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@ Quickly review some probability.

@ Introduction to Difference Equations.
@ Solving Difference Equations.

@ Roulette.
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Probability Review

@ Let X be random variable with density p(x):
op(x)>0; [T p(x)dx =1,
oProb(a< X <b) = f; p(x)dx.
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@ Let X be random variable with density p(x):
op(x) > 0; [ p(x)dx =1,
o Prob(a < X <b) = [°p(x)dx.

@ Mean p = [~ xp(x)dx.
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Probability Review

@ Let X be random variable with density p(x):
op(x) > 0; [ p(x)dx =1,
o Prob(a < X <b) = [°p(x)dx.

@ Mean p = [~ xp(x)dx.

@ Variance o2 = [~ _(x — p)?p(x)dx.

@ Independence: knowledge of one random variable
gives no knowledge of the other.
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Central Limit Theorem

Normal N(u,o?): p(x) = e & #°/27° )\/2752,

If X1, X5, ... independent, identically distributed random
variables (mean p, variance o2, finite moments) then

X1+ -+ Xy —N
SNy = A7 i convergesto N(O,1).

ovN
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Central Limit Theorem: Sums of Uniform Random Variables
Xi ~ Unif(-1/2,1/2)

Y, = Xl/O'xl VS N(O, l)
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Central Limit Theorem: Sums of Uniform Random Variables
Xi ~ Unif(-1/2,1/2)

Y, = (Xl + Xz)/0x1+x2 VS N(O 1)
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Central Limit Theorem: Sums of Uniform Random Variables
Xi ~ Unif(-1/2,1/2)

Yq = (Xl + Xo + X3 + x4)/UX1+X2+X3+X4 VS N(O, l)
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Background
L]

Central Limit Theorem: Sums of Uniform Random Variables
Xi ~ Unif(-1/2,1/2)

Yg = (Xl + -+ XS)/0X1+“‘+X8 VS N(O, l)

0.4
0.3
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Central Limit Theorem: Sums of Uniform Random Variables
Xi ~ Unif(-1/2,1/2)

Density of Y4 = (X1 + - - - + X4) /0%, 4 4%, -

[ £ (18+9+/3 y-+3 y?) y=10
1—18(12—61/2—\51/3) -3 <y<0
L (72-36/3 y+18y?-+/3 ¥?) V3 <y<2+/3
& (18V3y-18y*+/3 ¥ y=13
1—18(12—6y2+\/§y3) O<y<\/§
& (724363 y+18y?++/3 v¥) -24/3 <y=-/3
| O True

A3

(Don’t even think of asking to see Yg's!)
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Difference Equations: Background

Discrete version of differential equations (discrete time
step).

@ a, =f(an_1,ar_2,...,a,_L) and initial conditions.
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Difference Equations
°
Difference Equations: Background

Discrete version of differential equations (discrete time
step).

@ a, =f(an_1,ar_2,...,a,_L) and initial conditions.
@ Fibonaccis: F, = F,_; + F,_,. Often 0, 1 or 1, 2.
@ Constant coefficient, fixed depth:

ap = Cdp_1+ -+ Can_L.

@ Can compute but expensive....
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Matrix Formulation

Consider Fibonacci numbers:
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Matrix Formulation

Consider Fibonacci numbers:

()= (15) ().

Leads to matrix formulation:

7n+l - A7n - A27n_1 _ = An71

Can now use linear algebra to solve. In general if matrix is
diagonalizable with eigenvalues )\; and eigenvectors ﬁi,
there are c¢; such that

7n+l = Cl)\r::ﬁl + -+ CL)\EﬁZ-




Difference Equations
°

Matrix Formulation

Consider Fibonacci numbers:

()= (15) ().

Leads to matrix formulation:

7n+l - A7n - A27n_1 _ = An71

Can now use linear algebra to solve. In general if matrix is
diagonalizable with eigenvalues )\; and eigenvectors ﬁi,
there are c¢; such that

7n+l = Cl)\r::ﬁl + -+ CL)\EﬁZ-

Binet's Formula:

- _ 1 1+v5) 1 (1-VB)
"5 2 V5 2 '




Difference Equations
°
Leslie Matrices: |

Imagine population of whales with following
assumptions:

@ Always die when turn four, never earlier.

@ Each pair becomes pregnant when turn one and
gives birth to two pairs when turn two.

@ Each pair becomes pregnant when turn two and gives
birth to one pair when turn three.
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Difference Equations
°
Leslie Matrices: |

Imagine population of whales with following
assumptions:

@ Always die when turn four, never earlier.

@ Each pair becomes pregnant when turn one and
gives birth to two pairs when turn two.

@ Each pair becomes pregnant when turn two and gives
birth to one pair when turn three.

Can we figure out how many whales of each age at each
moment? Yes: Deterministic!




Difference Equations
°

Leslie Matrices: Il

Will set up a system to describe population.

@ a,: number of pairs born in year n.
@ b,: number of pairs of 1 year olds in year n.
@ c,: number of pairs of 2 year olds in year n.

@ d,: number of pairs of 3 year olds in year n.




Difference Equations
°

Leslie Matrices: IlI

Use information to set up system:
@ a,.; = 2by + 1c,.
® by = an.
® Chy1 = by

o dn+1 - Cn.




Difference Equations

Leslie Matrices: IlI

Use information to set up system:

[*) an+1 - Oan + 2bn ‘I— 1Cn ‘I— Odn.
o anrl — 1an _'_ Obn + OCn + Odn
[*) Cn+1 = Oan + 1bn _'_ OCn + Odn

[*) dn+1 - Oan + Obn ‘I— 1Cn ‘I— Odn.




Difference Equations

Leslie Matrices: IlI

Use information to set up system:

ani1 0210 an ao
b1 - 1 000 bn _ il bo
Cni1 o 0100 Cn o Co

Can solve exactly! Call above a Leslie matrix:
http://en.w ki pedia.org/wi ki/Leslie matrix



http://en.wikipedia.org/wiki/Leslie_matrix
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Matrix Properties

What properties does A have? Is this form reasonable?
0
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Difference Equations
°
Matrix Properties

What properties does A have? Is this form reasonable?
0

ocoro
oronN
P OOR

0
0
0

o= A = {{0, 2,1, 0}, {1,0, 0,0}, {O,1,0, 0O}, {O, 0, 1, O}};
Eigenvalues[A]

Eigenvectors[A]

r1l — 1 — 1
ouze 4= (1+45), -1, - {1-v5), 0;
-2 : 2 : i
i — 1 N — 1 .- —
oupE (4245, = (3+4/5), = (1:4/8), 14, -1, 1, -1, 13,
L a b ! a b !
— 1 B — 1 " — _ 3
iz-s, = (3-8}, = [1-4/5), 1}, I0, 0, 0, 11}
L 2 : 2 L

| Figure: Mathematica code
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What are some problems with this model?
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@ Always live to four and then die!
@ Gives birth to exactly two pairs, then exactly one pair.

@ Assumes no problem with finite resources, grow
indefinitely.
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Difference Equations
°
Problems With Model

What are some problems with this model?

@ Always live to four and then die!
@ Gives birth to exactly two pairs, then exactly one pair.

@ Assumes no problem with finite resources, grow
indefinitely.

What is the solution? Random variables for entries!

0O 2rL 3

s; 0 0 O
0 s, 0 O
0 0 s3 O

Multiply many matrices of this form with different choices.
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Capital Letters for random variables, lowercase for values.
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Difference Equations
°
Random Variables and Random Matrices

Capital Letters for random variables, lowercase for values.
Use Rn 1, Rn 2, Ry 3 for three birth rates at time n.

Use S, 1, Sn,, Sn 3 for three survival rates at time n.

0 21 Th2 Inga 0 2Mm_11 fh-12 Th-13

Sn,1 0 0 0 Sn—1,1 0 0 0
0 Sn,2 0 0 0 Sn—-1,2 0 0
0 0 sz O 0 0 Sy O

0 2rn1 rnga nIgs aop

S1,1 0 0 0 bo

0 S1,2 0 0 Co

0 0 S1,3 0 do

Central Limit Theorem: sums of random variables; here have products.

A




Difference Equations
°

Products of Matrices: |

Products of Matrices very difficult.
Define [A, B] = AB — BA (the commutator).

Define matrix exponential (for square matrices) by
DI
k!
k=0

http://en.w ki pedi a. org/ wi ki /Matri x_exponenti al

A



http://en.wikipedia.org/wiki/Matrix_exponential

Difference Equations
.

Products of Matrices: Il

Baker—Campbell-Hausdorff

Consider n x n square matrices A, B. Then eA*8 is

A7
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Products of Matrices: Il

Baker—Campbell-Hausdorff

Consider n x n square matrices A, B. Then eA*8 is

ePeBe—[AB]/2

AR




Difference Equations
.

Products of Matrices: Il

Baker—Campbell-Hausdorff

Consider n x n square matrices A, B. Then eA*8 is

eAeBef[A,B]/Ze(Z[B,[A,B]]+[A,[A,B]])/6 0o o

http://en.w ki pedi a. or g/ wi ki / Baker ¥&£2%80
%®@3Canpbel | E29809®3Hausdor ff _f or nul a.

See also fast multiplication / exponentiation for A", and
Strassen algorithm for AB.

A


http://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula
http://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula

Efficient Computation

Efficient Computation J
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Efficient Computation
°
Finding Binet's Formula

Goal: Find Binet's Formula: Method of Divine
Inspiration.
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Efficient Computation
°
Finding Binet's Formula

Goal: Find Binet's Formula: Method of Divine
Inspiration.

Fibonaccis: F, = Fn_1 + Fn_o.

Find 2F, », < F, < 2F,_;.

AR




Efficient Computation
°
Finding Binet's Formula

Goal: Find Binet's Formula: Method of Divine
Inspiration.

Fibonaccis: F, = Fn_1 + Fn_o.
Find 2F,_, < F, < 2F,_1.

Thus v2" < Fn < 2", suggests exponential growth!
Try Fo=1".

A




Efficient Computation
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Generating Function (Example: Binet's Formula)

Binet's Formula
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Binet's Formula

n n
Fi=Fo=1 Fo= % [(355) - (2£) .

@ Recurrence relation: Fp; =Fn+Fn_1 Q)
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Efficient Computation
°

Generating Function (Example: Binet's Formula)

Binet's Formula

n n
Fi=Fo=1 Fo= % [(355) - (2£) .

@ Recurrence relation: Fp; =Fn+Fn_1 Q)
@ Generating function: g(x) = > .o FnX".

(1) = D Faax™ =) Fox" 4> Fox"t

n>2 n>2 n>2
= D Fox"=) Fpx™ 4 ) Fox"?
n>3 n>2 n>1

= ZFan :XZFan—i—XZZFnX”

n>3 n>2 n>1




Efficient Computation
°

Generating Function (Example: Binet's Formula)

Binet's Formula

n n
Fi=Fo=1 Fo= % [(355) - (2£) .

@ Recurrence relation: Fp; =Fn+Fn_1 Q)
@ Generating function: g(x) = > .o FnX".

(1) = D Faax™ =) Fox" 4> Fox"t

n>2 n>2 n>2

= D Fox"=) Fpx™ 4 ) Fox"?
n>3 n>2 n>1

= D> Fox"=x> Fox"4+x*) Fpx"
n>3 n>2 n>1

= g(x) — Fix — Fox2 = x(g(x) — F1x) + x2g(x)




Efficient Computation
°

Generating Function (Example: Binet's Formula)

Binet's Formula

n n
Fi=Fo=1 Fo= % [(355) - (2£) .

@ Recurrence relation: Fp; =Fn+Fn_1 Q)
@ Generating function: g(x) = > .o FnX".

(1) = D Faax™ =) Fox" 4> Fox"t

n>2 n>2 n>2

= D Fox"=) Fpx™ 4 ) Fox"?
n>3 n>2 n>1

= D> Fox"=x> Fox"4+x*) Fpx"
n>3 n>2 n>1

g(x) — F1x — Fox? = x(g(x) — F1x) + x%g(x)
g(x) = x/(1 —x —x3).

vl




Efficient Computation
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Partial Fraction Expansion (Example: Binet's Formula)

@ Generating function: g(x) = > .o FnX" = =

1—x—x2"
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Partial Fraction Expansion (Example: Binet's Formula)

@ Generating function: g(x) = > .o FnX" = =

1—x—x2"

@ Partial fraction expansion:




Efficient Computation
°

Partial Fraction Expansion (Example: Binet's Formula)

@ Generating function: g(x) = > .o FnX" = =

1—x—x2"

@ Partial fraction expansion:

GO




Efficient Computation
°

Partial Fraction Expansion (Example: Binet's Formula)

_ X
1—x—x2"

@ Generating function: g(x) = >, o FnX" =

@ Partial fraction expansion:

B X 1 LBy —14V5y
=0 = T T B\ A 1o i)

Coefficient of x" (power series expansion):

n n
Fn= % [(H—f) - <—1+‘/§) ] - Binet’s Formula!

. . . . l _ 2 3
(using geometric series: 1= =1+r1 +r°+r°+-...).

¢



Efficient Computation
°

Power of Generating Functions

Extremely important, bundle information in usable
manner.

Allow us to deduce numerous properties.
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Efficient Computation
°

Power of Generating Functions

Extremely important, bundle information in usable
manner.

Allow us to deduce numerous properties.

Example: >~ F,/3" = 3/5!

Injtop= £l ] i= {Sum[Fibonaceci[n] x*n, {n, 0, Infinity}],
xf{(l-x-x*2)};

R



Roulette

Application: Roulette
YouTube: htt p: //yout u. be/ Esa2TYwDnwA

RA



http://youtu.be/Esa2TYwDmwA

Roulette
.
Roulette

.l@e@e@@@®@éaa
‘Eeeeee@@@@@aﬁ

005600000668 |

Probability p of red, 1 — p of not red (assume p = .5).




Roulette
°

Strategy: Double Plus One

@ Bet $1 on red, if win up $1 else down $1.

AR
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Strategy: Double Plus One

@ Bet $1 on red, if win up $1 else down $1.

@ Bet $2 on red, if win up $1 else down $3.
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Roulette
°

Strategy: Double Plus One

@ Bet $1 on red, if win up $1 else down $1.
@ Bet $2 on red, if win up $1 else down $3.

@ Bet $4 on red, if win up $1 else down $7.

R




Roulette
°

Strategy: Double Plus One

@ Bet $1 on red, if win up $1 else down $1.
@ Bet $2 on red, if win up $1 else down $3.
@ Bet $4 on red, if win up $1 else down $7.

@ Bet $8 on red, if win up $1 else down $15.
Lather, rinse, repeat.

RO




Roulette
°

Strategy: Double Plus One

@ Bet $1 on red, if win up $1 else down $1.
@ Bet $2 on red, if win up $1 else down $3.
@ Bet $4 on red, if win up $1 else down $7.

@ Bet $8 on red, if win up $1 else down $15.
Lather, rinse, repeat.

Eventually up $1. Why am | not at Vegas?

y




Issue 1: Bankroll
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Roulette
L]

Issue 1: Bankroll: Eccentric Rich Aunt / Uncle Hypothesis

Unele Frank

Pay the
et My Reonions
Lots pnck Lo¥s of monel

y




Roulette
[ ]

Issue 2: Table Limits

Taste LimiTs:

Lower:$5

UPPER:$ 200
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Issue 2: Table Limits
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Roulette
L]

Analysis of Double Plus One Strategy

-5 blacks will make us bankrvpt
+Fo= probab\hty we will pot get 6
consecutive blacks in N spin
- Q= probability we will get 5

consecvtive blacks INN spins

Poe Q=)




Roulette
L]

Analysis of Double Plus One Strategy




Roulette
L]

Analysis of Double Plus One Strategy




Roulette
L]

Analysis of Double Plus One Strategy




Roulette
L]

Analysis of Double Plus One Strategy

-5 blacks will make us bankrupt

+ F. = probability we will not get §
consecutive blacks in N spins

« Qu= probability we will get S
consecvtive blacks N sgins

B+ O =\

& * Pa-a

V: .& * Pa-s
y\ .

O]
s #P,\_s




Roulette
L]

Analysis of Double Plus One Strategy

-5 blacks will make us bankrupt

« B = probability we will not get 5
consecutive blacks in N spins

« Qy= probability we will get 5
congecutive blacks \n N spins

P+ Q=)

e ®e.,
/\lu \*m

o o,
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Solving the Recurrence: |
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I:)n - _Pn—l
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Solving the Recurrence: |

probability we will get 5
ve bl
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Solving the Recurrence: |

1 1\? 1\°
I:)n - Epn—1+ (E) Pn—2+"'+ (E) I:)n—57

and initial conditions are Py =
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Solving the Recurrence: |

1 1\? 1\°
I:)n - Epn—1+ (E) Pn—2+"'+ (E) I:)n—57

and initial conditions are Py = 1




Roulette
[ ]

Solving the Recurrence: |

1 1\? 1\°
I:)n - Epn—1+ (E) Pn—2+"'+ (E) I:)n—57

_ and initial conditions are Pg =1=P; =P, = P; = P,.




Roulette
°

Solving the Recurrence: lI

Can use Mathematica (as quintic need to numerically
approximate roots, use 1./2).

Inz4= RBolve[{a[n] == (1./2) an-1] + (1/4) a[n-2] + (1/8) a[n-3]
+ (1/16) a[n-4] + (1/32) a[n-5), a[0] =1, a[1] =1,
al2] =1, a[3] = 1, a[4] = 1}, a[nl, n]
ouwz4l= [faln] = (-0.0TB0088 - 0.0615499 1) ((l. +0. 1) {-0.339175-0.2292681 )™+
(0.232635 -0.972564 1) (-0.339175-0.229268 1)7 =
{0.153251 = 0.9942551) (D.0976883 - 0.424427 1) - [0.931325 = 0.380345 1)

(0.0976883 + 0.424427 i)™ - [8.35517 - 6£.59234 1) 0.982974%) )




Roulette
°

Solving the Recurrence: lli

a[0] = af1] = a[2] = a[3] = a(4] = 1:

For(n = 5, n < 2000, n++, afn] = a[n-1]/2 gz
+aln-2]/4 + a[n-3]/8 + a[n-4] /16
+aln-5]/32);

list = {}:

For(n = 0, n < 200, n+s,

list = AppendTo([list, {n, 1- 1.0a[n]}])]:
Print[ListPlot(list]]:

Probability 5 consecutive blacks in 100 spins is 81.01%,
in 200 spins is 96.59%.




Roulette

Simulations
doubleplusone[capital , spins ] := Module[{},
loss = 0;
money = capital;

results = {};
For(n = 1, m £ spins, n++,

{

If[money > 0, bet =loss + 1, bet = 0]
If[Random[] £ .5, win = 1, win = 0];
If[win = 1,

{

money = money + bet;

loss = O;

b

{

money = money - bet;

loss = loss + bet;

13N
results = AppendTo[results, {n, money}];

s
Print[ListPlot[results]] ;s




Simulations

Roulette
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200 [

150 [
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Zeckendorf Decompositions (bonus)

Introduction to
Zeckendorf Decompositions




Zeckendorf Decompositions (bonus)
[ ]

Previous Results

Fibonacci Numbers: F,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, . ...
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, .. ..

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =7




Zeckendorf Decompositions (bonus)
[ ]

Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 + 17 = Fg + 17.
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, . ...

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34+ 13 +4 =Fg + F¢ + 4.
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, . ...

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+3+1=Fg+ Fg + F3 + 1.
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Previous Results

Fibonacci Numbers: F,,1 = Fn + Fq_1;
First few: 1,2,3,5,8,13,21,34,55,89, . ...

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 + 13 +3+ 1 =Fg+ Fg + F3 + Fs.
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Previous Results

Fibonacci Numbers: Fny 1 = Fp 4+ Fn_1;
First few: 1,2,3,5,8,13,21,34,55,89.....

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34+ 13 +3+1=Fg+ Fg + F3 + Fy.
Example: 83 =55+21+5+2=Fg+F; + F4+ F>.
Observe: 51 miles ~ 82.1 kilometers.
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Old Results

Central Limit Type Theorem

As n — oo, the distribution of number of summands in
Zeckendorf decomposition for m € [F,, Fny1) is Gaussian.
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Figure: Number of summands in [F2o10, F2011); F2010 ~ 10%%°.

10T




Zeckendorf Decompositions (bonus)
L]

Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

17 27
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

17 27 37 57
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

17 27 37 57 87
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8, 13....
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer
can be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8, 13....

@ Key to entire analysis: Fny 1 = Fn + Fn_1.

@ View as bins of size 1, cannot use two adjacent bins:
[1] [2] [3] [5] [8] [13] ---.

@ Goal: How does the notion of legal decomposition
affect the sequence and results?




Zeckendorf Decompositions (bonus)
[ ]

Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hhta =CiHp+CoHpa + -+ CHpoy1, N> L

with H, =1, Hn+1 =ciHy+coHZ1 + - +CyH1 + l, n<yi,
coefficients ¢; > 0; ¢y, >0ifL>2;¢c, > 1ifL=1.

@ Zeckendorf: Every positive integer can be written
uniquely as ) a;H; with natural constraints on the a;’s
(e.g. cannot use the recurrence relation to remove
any summand).

@ Central Limit Type Theorem
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Example: the Special Caseof L =1,c; =10

Hn+l - 10Hn, Hl - 1, Hn - 10”71.
@ Legal decomposition is decimal expansion: Y ajH;:
ae{0,1,...,9} (1 <i<m)ane{l,...,9}.
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Example: the Special Caseof L =1,c; =10

Hny1 = 10H,, Hy = 1, H, = 10"1,
@ Legal decomposition is decimal expansion: Y ajH;:
ae{0,1,...,9} (1 <i<m)ane{l,...,9}.
@ For N € [Hy, Hp1), first term is a,H, = a,10"1.
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Example: the Special Caseof L =1,c; =10

Hny1 = 10H,, Hy = 1, H, = 10"1,
@ Legal decomposition is decimal expansion: Y ajH;:
ae{0,1,...,9} (1 <i<m)ane{l,...,9}.
@ For N € [Hy, Hp1), first term is a,H, = a,10"1.
@ A;: the corresponding random variable of a. The A;’s
are independent.
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Example: the Special Caseof L =1,c; =10

Hny1 = 10H,, Hy = 1, H, = 10"1,
@ Legal decomposition is decimal expansion: Y ajH;:
ae{0,1,...,9} (1 <i<m)ane{l,...,9}.
@ For N € [Hy, Hp1), first term is a,H, = a,10"1.
@ A;: the corresponding random variable of a. The A;’s
are independent.

@ For large n, the contribution of A, is immaterial.
A (1 <i < n) are identically distributed random
variables with mean 4.5 and variance 8.25.
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Example: the Special Caseof L =1,c; =10

Hny1 = 10H,, Hy = 1, H, = 10"1,
@ Legal decomposition is decimal expansion: Y ajH;:
ae{0,1,...,9} (1 <i<m)ane{l,...,9}.
@ For N € [Hy, Hp1), first term is a,H, = a,10"1.
@ A;: the corresponding random variable of a. The A;’s
are independent.

@ For large n, the contribution of A, is immaterial.
A (1 <i < n) are identically distributed random
variables with mean 4.5 and variance 8.25.

@ Central Limit Theorem: A, + Az + - - -+ A, — Gaussian
with mean 4.5n 4+ O(1) and variance 8.25n + O(1).
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Distribution of Gaps

For Fi, + Fi, + - - - + Fi,, the gaps are the differences
in - in717 infl - in727 ey i2 - il.

Example: For F; 4+ Fg + F1g, the gaps are 7 and 10.
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Distribution of Gaps

For Fi, + Fi, + - - - + Fi,, the gaps are the differences
in - in717 infl - in727 ey i2 - il.

Example: For F; 4+ Fg + F1g, the gaps are 7 and 10.

Let P,(g) be the probability that a gap for a
decomposition in [F,, Fq11) is of length g.
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Distribution of Gaps

For Fi, + Fi, + - - - + Fi,, the gaps are the differences
in - in717 infl - in727 ey i2 - il.

Example: For F; 4+ Fg + F1g, the gaps are 7 and 10.

Let P,(g) be the probability that a gap for a
decomposition in [F,, Fq11) is of length g.

Bulk: What is P(g) = lim_,o Pn(9)?
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Distribution of Gaps

For Fi, + Fi, + - - - + Fi,, the gaps are the differences
in - in717 infl - in727 ey i2 - il.

Example: For F; 4+ Fg + F1g, the gaps are 7 and 10.

Let P,(g) be the probability that a gap for a
decomposition in [F,, Fq11) is of length g.

Bulk: What is P(g) = lim_,o Pn(9)?

Individual: Similar questions about gaps for a fixed
m € [F,, Fny1): distribution of gaps, longest gap.




Zeckendorf Decompositions (bonus)
L]

New Results: Bulk Gaps: m € [Fn, Fpyq) and ¢ = 15

Theorem (Zeckendorf Gap Distribution)

Gap measures vn., converge to average gap measure
where P (k) = 1/¢* for k > 2.
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Figure: Distribution of gaps in [F2010, F2011); F2010 ~ 10420,
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New Results: Longest Gap

Fair coin: largest gap tightly concentrated around
logn/log 2.

Theorem (Longest Gap)

As n — oo, the probability that m € [F,, Fn.1) has longest
gap less than or equal to f(n) converges to

__@logn—f(n)-log ¢
e e

Prob (L,(m) < f(n)) ~

Iog(z—n)
¢<+1)
® lin = W —+ @ — % +Sma” Error.

e If f(n) grows slower (resp. faster) than logn/ log ¢,
then Prob(L,(m) < f(n)) goes to O (resp. 1).
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