_1 \lambda_1^n \overrightarrow{U}_1 + \cdots + c_L \lambda_L^n \overrightarrow{U}_2.$$

Binet's Formula:

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

24

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
Leslie Matrices: I				

Imagine population of whales with following assumptions:

- Always die when turn four, never earlier.
- Each pair becomes pregnant when turn one and gives birth to two pairs when turn two.
- Each pair becomes pregnant when turn two and gives birth to one pair when turn three.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
Leslie Matrices: I				

Imagine population of whales with following assumptions:

- Always die when turn four, never earlier.
- Each pair becomes pregnant when turn one and gives birth to two pairs when turn two.
- Each pair becomes pregnant when turn two and gives birth to one pair when turn three.

Can we figure out how many whales of each age at each moment?

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
Leslie Matrices: I				

Imagine population of whales with following assumptions:

- Always die when turn four, never earlier.
- Each pair becomes pregnant when turn one and gives birth to two pairs when turn two.
- Each pair becomes pregnant when turn two and gives birth to one pair when turn three.

Can we figure out how many whales of each age at each moment? Yes: Deterministic!

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
	000000000			
Leslie Matrices: I	I			

Will set up a system to describe population.

- a_n : number of pairs born in year *n*.
- b_n : number of pairs of 1 year olds in year n.
- c_n : number of pairs of 2 year olds in year n.
- d_n : number of pairs of 3 year olds in year n.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
Leslie Matrices: I	11			

Use information to set up system:

•
$$a_{n+1} = 2b_n + 1c_n$$
.

•
$$b_{n+1} = a_n$$
.

•
$$c_{n+1} = b_n$$
.

•
$$d_{n+1} = c_n$$
.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
Leslie Matrices: I	II			

Use information to set up system:

•
$$a_{n+1} = 0a_n + 2b_n + 1c_n + 0d_n$$
.

•
$$b_{n+1} = 1a_n + 0b_n + 0c_n + 0d_n$$
.

•
$$c_{n+1} = 0a_n + 1b_n + 0c_n + 0d_n$$
.

•
$$d_{n+1} = 0a_n + 0b_n + 1c_n + 0d_n$$
.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)		
Leslie Matrices: III						

Use information to set up system:

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \\ d_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \\ c_n \\ d_n \end{pmatrix} = A^{n+1} \begin{pmatrix} a_0 \\ b_0 \\ c_0 \\ d_0 \end{pmatrix}$$

Can solve exactly! Call above a Leslie matrix: http://en.wikipedia.org/wiki/Leslie_matrix Background

Difference Equations

fficient Computation

Roulette

Zeckendorf Decompositions (bonus)

Matrix Properties

What properties does A have? Is this form reasonable?

$$\left(\begin{array}{cccc} 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

Background **Difference Equations** Roulette Zeckendorf Decompositions (bonus) 0000000000 Matrix Properties What properties does A have? Is this form reasonable? $\left(\begin{array}{rrrr} 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$ $\ln[1]:= A = \{\{0, 2, 1, 0\}, \{1, 0, 0, 0\}, \{0, 1, 0, 0\}, \{0, 0, 1, 0\}\};$ Eigenvalues[A] Eigenvectors[A] Out[2]= $\left\{\frac{1}{2}\left(1+\sqrt{5}\right), -1, \frac{1}{2}\left(1-\sqrt{5}\right), 0\right\}$ Out[3]= $\left\{ \left\{ 2 + \sqrt{5}, \frac{1}{2} \left(3 + \sqrt{5} \right), \frac{1}{2} \left(1 + \sqrt{5} \right), 1 \right\}, \{-1, 1, -1, 1\}, \right\}$ $\left\{2-\sqrt{5}, \frac{1}{2}(3-\sqrt{5}), \frac{1}{2}(1-\sqrt{5}), 1\right\}, \{0, 0, 0, 1\}\right\}$

Figure: Mathematica code

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
	0000000000			

Problems With Model

What are some problems with this model?

 Background
 Difference Equations
 Efficient Computation
 Roulette
 Zeckendorf De

 000
 000000000
 0000
 00000000
 00000000
 00000000

Zeckendorf Decompositions (bonus)

Problems With Model

What are some problems with this model?

- Always live to four and then die!
- Gives birth to exactly two pairs, then exactly one pair.
- Assumes no problem with finite resources, grow indefinitely.

Background Difference Equations Efficient Computation Roulette

Zeckendorf Decompositions (bonus)

Problems With Model

What are some problems with this model?

- Always live to four and then die!
- Gives birth to exactly two pairs, then exactly one pair.
- Assumes no problem with finite resources, grow indefinitely.

What is the solution?
Background

Difference Equations

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

Problems With Model

What are some problems with this model?

- Always live to four and then die!
- Gives birth to exactly two pairs, then exactly one pair.
- Assumes no problem with finite resources, grow indefinitely.

What is the solution? Random variables for entries!

$$\left(\begin{array}{cccc} 0 & 2r_1 & r_2 & r_3 \\ s_1 & 0 & 0 & 0 \\ 0 & s_2 & 0 & 0 \\ 0 & 0 & s_3 & 0 \end{array}\right)$$

Multiply many matrices of this form with different choices.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
Random Variables and Random Matrices				

Capital Letters for random variables, lowercase for values.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
	0000000000			
Random Variables	s and Random Matrices			

Capital Letters for random variables, lowercase for values.

Use $R_{n,1}$, $R_{n,2}$, $R_{n,3}$ for three birth rates at time *n*.

Use $S_{n,1}$, S_{n_2} , $S_{n,3}$ for three survival rates at time *n*.

Capital Letters for random variables, lowercase for values.

Use $R_{n,1}$, $R_{n,2}$, $R_{n,3}$ for three birth rates at time *n*.

Use $S_{n,1}$, S_{n_2} , $S_{n,3}$ for three survival rates at time *n*.

$$\begin{pmatrix} 0 & 2r_{n,1} & r_{n,2} & r_{n,3} \\ s_{n,1} & 0 & 0 & 0 \\ 0 & s_{n,2} & 0 & 0 \\ 0 & 0 & s_{n,3} & 0 \end{pmatrix} \begin{pmatrix} 0 & 2r_{n-1,1} & r_{n-1,2} & r_{n-1,3} \\ s_{n-1,1} & 0 & 0 & 0 \\ 0 & s_{n-1,2} & 0 & 0 \\ 0 & 0 & s_{n-1,3} & 0 \end{pmatrix} \\ \cdots \begin{pmatrix} 0 & 2r_{1,1} & r_{1,2} & r_{1,3} \\ s_{1,1} & 0 & 0 & 0 \\ 0 & s_{1,2} & 0 & 0 \\ 0 & 0 & s_{1,3} & 0 \end{pmatrix} \begin{pmatrix} a_0 \\ b_0 \\ c_0 \\ d_0 \end{pmatrix}.$$

Central Limit Theorem: sums of random variables; here have products.

Background	Difference Equations ○○○○○○○●○	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)
Products	s of Matrices: I			

Products of Matrices very difficult.

Define [A, B] = AB - BA (the commutator).

Define matrix exponential (for square matrices) by

$$e^{A} = \sum_{k=0}^{\infty} \frac{1}{k!} A^{k}.$$

http://en.wikipedia.org/wiki/Matrix_exponential

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
	000000000			

Products of Matrices: II

Baker-Campbell-Hausdorff

Consider $n \times n$ square matrices A, B. Then e^{A+B} is

 $e^A e^B$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
	000000000			

Products of Matrices: II

Baker-Campbell-Hausdorff

Consider $n \times n$ square matrices A, B. Then e^{A+B} is

 $e^{A}e^{B}e^{-[A,B]/2}$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
000	000000000			

Products of Matrices: II

Baker-Campbell-Hausdorff

Consider $n \times n$ square matrices A, B. Then e^{A+B} is

 $e^{A}e^{B}e^{-[A,B]/2}e^{(2[B,[A,B]]+[A,[A,B]])/6}\cdots$

http://en.wikipedia.org/wiki/Baker%E2%80 %93Campbell%E2%80%93Hausdorff_formula.

See also fast multiplication / exponentiation for A^n , and Strassen algorithm for *AB*.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)

Efficient Computation

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
Finding Binet's Formula				

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
Finding Binet's Formula				

Fibonaccis: $F_n = F_{n-1} + F_{n-2}$.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
Finding Binet's Formula				

Fibonaccis: $F_n = F_{n-1} + F_{n-2}$.

Find $2F_{n-2} \leq F_n \leq 2F_{n-1}$.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
Finding Binet's Fo	ormula			

Fibonaccis:
$$F_n = F_{n-1} + F_{n-2}$$
.

Find
$$2F_{n-2} \leq F_n \leq 2F_{n-1}$$
.

Thus $\sqrt{2}^n \le F_n \le 2^n$, *suggests* exponential growth! Try $F_n = r^n$.

kground	Difference Equation

Efficient Computation 0000

Roulette

Zeckendorf Decompositions (bonus)

Generating Function (Example: Binet's Formula)

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendor
		0000		

Zeckendorf Decompositions (bonus)

(1)

Generating Function (Example: Binet's Formula)

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

• Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$

Background	Difference Equations	Efficient Computation
		0000

Roulette

Zeckendorf Decompositions (bonus)

(1)

Generating Function (Example: Binet's Formula)

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

• Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$

• Generating function: $g(x) = \sum_{n>0} F_n x^n$.

ground	Difference Equations	Effi
		00

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

(1)

Generating Function (Example: Binet's Formula)

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{-1 + \sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

(1)
$$\Rightarrow \sum_{n\geq 2} F_{n+1} x^{n+1} = \sum_{n\geq 2} F_n x^{n+1} + \sum_{n\geq 2} F_{n-1} x^{n+1}$$

Back

Background Difference Equations

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

(1)

Generating Function (Example: Binet's Formula)

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $F_{n+1} = F_n + F_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

(1)
$$\Rightarrow \sum_{n\geq 2} \boldsymbol{F}_{n+1} \boldsymbol{x}^{n+1} = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 2} \boldsymbol{F}_{n-1} \boldsymbol{x}^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \boldsymbol{F}_n \boldsymbol{x}^n = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 1} \boldsymbol{F}_n \boldsymbol{x}^{n+2}$$

Background Difference Equations

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

(1)

Generating Function (Example: Binet's Formula)

$$\boldsymbol{F}_1 = \boldsymbol{F}_2 = 1; \ \boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} \mathbf{x}^{n+1} = \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} \mathbf{x}^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n \mathbf{x}^n = \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n\geq 1} \mathbf{F}_n \mathbf{x}^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n \mathbf{x}^n = \mathbf{x} \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^n + \mathbf{x}^2 \sum_{n\geq 1} \mathbf{F}_n \mathbf{x}^n$$

Background Difference Equations

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

(1)

Generating Function (Example: Binet's Formula)

$$\boldsymbol{F}_1 = \boldsymbol{F}_2 = 1; \ \boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$$
$$\Rightarrow g(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(g(x) - \mathbf{F}_1 x) + x^2 g(x)$$

Background

Difference Equations

Efficient Computation 0000

Roulette

Zeckendorf Decompositions (bonus)

(1)

Generating Function (Example: Binet's Formula)

$$\boldsymbol{F}_1 = \boldsymbol{F}_2 = 1; \ \boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$$
$$\Rightarrow g(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(g(x) - \mathbf{F}_1 x) + x^2 g(x)$$
$$\Rightarrow g(x) = x/(1 - x - x^2).$$

BackgroundDifference EquationsEfficient C0000000000000000

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

Partial Fraction Expansion (Example: Binet's Formula)

• Generating function:
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$
.

Background	Difference Equations	Efficient Computation
000		0000

Roulette

Zeckendorf Decompositions (bonus)

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$.
- Partial fraction expansion:

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions
		0000		

(bonus)

Partial Fraction Expansion (Example: Binet's Formula)

• Generating function:
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$
.

• Partial fraction expansion:

$$\Rightarrow g(x) = \frac{x}{1-x-x^2} = \frac{1}{\sqrt{5}} \left(\frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right)$$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions
		0000		

(bonus)

Partial Fraction Expansion (Example: Binet's Formula)

• Generating function:
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$

• Partial fraction expansion:

$$\Rightarrow g(x) = \frac{x}{1-x-x^2} = \frac{1}{\sqrt{5}} \left(\frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right)$$

Coefficient of *x*^{*n*} (power series expansion):

$$\boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right] \text{ - Binet's Formula!}$$
(using geometric series: $\frac{1}{1-r} = 1 + r + r^2 + r^3 + \cdots$).

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
		0000		

Power of Generating Functions

Extremely important, bundle information in usable manner.

Allow us to deduce numerous properties.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
		0000		

Power of Generating Functions

Extremely important, bundle information in usable manner.

Allow us to deduce numerous properties.

Example: $\sum_{n=0}^{\infty} F_n / 3^n = 3/5!$

 $\ln[10] = f[x_] := \{ Sum[Fibonacci[n] x^n, \{n, 0, Infinity\} \}, x / (1 - x - x^2) \};$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)

Application: Roulette YouTube: http://youtu.be/Esa2TYwDmwA

Background	Difference Equations	Efficient Computation	Roulette ●○○○○○○○	Zeckendorf Decompositions (bonus)
Roulette	;			

Probability p of red, 1 - p of **not red** (assume p = .5).

Background	Difference Equations	Efficient Computation	Roulette ○●○○○○○○○	Zeckendorf Decompositions (bonus)
Strategy	: Double Plus	One		

• Bet \$1 on red, if win up \$1 else down \$1.

Background	Difference Equations	Efficient Computation	Roulette ○●○○○○○○○	Zeckendorf Decompositions (bonus)
Strategy	: Double Plus	One		

- Bet \$1 on red, if win up \$1 else down \$1.
- Bet \$2 on red, if win up \$1 else down \$3.

Background	Difference Equations	Efficient Computation	Roulette ○●○○○○○○○	Zeckendorf Decompositions (bonus)
Strategy: Double Plus One				

- Bet \$1 on red, if win up \$1 else down \$1.
- Bet \$2 on red, if win up \$1 else down \$3.
- Bet \$4 on red, if win up \$1 else down \$7.

Background	Difference Equations	Efficient Computation	Roulette ○●○○○○○○○	Zeckendorf Decompositions (bonus)
Strategy: Double Plus One				

- Bet \$1 on red, if win up \$1 else down \$1.
- Bet \$2 on red, if win up \$1 else down \$3.
- Bet \$4 on red, if win up \$1 else down \$7.
- Bet \$8 on red, if win up \$1 else down \$15. Lather, rinse, repeat.

Background	Difference Equations	Efficient Computation	Roulette ○●○○○○○○○	Zeckendorf Decompositions (bonus)
Strategy: Double Plus One				

- Bet \$1 on red, if win up \$1 else down \$1.
- Bet \$2 on red, if win up \$1 else down \$3.
- Bet \$4 on red, if win up \$1 else down \$7.
- Bet \$8 on red, if win up \$1 else down \$15. Lather, rinse, repeat.

Eventually up \$1. Why am I not at Vegas?

Background	Difference Equations	Efficient Computation	Roulette ○○●○○○○○○	Zeckendorf Decompositions (bonus
Issue 1:	Bankroll			

1 32 3 4 3 5 4 3 5 4 3 5 4 5 5 6 4 5 5 6 4 5 5 6 4 5 5 6 4 5 5 6 4 5 5 6 4 5 5 6 4 5 5 6 4 5 5 5 6 4 5 5 5 6 4 5 5 5 6 4 5 5 5 6 4 5 5 5 6 4 5 5 5 6 4 5 5 5 6 4 5 5 5 6 4 5 5 5 6 4 5 5 5 6 4 5 5 5 6 4 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 128 5 5 5 5 128 5 5 5 128 5 5 5 128 5 5 5 5 128 5 5 5 128 5 5 5 5 5 5 5 5 5 5 5 5 5		#of times Black is Rolled	Next Bet
17 \$ 151072	A A A A A A A A A A A A A A A A A A A	1284 56784101112151415677	\$2 \$4 \$4 \$4 \$2 \$4 \$2 \$4 \$2 \$6 \$128 \$158 \$158 \$150 \$100 \$100 \$100 \$100 \$100 \$100 \$100

Background

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

Issue 1: Bankroll: Eccentric Rich Aunt / Uncle Hypothesis

Usele Frank 27 Names Manager Victor Pay to the <u>My Naportus</u> <u>s</u> <u>Lots and Iois of money</u>	ALLE
For Gambling OnlyU_T	
ickground	Difference Ec
-----------	---------------

Roulette 000000000

Issue 2: Table Limits

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositio
			00000000	

Issue 2: Table Limits

# of times Black is Rolled	Next Bet	
1	\$2	
\$	8.8	
4	\$ 16	
S	\$ 32	
6	\$ 64	Sec.
7	\$ 128	Table
8	\$ 256	Limit
٩	\$512	
D	\$ 1024	
11	\$ 204 8	
12	\$4096	
15	8192	
	0 1658 7	
15	56168	
16	1 1810.72	
17	6 262144	
	4694988	
17	3 5 6 6 6 6	
20	51,048,57	

fference Equations

Efficient Computation

Roulette ○○○○●○○○○ Zeckendorf Decompositions (bonus)

Analysis of Double Plus One Strategy

• 5 blacks will make us bankrupt
•
$$P_n = \text{probability we will } \underline{\text{not get 5}}$$

consecutive blacks in N spins
• $Q_n = \text{probability we } \underline{\text{will get 5}}$
consecutive blacks in N spins
 $P_n + Q_n = 1$

75

ifference Equations

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

ifference Equations

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

Backg	round

ifference Equations

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

 Background
 Difference Equations
 Efficient Computation
 Roule

 000
 000000000
 0000
 0000

Roulette

Zeckendorf Decompositions (bonus)

Difference Equations

Efficient Computation

Roulette

Zeckendorf Decompositions (bonus)

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus
			0000000000	

 $P_n =$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus
			000000000	

$$P_n = \frac{1}{2}P_{n-1}$$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus
			000000000	

$$P_n = \frac{1}{2}P_{n-1} + \left(\frac{1}{2}\right)^2 P_{n-2}$$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus
			000000000	

$$P_n = \frac{1}{2}P_{n-1} + \left(\frac{1}{2}\right)^2 P_{n-2} + \cdots + \left(\frac{1}{2}\right)^5 P_{n-5},$$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus
			0000000000	

$$P_n = \frac{1}{2}P_{n-1} + \left(\frac{1}{2}\right)^2 P_{n-2} + \cdots + \left(\frac{1}{2}\right)^5 P_{n-5},$$

and initial conditions are $P_0 =$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus
			000000000	

$$P_n = \frac{1}{2}P_{n-1} + \left(\frac{1}{2}\right)^2 P_{n-2} + \cdots + \left(\frac{1}{2}\right)^5 P_{n-5},$$

and initial conditions are $P_0 = 1$

86

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus
			0000000000	

$$P_n = \frac{1}{2}P_{n-1} + \left(\frac{1}{2}\right)^2 P_{n-2} + \cdots + \left(\frac{1}{2}\right)^5 P_{n-5},$$

and initial conditions are $P_0 = 1 = P_1 = P_2 = P_3 = P_4$.

87

Can use Mathematica (as quintic need to numerically approximate roots, use 1./2).

```
\begin{split} & [n[24]:= RSolve[\{a[n] == (1./2) a[n-1] + (1/4) a[n-2] + (1/8) a[n-3] \\ & + (1/16) a[n-4] + (1/32) a[n-5], a[0] == 1, a[1] == 1, \\ & a[2] == 1, a[3] == 1, a[4] == 1\}, a[n], n] \end{split}
Out[24]:= \{\{a[n] \rightarrow (-0.0780088 - 0.0615499 i) ((1.+0.i) (-0.339175 - 0.229268 i)^{n} + (0.232635 - 0.972564 i) (-0.339175 + 0.229268 i)^{n} + (0.153251 + 0.994255 i) (0.0976883 - 0.424427 i)^{n} - (0.931325 + 0.380345 i) \end{split}
```

 $(0.0976883 + 0.424427 i)^{n} - (8.35517 - 6.59234 i) 0.982974^{n})$ }

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
			000000000	

Probability 5 consecutive blacks in 100 spins is 81.01%, in 200 spins is 96.59%.

Background	Difference Equations	Efficient Computation	Roulette ○○○○○○○●	Zeckendorf Decompositions (bonus)
Simulat	ions			

```
in[90]:= doubleplusone[capital , spins ] := Module[{},
        loss = 0;
        money = capital;
        results = {};
        For [n = 1, n \leq spins, n++,
         £
           If [money > 0, bet = loss + 1, bet = 0];
          If[Random[] \leq .5, win = 1, win = 0];
          If[win = 1,
            money = money + bet;
            loss = 0;
            ١.
            money = money - bet;
            loss = loss + bet:
           11:
          results = AppendTo[results, {n, money}];
         }]; (* end of n loop *)
        Print[ListPlot[results]];
       17
```

Background	Difference Equations	Efficient Computation	Roulette ○○○○○○○●	Zeckendorf Decompositions (bonus)
Simulat	ions			

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)

Introduction to Zeckendorf Decompositions

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)
Provious	Results			

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)	
Previous Results					

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus) ●○○○○○
Provious	Posulte			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: 51 =?

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus) ●○○○○○
Provious	Posulte			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 17 = F_8 + 17$.

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus) •••••••
Previous	Results			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 4 = F_8 + F_6 + 4$.

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus) •••••••
Previous	s Results			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + 1$.

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus) •••••••
Previous	Results			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$.

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus) •••••••
Previous	s Results			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$. Example: $83 = 55 + 21 + 5 + 2 = F_9 + F_7 + F_4 + F_2$. Observe: $51 \text{ miles} \approx 82.1 \text{ kilometers}$.

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus) ○●○○○○○
Old Resu	ults			

Central Limit Type Theorem

As $n \to \infty$, the distribution of number of summands in Zeckendorf decomposition for $m \in [F_n, F_{n+1})$ is Gaussian.

Figure: Number of summands in $[F_{2010}, F_{2011}); F_{2010} \approx 10^{420}$.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
Equivalant Definitiv	on of the Fibercooie			

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

1,

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)		
Equivalent Definition of the Eihonaceis						

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

1, 2,

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)
Equivalent Definition	on of the Fibonaccis			

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

1, 2, 3,

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)
Equivalent Definitio	on of the Fibonaccis			

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

$$1,\ 2,\ 3,\ 5,$$

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)
Equivalent Definition	on of the Fibonaccis			

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

$$1,\ 2,\ 3,\ 5,\ 8,$$

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)
Equivalent Definition	on of the Fibonaccis			

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

 $1, \ 2, \ 3, \ 5, \ 8, \ 13\ldots$

 Background
 Difference Equations
 Efficient Computation
 Roulette
 Zeckendorf Decompositions (bonus)

 000
 0000
 0000
 0000
 0000
 0000

Fibonaccis are the only sequence such that each integer can be written uniquely as a sum of non-adjacent terms.

 $1, 2, 3, 5, 8, 13 \ldots$

- Key to entire analysis: $F_{n+1} = F_n + F_{n-1}$.
- View as bins of size 1, cannot use two adjacent bins:

[1] [2] [3] [5] [8] [13]

• Goal: How does the notion of legal decomposition affect the sequence and results?
Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)
Conoroli	zationa			

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_nH_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as ∑ a_iH_i with natural constraints on the a_i's (e.g. cannot use the recurrence relation to remove any summand).
- Central Limit Type Theorem

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
				0000000

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$

• Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, 9\} \ (1 \le i < m), a_m \in \{1, \dots, 9\}.$

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
				0000000

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$

- Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, 9\} \ (1 \le i < m), a_m \in \{1, \dots, 9\}.$
- For $N \in [H_n, H_{n+1})$, first term is $a_n H_n = a_n 10^{n-1}$.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
				0000000

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$

- Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, 9\}$ $(1 \le i < m), a_m \in \{1, \dots, 9\}.$
- For $N \in [H_n, H_{n+1})$, first term is $a_n H_n = a_n 10^{n-1}$.
- *A_i*: the corresponding random variable of *a_i*. The *A_i*'s are independent.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
				0000000

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$

- Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, 9\}$ $(1 \le i < m), a_m \in \{1, \dots, 9\}.$
- For $N \in [H_n, H_{n+1})$, first term is $a_n H_n = a_n 10^{n-1}$.
- *A_i*: the corresponding random variable of *a_i*. The *A_i*'s are independent.
- For large *n*, the contribution of A_n is immaterial. A_i ($1 \le i < n$) are identically distributed random variables with mean 4.5 and variance 8.25.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf Decompositions (bonus)
				0000000

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$

- Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, 9\}$ $(1 \le i < m), a_m \in \{1, \dots, 9\}.$
- For $N \in [H_n, H_{n+1})$, first term is $a_n H_n = a_n 10^{n-1}$.
- *A_i*: the corresponding random variable of *a_i*. The *A_i*'s are independent.
- For large *n*, the contribution of A_n is immaterial. A_i ($1 \le i < n$) are identically distributed random variables with mean 4.5 and variance 8.25.
- Central Limit Theorem: $A_2 + A_3 + \cdots + A_n \rightarrow \text{Gaussian}$ with mean 4.5n + O(1) and variance 8.25n + O(1).

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus) ○○○○○●○
Distribut	tion of Gaps			

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus) ○○○○●○
Distribut	ion of Gaps			

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Let $P_n(g)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length g.

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus)
Distribut	ion of Gaps			

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Let $P_n(g)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length *g*.

Bulk: What is $P(g) = \lim_{n \to \infty} P_n(g)$?

Background	Difference Equations	Efficient Computation	Roulette 000000000	Zeckendorf Decompositions (bonus) ○○○○○●○
Distribut	ion of Gaps			

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Let $P_n(g)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length *g*.

Bulk: What is $P(g) = \lim_{n \to \infty} P_n(g)$?

Individual: Similar questions about gaps for a fixed $m \in [F_n, F_{n+1}]$: distribution of gaps, longest gap.

Background	Difference Equations	Efficient Computation	Roulette	Zeckendorf De
				0000000

Ceckendorf Decompositions (bonus)

New Results: Bulk Gaps: $m \in [F_n, F_{n+1})$ and $\phi = \frac{1+\sqrt{5}}{2}$

$$m = \sum_{j=1}^{k(m)=n} F_{i_j}, \quad \nu_{m;n}(\mathbf{x}) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta(\mathbf{x} - (i_j - i_{j-1})).$$

Theorem (Zeckendorf Gap Distribution)

Gap measures $\nu_{m;n}$ converge to average gap measure where $P(k) = 1/\phi^k$ for $k \ge 2$.

Figure: Distribution of gaps in [F_{2010} , F_{2011}); $F_{2010} \approx 10^{420}$.

New Results: Longest Gap

Fair coin: largest gap tightly concentrated around $\log n / \log 2$.

Theorem (Longest Gap)

As $n \to \infty$, the probability that $m \in [F_n, F_{n+1})$ has longest gap less than or equal to f(n) converges to

$$\operatorname{Prob}\left(L_n(m) \leq f(n)\right) \approx e^{-e^{\log n - f(n) \cdot \log \phi}}$$

•
$$\mu_n = \frac{\log\left(\frac{\phi^2}{\phi^2+1}n\right)}{\log\phi} + \frac{\gamma}{\log\phi} - \frac{1}{2} + \text{Small Error.}$$

• If f(n) grows **slower** (resp. **faster**) than $\log n / \log \phi$, then $\operatorname{Prob}(L_n(m) \le f(n))$ goes to **0** (resp. **1**).