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Abstract

We give some examples of differentiating identities to prove formulas in probability theory
and combinatorics. The main result we prove concerns the number of alternating strings of heads
and tails in tossing a coin. Specifically, if we toss a coin n1 + n2 times and see n1 heads and n2

tails, the mean of the number of runs is 2n1n2
n1+n2

+ 1 and the variance is 2n1n2(2n1n2−n1−n2)
(n1+n2)2(n1+n2−1) . For

example, if we observed HHHTHHTTTTHTT then n1 = 6, n2 = 7 and there would be 6
alternating strings or 6 runs.

More generally, assume we toss a coin with probability p of heads a total of N times. The
expected number of runs is 2p(1− p)(N − 1) + 1. In particular, if the coin is fair (so p = 1

2 ) then
the expected number of runs is N+1

2 .
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1 Simple Examples

We give a standard example illustrating the key idea of differentiating identities. Assume, for some
reason (perhaps because of the tantalizing simplicity of the expression), that we want to evaluate

1
1

+
2
2

+
3
4

+
4
8

+
5
16

+
6
32

+
7
64

+ · · · . (1.1)

After some thought we might realize that this is the same as

∞∑

n=0

n

2n−1
. (1.2)

The series does converge by the comparison test (for n large, compare n
2n to 1

(3/2)n ).
Abstraction actually helps us. It is easier to study

∞∑

n=0

n · xn−1. (1.3)

Using the comparison test, one can show this series converges for |x| < 1. If we didn’t have the n’s
above, the series would be easily summable: the geometric series formula gives

∞∑

n=0

xn =
1

1− x
. (1.4)

If we could differentiate both sides of the above equation and interchange the order of summation and
differentiation we would have

d

dx

∞∑

n=0

xn =
d

dx

1
1− x

∞∑

n=0

d

dx
xn =

1
(1− x)2

∞∑

n=0

nxn−1 =
1

(1− x)2
. (1.5)

Now all we have to do is take x = 1
2 above to solve the original problem. For this problem, as long as

|x| < 1 we can justify interchanging the order of summation and differentiation. See Appendix E for
some results about interchanging orders of differentiation and summation.

The above is a standard example of Differentiating Identities. We give an interesting application
of a related problem in Appendix C; namely, by considering a finite geometric sum and differentiating
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the resulting identity we obtain formulas for the sums of powers of integers. Typically such formulas
are proved by induction; this presents an alternative approach. As another example, in Appendix D we
use this method to show that the harmonic series (the sum of the reciprocals of the integers) diverges.

We give another common example, this time from basic probability. Consider a binomial distri-
bution with n trials, where each trial has probability p of being a success (coded as 1) and probability
1 − p of being a failure (coded as 0). For example, consider n tosses of a coin with probability p of
heads and 1− p of tails. Thus

Prob(k) =

{(
n
k

)
pk(1− p)n−k if k ∈ {0, 1, . . . , n}

0 otherwise.
(1.6)

What is the expected number of successes (or heads)? What is the variance? One simple way to
solve this is by linearity of expectation. Namely, consider n independent trials, where Xi is a random
variable denoting the outcome of the ith trial. Specifically Xi is 1 for a success (which occurs with
probability p) and 0 for a failure (which occurs with probability 1− p). If X = X1 + · · ·+ Xn, then
X has the binomial distribution with parameters n and p and we have

E[X] = E[X1 + · · ·+ Xn]
= E[X1] + · · ·+ E[Xn]. (1.7)

As
E[Xi] = 1 · p + 0 · (1− p), (1.8)

we find that
E[X] = np. (1.9)

Similarly, using
Var(X) = Var(X1) + · · ·+ Var(Xn) (1.10)

and
Var(Xi) = E[X2

i ]− E[Xi]2 =
(
12 · p + 02 · (1− p)

)− (p)2 = p(1− p), (1.11)

we see that
Var(X) = np(1− p). (1.12)

We now show how these formulas can be derived by differentiating identities. Similar to the
geometric series formulas above, it is much easier to work with a free parameter (such as p) and
then set it equal to a desired probability at the end; if we didn’t have a free parameter, we couldn’t
differentiate! Thus, even if a problem gives a particular value for p, it is easier to derive formulas for
arbitrary p and then set p equal to the given value at the end. This allows us to use the tools of calculus.

Thus to study the binomial function we should consider

(p + q)n =
n∑

k=0

(
n

k

)
pkqn−k. (1.13)

(Aside: for those knowing moment generating functions, think about connections between moment
generating functions and differentiation.) If we take p ∈ [0, 1] and q = 1− p, then we have a binomial
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distribution and (p + q)n = 1. We now differentiate the above with respect to p. While we will
eventually set q = 1− p, for now we consider p and q independent variables.

In fact, instead of ∂
∂p we apply p ∂

∂p . The advantage of this is that we do not change the powers of
p and q in our expressions, and we find

p
∂

∂p

(
n∑

k=0

(
n

k

)
pkqn−k

)
= p

∂

∂p
(p + q)n

p
n∑

k=0

(
n

k

)
kpk−1qn−k = p · n(p + q)n−1

n∑

k=0

k

(
n

k

)
pkqn−k = np(p + q)n−1; (1.14)

interchanging the differentiation and summation is trivial to justify because we have a finite sum. The
expected number of successes (when each trial has probability p of success) is obtained by now setting
q = 1− p, which yields

n∑

k=0

k

(
n

k

)
pk(1− p)n = np. (1.15)

To determine the various, we differentiate again. Hence applying the operator p2 ∂2

∂p2 to (1.13) gives

p2 ∂2

∂p2

(
n∑

k=0

(
n

k

)
pkqn−k

)
= p2 ∂2

∂p2
(p + q)n ; (1.16)

again, we apply p2 ∂2

∂p2 as this keeps the powers of p and q the same before and after the differentiation.
After some simple algebra we find

n∑

k=0

k(k − 1)
(

n

k

)
pkqn−k = p2 · n(n− 1)(p + q)n−2. (1.17)

Unfortunately, to find the variance we need to study
n∑

k=0

(k − µ)2
(

n

k

)
pkqn−k, (1.18)

where µ = np is the mean of the binomial random variable X . This is not a serious problem, as we
can determine the variance from E[X2]−E[X]2 and write k(k− 1) as k2− k; note the sum of k2 will
be E[X2]. Thus

n(n− 1)p2(p + q)n−2 =
n∑

k=0

k2

(
n

k

)
pkqn−k −

n∑

k=0

k

(
n

k

)
pkqn−k. (1.19)

But we have already determined the second sum – it is just np when q = 1− p. Setting q = 1− p we
thus find

n∑

k=0

k2

(
n

k

)
pk(1− p)n−k = n(n− 1)p2 + np = n2p2 + np(1− p). (1.20)
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Therefore the variance is just

Var(X) =
n∑

k=0

k2

(
n

k

)
pk(1− p)n−k −

(
n∑

k=0

k

(
n

k

)
pk(1− p)n−k

)2

= n2p2 + np(1− p)− (np)2

= np(1− p). (1.21)

As a final remark, consider again (1.15) and (1.20). If we set p = q = 1
2 and then move those

factors to the right hand side, we obtain

n∑

k=0

k

(
n

k

)
= 2n,

n∑

k=0

k2

(
n

k

)
= n(n + 1)2n−2. (1.22)

Thus we can find nice expressions for sums of products of binomial coefficients and their indices.

Remark 1.1. It is interesting to note that even if we only want to evaluate sums of integers or rationals,
we need to have continuous variables so that we can use the tools of calculus.

Remark 1.2. Instead of applying p2 ∂
∂p , it is easier to apply p ∂

∂p twice. The advantage of this is that
we have k2 coming down and not k(k − 1). Specifically, we start with

n∑

k=0

(
n

k

)
pkqn−k = (p + q)n. (1.23)

Applying p ∂
∂p once yields

n∑

k=0

k

(
n

k

)
pkqn−k = p · n(p + q)n−1. (1.24)

Applying p ∂
∂p again gives

n∑

k=0

k2

(
n

k

)
pkqn−k = p

[
1 · n(p + q)n−1 + p · n(n− 1)(p + q)n−2

]
. (1.25)

By letting q = 1− p and subtracting the square of the mean, we regain the variance in (1.21).

2 Matching Coefficients

Sometimes we can derive identities of binomial coefficients without differentiating – one common
technique is matching coefficients. For example, consider

n∑

k=0

(
n

k

)2

=
n∑

k=0

(
n

k

)(
n

n− k

)
, (2.1)
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because
(
n
k

)
=

(
n

n−k

)
. Consider now the following sum

n∑

k=0

(
n

k

)
xkyn−k ·

(
n

n− k

)
xn−kyk, (2.2)

as well as
(x + y)n(x + y)n. (2.3)

Expanding the product gives

(x + y)n(x + y)n = (x + y)2n =
2n∑

j=0

(
2n

j

)
xjy2n−j ; (2.4)

note the coefficient of xnyn in this product is
(
2n
n

)
. The key observation is that (2.2) is just the xnyn

term of (x + y)2n. This is because it can be interpreted as taking the xnyn term of (x + y)n(x + y)n.
How do we get an xnyn term from multiplying (x+y)n with (x+y)n? Well, the two factors (x+y)n

give terms like
(
n
i

)
xiyn−i and

(
n
j

)
xjyn−j , which are then multiplied together. The only way we get

an xnyn is when j = n − i, and we can do this for any j ∈ {0, 1, . . . , n}. Thus the xnyn term in
(x + y)2n is (

2n

n

)
xnyn =

n∑

k=0

(
n

k

)
xkyn−k ·

(
n

n− k

)
xn−kyk. (2.5)

The proof is completed by taking x = y = 1.
The reason arguments like this work is because if we have two polynomials of finite degree in

finitely many variables, then if they take on identical values for all values of the parameters then
all the coefficients of the two polynomials are equal. This allowed us to take two expressions and
equate the coefficients of terms. Without this observation, the equality of two polynomials (at all
values of the parameters) would not imply the equality of the coefficients. For example, assume
x2 +2xy− 7y = x2 +3xy− 5y2 + y for all x, y ∈ C (of course these two polynomials are not always
equal); however, if this were to happen, we would be in trouble as in the first we have 2xy and the
second we have 3xy. Thus while some terms (such as x2) have the same coefficient, others do not.

Specifically, say F (x, y) and G(x, y) are two polynomials of finite degree with complex coeffi-
cients. Then if they are equal for all choices of x, y ∈ C we have F (x, y)−G(x, y) is a polynomial of
finite degree and it is zero for all x, y ∈ C. It is an easy exercise to show this implies all the coefficients
of F (x, y)−G(x, y) are zero (i.e., all the coefficients of F (x, y) equal those of G(x, y)). One way to
see this is to choose fixed values of x. Say x = a. Except for finitely many choices of a, we would get
F (a, y)−G(a, y) is a finite degree polynomial and it has some non-zero coefficient but it vanishes for
all y ∈ C. This is absurd as a polynomial of degree d has at most d complex roots. We do not need to
have x and y range over all of C; it suffices to have them range over a large enough set, for example
|x|, |y| ≤ R for some R > 0.

The biggest difficulty in successfully applying arguments of this nature is figuring out what to
compare the observed sum to. Here we needed to see that we should compare

∑n
k=0

(
n
k

)2 to the
coefficient of xnyn in (x + y)2n. Writing

(
n
k

)
as

(
n
k

) · ( n
n−k

)
suggests that we should compare it to a

coefficient of (x + y)n(x + y)n.
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3 Combinatorics and Partitions

We review some needed results on combinatorics and partitions before tackling the number of alter-
nating strings of coin tosses.

3.1 The Cookie Problem

We describe a combinatorial problem which contains many common features of the subject. Assume
we have 10 identical cookies and 5 distinct people. How many different ways can we divide the
cookies among the people, such that all 10 cookies are distributed? Since the cookies are identical,
we cannot tell which cookies a person receives; we can only tell how many. We could enumerate
all possibilities (there are 5 ways to have one person receive 10 cookies, 20 ways to have one person
receive 9 and another receive 1, and so on). While in principle we can solve the problem, in practice
this computation becomes intractable, especially as the number of cookies and people increase.

We introduce common combinatorial functions. The first is the factorial function: for a positive
integer n, set n! = n · (n − 1) · · · 2 · 1. The number of ways to choose r objects from n when order
matters is n · (n − 1) · · · (n − (r − 1)) = n!

(n−r)! (there are n ways to choose the first element, then

n− 1 ways to choose the second element, and so on). The binomial coefficients
(
n
r

)
= n!

r!(n−r)! is the
number of ways to choose r objects from n objects when order does not matter. The reason is once
we’ve chosen r objects, there are r! ways to order them. For convenience, we define 0! = 1 (thus(
n
0

)
= 1, which may be interpreted as saying there is one way to choose zero elements from a set of n

objects). For more on binomial coefficients, see §B.
We show the number of ways to divide 10 cookies among 5 people is

(
10+5−1

5−1

)
. In general, if there

are C cookies and P people,

Lemma 3.1. The number of distinct ways to divide C identical cookies among P different people is(
C+P−1

P−1

)
.

Proof. Consider C +P −1 cookies in a line, and number them 1 to C +P −1. Choose P −1 cookies.
There are

(
C+P−1

P−1

)
ways to do this. This divides the cookies into P sets: all the cookies up to the

first chosen (which gives the number of cookies the first person receives), all the cookies between the
first chosen and the second chosen (which gives the number of cookies the second person receives),
and so on. This divides C cookies among P people. Note different sets of P − 1 cookies correspond
to different partitions of C cookies among P people, and every such partition can be associated to
choosing P − 1 cookies as above.

Remark 3.2. In the above proof, we do not care which cookies a person receives. We introduced the
numbers for convenience: now cookies 1 through i1 (say) are given to person 1, cookies i1 +1 through
i2 (say) are given to person 2, and so on.

For example, if we have 10 cookies and 5 people, say we choose cookies 3,4,7, and 13 of the
10+5-1 cookies:

⊙ ⊙ ⊗ ⊗ ⊙ ⊙ ⊗ ⊙ ⊙ ⊙ ⊙ ⊙ ⊗ ⊙

This corresponds to person 1 receiving 2 cookies, person 2 receiving 0, person 3 receiving 2, person 4
receiving 5, and person 5 receiving 1.

7



The above is an example of a partition problem: we are solving x1 + x2 + x3 + x4 + x5 = 10,
where xi is the number of cookies person i receives. We may interpret Lemma 3.1 as the number of
ways to divide an integer N into k non-negative integers is

(
N+k−1

k−1

)
.

Exercise 3.3. Show
N∑

n=0

(
n + k − 1

k − 1

)
=

(
N + k

k

)
. (3.1)

One can interpret the above as dividing N cookies among k people, where we do not assume all
cookies are distributed. Note here we have a sum of binomial coefficients where both the top and the
bottom index are varying. In general such sums are difficult unless you can find a nice way to interpret
such a sum.

Exercise 3.4. In partition problems, often there are requirements such as everyone receives at least
one cookie. How many ways are there to write N as a sum of k non-negative integers? How many
solutions of x1+x2+x3 = 2005 are there if each xi is an integer and x1 ≥ 5, x2 ≥ 7, and x3 ≥ 1000?

3.2 The Alternating Strings Problem

Consider a string of n1 + n2 coin tosses with n1 heads and n2 tails. There are
(
n1+n2

n2

)
ways to order

the n1 heads and n2 tails. Assume all orderings are equally likely. Our goal is to eventually study
the number of alternating strings of heads and tails. We start with a simpler problem, namely trying
to figure out how many ways there are to arrange n1 heads and n2 tails and observe u runs (again,
HHTTHTTTH would have 5 runs and 4 alterations).

For example, let us say n1 = n2 = 3 and we want to have 3 runs. If we assume we start with
a head we could have HTTTHH or HHTTTH , and by symmetry if we start with a tail we could
have THHHTT or TTHHHT .

In general, we have

Theorem 3.5. Let there be n1 heads and n2 tails, and assume each of the
(
n1+n2

n1

)
arrangements are

equally likely. Let there be u runs of heads and tails. Then

u =

{
2
(
n1−1
k−1

)(
n2−1
k−1

)
if u = 2k for a positive integer k(

n1−1
k

)(
n2−1
k−1

)
+

(
n1−1
k−1

)(
n2−1

k

)
if u = 2k + 1 for a positive integer k.

(3.2)

Proof. We consider u = 2k and leave the other case as an exercise. As there are an even number of
runs, we must either begin with a head and end with a tail, or we must begin with a tail and end with a
head. By symmetry, it is enough to consider just the case when we start with a head and then multiply
by 2. The reason is if we have a sequence like HHHTTHTTTHTHT we can reverse it and obtain
a sequence that starts with a tail and ends with a head.

Let us assume we will start with a head and end with a tail. Consider a string of n1 heads. If we
partition it into k strings of heads, we can then put tails in after the partitions, and we will have 2k runs;
however, we must put a partition after the final head, as we must end with a tail. Further, we cannot put
a partition before the first head as we must start with a head. For example, if we partition HHHHH
by adding partitions | to get H|HHH|H|, then we can add strings of tails after the partitions to get
HT · · ·THHHT · · ·THT · · ·T for a total of 6 runs. How many ways are there to partition n1 heads
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into k groups with a partition occurring after the final head and no partition allowed before the first
head? Note there are n1 + 1 positions where we can put a partition (before the first head, after the first
head, after the second head, . . . , after the last head); however, we shall see that two of these positions
have their values forced.

We must choose the last place for one partition, we cannot choose the place before the first head,
and then we must choose k − 1 of the remaining n1 − 1 positions for the other partitions. Thus the
number of ways to add k partitions when we must add a partition after the final head and we cannot add
one before the first head is just

(
1
1

)(
1
0

)(
n1−1
k−1

)
=

(
n1−1
k−1

)
. A similar argument shows there are

(
n2−1
k−1

)
ways to partition n2 tails into k groups, assuming we must have a partition before the first tail and we
are not allowed to have a partition after the final tail.

We now intersperse the partitioned heads and tails. Consider any of the
(
n1−1
k−1

)
partitions of the

n1 heads and any of the
(
n2−1
k−1

)
partitions of the n2 tails. Each such pair gives rise to a sequence of

n1 heads and n2 tails with exactly 2k runs, and any such sequence corresponds to a unique pair. For
example, say we have H|HH|HHH| and |TTTT |T |TT ; these unite to become HTTTTHHTHH .

Thus the number of partitions leading to 2k runs where the first coin is a head and the last is a tail
is just

(
n1−1
k−1

)(
n2−1
k−1

)
. By symmetry this is the same as the number of partitions where the first coin is

a tail and the last is a head, which completes the proof of the theorem in the case of an even number of
runs.

Of course, in the arguments above 1 ≤ k ≤ min(n1, n2); for other k the number of strings with
2k runs is zero.

4 Determining How Often There are an Even Number of Runs

By differentiating identities we determine how often there are an even number of runs when there
are n1 heads and n2 tails and each of the

(
n1+n2

n1

)
strings are equally likely. A similar argument is

applicable for the case when there are an odd number of runs; we concentrate here on the case of an
even number to highlight the methods.

If u = 2k is the number of runs, then we know the number of ways to have 2k runs is just

2
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
. (4.1)

Without loss of generality, for notational convenience let us assume n1 ≥ n2, so k runs from 1 to n2.
Thus the number of strings with an even number of runs is just

n2−1∑

k=1

2
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
, (4.2)

as there must be at least two runs (there is no way to have zero runs unless n1 = n2 = 0, which we
shall assume we do not have). We first need to determine what this sum is, and then to determine the
expected number of u (when u = 2k is even) we will need to sum

n2−1∑

k=1

(2k) · 2
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
. (4.3)
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4.1 Determining the number of strings with u = 2k runs

Consider the polynomial
(x1 + y1)n1−1(x2 + y2)n2−1; (4.4)

we shall see very shortly why this is a “natural” polynomial to examine. Using the Binomial Theorem
(Theorem B.4) we have

(x1 + y1)n1−1 =
n1−1∑

k1=0

(
n1 − 1

k1

)
xn1−1−k1

1 yk1
1 =

n1∑

k1=1

(
n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1

(x2 + y2)n2−1 =
n2−1∑

k2=0

(
n2 − 1

k2

)
xk2

2 yn2−1−k2
2 =

n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2 ; (4.5)

we will see later why it is convenient to have xn1−k1
1 but xk2−1

2 ; we can write the binomial theorem
this way as

(
m
r

)
=

(
m

m−r

)
. Therefore

(x1 + y1)n1−1(x2 + y2)n2−1 =




n1∑

k1=1

(
n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1


 ·




n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2


 .

(4.6)

Consider what happens if we set x1 = x2 = x and y1 = y2 = y. Then the above becomes

(x + y)n1+n2−2 =




n1∑

k1=1

(
n1 − 1
k1 − 1

)
xn1−k1yk1−1


 ·




n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1yn2−k2




=
n1∑

k1=1

n2∑

k2=1

(
n1 − 1
k1 − 1

)(
n2 − 1
k2 − 1

)
xn1−1−k1+k2yn2−1+k1−k2 . (4.7)

Now we use the uniqueness of polynomial expansions and equate coefficients. Consider the xn1−1yn2−1

term in (4.7). There are two ways we can calculate it. Looking at the left hand side, we have
(x + y)n1+n2−2, and thus the term is just

(
n1+n2−2

n1−1

)
xn1−1yn2−1. Looking at the right hand side

we see the term we desire occurs when k1 = k2. We see now why we wrote xn1−k1
1 and xk2−1

2 ; this
made it easy to combine the terms. Denoting the common value of k1 and k2 by k we obtain

(
n1 + n2 − 2

n1 − 1

)
xn1−1yn2−1 =

n2∑

k=1

(
n1 − 1
k − 1

)(
n2 − 1
k − 1

)
xn1−1yn2−1, (4.8)

or cancelling the x’s and the y’s
(

n1 + n2 − 2
n1 − 1

)
=

n2∑

k=1

(
n1 − 1
k − 1

)(
n2 − 1
k − 1

)
. (4.9)

We have determined the sum in (4.2), the sum we needed to figure out how many different strings there
are with n1 heads, n2 tails and u = 2k runs! Namely, we have shown
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Lemma 4.1. The number of strings with n1 heads, n2 tails and u = 2k runs is

n2−1∑

k=1

2
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
= 2

(
n1 + n2 − 2

n1 − 1

)
. (4.10)

Some discussion is clearly in order as to how we knew we should consider (x1 + y1)n1−1(x2 +
y2)n2−1. This is the hardest step in all such proofs by matching or proofs by differentiating identities,
namely figuring out where to start. The answer is usually suggested by trying to analyze the quantity
being studied, looking for clues as to what series or products we should consider.

In this case, we knew that we had to eventually have products like
(
n1−1
k−1

)(
n2−1
k−1

)
. How can we get

such terms? Well, the
(
n1−1
k−1

)
are the coefficients when we expand (A + B)n1−1; we chose A = x1

and B = y1 to have some flexibility, and to distinguish these terms from the other factors. For simply
counting the number of strings with u = 2k runs this extra degree of freedom or flexibility was not
needed; however, it will be crucial in trying to find the mean of u when u is even. Similarly the(
n2−1
k−1

)
are the coefficients from expanding (A + B)n2−1, and we choose A = x2 and B = y2 for the

same reasons as before. By setting x1 = x2 = x and y1 = y2 = y in the end we are arguing in a
similar manner as in §2. This is a common and powerful technique, namely writing (x + y)n+m and
(x + y)n(x + y)m and then deducing identities for sums involving terms like

(
n
r

)(
m

a+r

)
for a fixed a.

4.2 Determining the expected value of u for strings with u = 2k runs

We now turn to the sum in (4.2), which gives the expected value of u = 2k; again, remember that we
are only considering strings with n1 heads, n2 tails and an even number u = 2k of runs. As by Lemma
4.1 there are 2

(
n1+n2−2

n1−1

)
such strings and the number of strings with 2k runs is 2

(
n1−1
k−1

)(
n2−1
k−1

)
, we

need to determine
∑n2−1

k=1 (2k) · 2(
n1−1
k−1

)(
n2−1
k−1

)

2
(
n1+n2−2

n1−1

) = 2

∑n2−1
k=1 k · (n1−1

k−1

)(
n2−1
k−1

)
(
n1+n2−2

n1−1

) . (4.11)

We shall ignore the factor of 2
(
n1+n2−2

n1−1

)−1
for now and concentrate on evaluating

n2−1∑

k=1

k ·
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
. (4.12)

Actually, it will be significantly easier to find, not the sum with k but the sum with k − 1:

n2−1∑

k=1

(k − 1) ·
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
; (4.13)

clearly if we can evaluate this sum for k − 1 then by adding 1 we can find the sum with k.
We have seen in §4.1 that the sum over k of

(
n1−1
k−1

)(
n2−1
k−1

)
can be obtained by looking at the

xn1−1yn2−1 coefficient of (x1 + y1)n1−1(x2 + y2)n2−1 under x1 = x2 = x and y1 = y2 = y. So, let
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us study again (4.6):

(x1 + y1)n1−1(x2 + y2)n2−1 =




n1∑

k1=1

(
n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1


 ·




n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2


 .

(4.14)

We will now see the advantage of having two different x’s and two different y’s. Let us take the
derivative with respect to y1 and then multiply by y1. Thus we are applying the operator y1

∂
∂y1

; the
advantage of multiplying by y1 after differentiating by y1 is that we do not change the degree of any
of the terms. Applying y1

∂
∂y1

to the left hand side of (4.14) gives

(n1 − 1)y1(x1 + y1)n1−2(x2 + y2)n2−1, (4.15)

because x1, y1, x2 and y2 are independent variables. When we apply y1
∂

∂y1
to the right hand side of

(4.14) we get



n1∑

k1=1

(k1 − 1)
(

n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1


 ·




n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2


 . (4.16)

The above shows why it is easier to study k − 1 rather than k: when we differentiate a factor of k − 1
comes down, not k. We have thus shown

(n1 − 1)y1(x1 + y1)n1−2(x2 + y2)n2−1

=




n1∑

k1=1

(k1 − 1)
(

n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1


 ·




n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2


 . (4.17)

NOW we take x1 = x2 = x and y1 = y2 = y and obtain

Lemma 4.2.

(n1 − 1)y(x + y)n1+n2−3

=




n1∑

k1=1

(k1 − 1)
(

n1 − 1
k1 − 1

)
xn1−k1yk1−1


 ·




n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1yn2−k2


 . (4.18)

It is extremely important that we waited to set x1 equal to x2 and y1 equal to y2; if we had set them
equal first and then differentiated, we would have two pieces (from when the operator hit the first sum
and when it hit the second). The difficulty would be the first sum would bring down a factor of k1 − 1
and the second a factor of n2− k2. With some book-keeping this could probably be made to work, but
this is easier.

We now look at the xn1−1yn2−1 term of both sides of Lemma 4.2. First consider the left hand
side. We have one factor of y automatically because of the y outside. There are

(
n1+n2−3

n1−1

)
ways to

12



choose n1 − 1 factors of (x + y)n1+n2−3 to give x and n2 − 2 factors to give y. Thus the coefficient
of xn1−1yn2−1 on the left hand side is

(n1 − 1)
(

n1 + n2 − 3
n1 − 1

)
. (4.19)

We now determine the xn1−1yn2−1 term from the right hand side of Lemma 4.2. As before, this
term arises from k1 = k2. Denoting this common value by k we find the coefficient of the xn1−1yn2−1

term from the right hand side is

n2∑

k=1

(k − 1)
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
. (4.20)

As always, the proof is concluded by the uniqueness of the coefficients. By matching we obtain

Lemma 4.3.
n2∑

k=1

(k − 1)
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
= (n1 − 1)

(
n1 + n2 − 3

n1 − 1

)
. (4.21)

We can now determine the mean of k−1, or better yet 2(k−1). From this it is trivial to determine
the mean of 2k. Specifically

Lemma 4.4. ∑n2−1
k=1 2(k − 1) · 2(

n1−1
k−1

)(
n2−1
k−1

)

2
(
n1+n2−2

n1−1

) = 2
n1n2 − n1 − n2 + 1

n1 + n2 − 3
. (4.22)

Proof. The denominator comes from Lemma 4.1, where we showed this is the number of strings with
n1 heads, n2 tails and an even number of runs. We cancel two of the factors of 2 and are left with
one factor of 2 in the numerator, and then use Lemma 4.3 to evaluate the numerator. The proof is
completed by expanding out the binomial coefficients. Let µu−2,even denote the mean of two less than
even u (in other words, the expected value of 2(k − 1) when u = 2k). Then

µu−2,even =
2(n1 − 1)

(
n1+n2−3

n1−1

)
(
n1+n2−2

n1−1

)

= 2(n1 − 1)
(

n1 + n2 − 3
n1 − 1

)
·
(

n1 + n2 − 2
n1 − 1

)−1

=
2(n1 − 1)(n1 + n2 − 3)!

(n1 − 1)!(n2 − 2)!
· (n1 − 1)!(n2 − 1)!

(n1 + n2 − 2)!

=
2(n1 + n2 − 3)!

(n1 − 2)!(n2 − 2)!
· (n1 − 1)!(n2 − 1)!
(n1 + n2 − 2)(n1 + n2 − 3)!

=
2(n1 − 1)(n2 − 1)

n1 + n2 − 2

= 2
n1n2 − n1 − n2 + 1

n1 + n2 − 2
. (4.23)
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Note that as we write (n1 + n2 − 2)! as (n1 + n2 − 2) · (n1 + n2 − 3)!, we are implicitly assuming
that n1 + n2 − 2 ≥ 1. If this fails, i.e. if n1 + n2 ≤ 2, then the above algebra could be wrong and
those cases should be investigated separately (though if interpreted properly, our formulas will still be
correct in these cases).

By adding 2 we get the mean of u = 2k for even u.

Theorem 4.5. Assume we have n1 heads, n2 tails, u = 2k runs and all strings are equally likely. Then
the expected number of runs is

µu,even = 2
[
n1n2 − n1 − n2 + 1

n1 + n2 − 2
+ 1

]
= 2

n1n2 − 1
n1 + n2 − 2

. (4.24)

Whenever one derives a complicated formula, it is a good idea to test it in extreme cases and see if
it is reasonable. For example, the formula does not make sense if n1 + n2− 2 = 0. However, the only
way that could happen, since n1 and n2 are non-negative integers, is if either both equal 1 or one is 0
and the other 2. If one is 0 and the other is 2 then we have an odd number of runs, and this formula is
only for the case of an even number of runs. We are left with the case when n1 = n2 = 1. We have
two runs, either HT or TH . In this case we have 2 n1n2−1

n1+n2−2 = 20
0 ; it is not unreasonable to think 0

0
should be interpreted as 1 in this instance, and we would then get 2 (the correct answer). However,
some care is needed in using this formula when n1 + n2 = 2, but this case can be handled directly.

Another good extreme to consider is when n1 is much larger than n2 (or vice-versa, but we have
assumed without loss of generality earlier that n1 ≥ n2). In this case, the mean for sequences with
an even number of runs is approximately 2n1n2

n1
or about 2n2. This is the correct behavior for such

n1 and n2. Why? Imagine we have millions of time more heads (n1) than tails (n2). In that case it
is extremely unlikely that any two tails will be adjacent. Thus there will be strings of varying lengths
between the tails. As there are n2 tails, this gives us 2n2 runs (the heads before a tail, a tail, another
string of heads, a tail, another string of heads, a tail, and so on).

While such sanity checks are not proofs, they help us see if our formulas are reasonable, as well as
possibly catching missing factors. For example, if we had dropped a factor of 2 earlier we would have
found the mean was n1n2−1

n1+n2−2 , and this would not have the right behavior for n1 significantly larger
than n2. We also saw that the −2 in the denominator is reasonable.

We can also try a special case, for example n1 = 2, n2 = 1. In this case if we want an even number
of runs we must have HHT or THH . Thus all strings with an even number of runs have 2 runs, and
our formula does give 2 when n1 = 2 and n2 = 1. This helps check the −1 factor.

Thus, while it is still possible that we have made an algebra error somewhere, we should have a
high degree of confidence in the result.

4.3 Determining the variance of u for strings with u = 2k runs

Theorem 4.6. Assume we have n1 heads, n2 tails, u = 2k runs and all strings are equally likely. Then
the variance in the number of runs is

σ2
u,even = 4

(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2(n1 + n2 − 3)
. (4.25)
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Proof. As u = 2k is even, we need to find Var(2k) = E[(2k)2] − E[2k]2. We can simplify the
calculations by noting that the variance of u = 2k is the same as the variance of u − 2 = 2(k − 1).
While we know the mean of both u = 2k and u−2 = 2(k−1), it will turn out to be easier to calculate
E[(2k − 2)2] than E[(2k)2].

Thus we must evaluate
∑n2−1

k=1 [2(k − 1)]2 · 2(
n1−1
k−1

)(
n2−1
k−1

)

2
(
n1+n2−2

n1−1

) = 4

∑n2−1
k=1 (k − 1)2 · (n1−1

k−1

)(
n2−1
k−1

)
(
n1+n2−2

n1−1

) . (4.26)

As before, the starting point is (4.6):

(x1 + y1)n1−1(x2 + y2)n2−1 =




n1∑

k1=1

(
n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1


 ·




n2∑

k2=1

(
n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2


 .

(4.27)

We apply the operator x2y1
∂2

∂x2∂y1
. The reason for this choice is that the two derivatives bring down a

factor of (k1 − 1)(k2 − 1); the presence of x2y1 means the degree of each term is unchanged (in all
four variables x1, x2, y1, y2). Setting x1 = x2 = x and y1 = y2 = y and matching coefficients will
complete the proof, as looking at the coefficient of xn1−1yn1−1 will cause k1 = k2, and this will give
us the sum we desire.

Specifically, after applying x2y1
∂2

∂x2∂y1
the left hand side of (4.27) is

(n1 − 1)(n2 − 1)x2y1(x1 + y1)n1−2(x2 + y2)n2−2, (4.28)

while the right hand side of (4.27) is



n1∑

k1=1

(k1 − 1)
(

n1 − 1
k1 − 1

)
xn1−k1

1 yk1−1
1


 ·




n2∑

k2=1

(k2 − 1)
(

n2 − 1
k2 − 1

)
xk2−1

2 yn2−k2
2


 . (4.29)

Setting x1 = x2 = x and y1 = y2 = y, (4.28) and (4.29) give

(n1 − 1)(n2 − 1)xy(x + y)n2+n2−4 =




n1∑

k1=1

(k1 − 1)
(

n1 − 1
k1 − 1

)
xn1−k1yk1−1




·



n2∑

k2=1

(k2 − 1)
(

n2 − 1
k2 − 1

)
xk2−1yn2−k2


 . (4.30)

We match the xn1−1yn1−1 term on both sides. The left hand side is easy. As we have an xy outside,
we see we need to choose n1 − 2 more x’s and n2 − 2 more y’s. The right hand side is just the sum
over k1 = k2. Denoting this common value by k we find

(n1 − 1)(n2 − 1)
(

n1 + n2 − 4
n1 − 2

)
xn1−1yn2−1 =

n2∑

k=1

(k − 1)2
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
xn1−1yn2−1,

(4.31)
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or equivalently

n2∑

k=1

(k − 1)2
(

n1 − 1
k − 1

)(
n2 − 1
k − 1

)
= (n1 − 1)(n2 − 1)

(
n1 + n2 − 4

n1 − 2

)
. (4.32)

Therefore we have

E[(2k − 2)2] =
4(n1 − 1)(n2 − 1)

(
n1+n2−4

n1−2

)
(
n1+n2−2

n1−1

) . (4.33)

We can simplify the above expression to make it easier to subtract E[(2k − 2)]2:

E[(2k − 2)2] = 4(n1 − 1)(n2 − 1)
(n1 + n2 − 4)!

(n1 − 2)!(n2 − 2)!
· (n1 − 1)!(n2 − 1)!

(n1 + n2 − 2)!

= 4(n1 − 1)(n2 − 1)
(n1 + n2 − 4)!

(n1 − 2)!(n2 − 2)!
· (n1 − 1)(n1 − 2)!(n2 − 1)(n2 − 2)!
(n1 + n2 − 2)(n1 + n2 − 3)(n1 + n2 − 4)!

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)(n1 + n2 − 3)

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2
· n1 + n2 − 2
n1 + n2 − 3

. (4.34)

We must now subtract E[(2k − 2)]2. It is easiest algebraically to use the expression for E[(2k − 2)]2

from the second to last line of (4.23). This yields

Var(2k − 2) = 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2
· n1 + n2 − 2
n1 + n2 − 3

−
[
2(n1 − 1)(n2 − 1)

n1 + n2 − 2

]2

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2

[
n1 + n2 − 2
n1 + n2 − 3

− 1
]

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2
· 1
n1 + n2 − 3

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2(n1 + n2 − 3)
, (4.35)

and Var(2k − 2) = Var(2k).

For large n1 and n2,

Var(2k) ∼ 4
n2

1n
2
2

(n1 + n2)3
. (4.36)

If n1 is much larger than n2, the mean is approximately 2n2 and the variance is approximately 4n2
2

n1
.

4.4 Behavior for all u

We briefly describe what happens if we don’t restrict to the case when u, the number of runs, is even.
The main result is that
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Theorem 4.7. Assume we have n1 heads, n2 tails, u runs and all strings are equally likely; u may be
either even or odd and we assume n1, n2 ≥ 1. Then the expected number of runs u is 2n1n2

n1+n2
+1 and the

variance is 2n1n2(2n1n2−n1−n2)
(n1+n2)2(n1+n2−1)

. For n1 and n2 large, the expected number of runs is approximately

2 n1n2
n1+n2

and the variance is approximately 4 n2
1n2

2
(n1+n2)3

.

Note our results on the expected number and variance of u (when u is forced to be even) are
consistent with the above, at least when n1 and n2 are large. This isn’t surprising, as when n1 and n2

are large it is reasonable to think that there are about as many strings with an odd number of runs as
an even number of runs.

Sketch of the proof. To prove Theorem 4.7 we would need to investigate the case when u = 2k + 1.
The starting point is the second part of (3.2), which tells us how many ways there are to have u = 2k+1
runs. We need to know how many strings there are with n1 heads and n2 tails so that we can find the
probabilities of having u = 2k or u = 2k+1 runs. This is just

(
n1+n2

n1

)
as we choose n1 of the n1 +n2

positions to be heads.
In determining the mean and variance when u = 2k − 2 we divided the number of strings with

2k runs by 2
(
n1+n2−2

n1−1

)
, which is the number of strings with n1 heads, n2 tails and an even number of

runs. What we can do is multiply our results on the mean and variance in this case by

2
(
n1+n2−2

n1−1

)
(
n1+n2

n1

) , (4.37)

which now divides the contribution by the total number of strings and not just the total number of
strings with an even number of runs.

The proof is completed by determining the contributions to the mean and the variance from the
u = 2k +1 terms. These contributions are found in a similar manner (i.e. by differentiating identities)
as the u = 2k terms. We leave the details to the reader.

For completeness, we sketch the key steps in the algebra to finish the proof. We need to find the
mean. For the terms with an even number of runs we need to average 2k and for the terms with an odd
number of runs we average 2k + 1.

For the even terms, we showed that there are 2
(
n1+n2−2

n−1

)
strings, and there are

(
n1+n2

n1

)
total

strings. We multiply the mean in Theorem 4.5 by
2(n1+n2−2

n−1 )
(n1+n2

n2
) .

For the odd terms, from (3.2) we have two sums to study. To analyze the contribution from

∑

k

(
n1 − 1

k

)(
n2 − 1
k − 1

)
(4.38)

we see this can be interpreted by looking at the xn2−2yn2 term of

∑

k1

(
n1 − 1

k1

)
xn1−1−k1

1 yk1
1

∑

k2

(
n2 − 1
k − 1

)
xk2−1

2 yn2−k2
2 (4.39)

when we set x1 = x2 = x and y1 = y2 = y. We see this term is the xn2−2yn2 term of

(x1 + y1)n1−1(x2 + y2)n2−1 (4.40)
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when we set x1 = x2 = x and y1 = y2 = y, and that term is just
(
n1+n2−2

n1−2

)
xn1−2yn2 . Note this

allows us to determine the sum of these binomial coefficients. We need to evaluate the sum with a
factor of 2k + 1. To evaluate the sum with a factor of k we apply the operator y1

∂
∂y1

; to handle the +1
in 2k + 1 we just need to count the number of terms, which from above is

(
n1+n2−2

n1−2

)
. Therefore, the

contribution from these terms with odd u from (3.2) to the mean is just

2(n1 − 1)
(

n1 + n2 − 3
n1 − 2

)
+

(
n1 + n2 − 2

n1 − 2

)
(4.41)

while the other terms with odd u in (3.2) give (by a similar argument or by symmetry) a contribution
of (

n1 + n2 − 3
n2 − 2

)
+

(
n1 + n2 − 2

n2 − 2

)
. (4.42)

We then must go through a lot of algebra - after adding all of these contributions we divide by the
number of strings,

(
n1+n2

n1

)
. In adding the various terms it is often convenient to pull out factors of

(n1+n2−3)!
(n1−2)!(n2−2)! . In the end we show the mean is 2n1n2

n1+n2
+ 1. It is convenient to notice that

(n1 +n2)(n1 +n2−1)(n1 +n2−2) = n3
1 +n3

2 +3n2
1n2 +3n1n

2
2−3n2

1−3n2
2−6n1n2 +2n1 +2n2.

(4.43)

Exercise 4.8. Calculate the contributions from the u = 2k + 1 terms and rescale the contributions
from the u = 2k terms to complete the proof of Theorem 4.7.

4.5 Expected Number of Runs with Arbitrary Numbers of Heads and Tails

So far we assumed that there were n1 heads, n2 tails and all strings were equally likely. Let us assume
now that we have N coin tosses where each toss has probability p of being a head and q = 1 − p of
being a tail. Thus, n2 = N − n1. For each n1 there are

(
N
n1

)
strings; all of these strings are equally

likely, each occurring with probability pn1qN−n1 . Our main result is

Theorem 4.9. Assume we toss a coin with probability p of heads a total of N times. The expected
number of runs µu(p) is 2p(1 − p)(N − 1) + 1. In particular, if the coin is fair (so p = q = 1

2) then
the expected number of runs is N+1

2 .

Proof. If there are n1 heads then the expected number of runs is 2n1(N−n1)
N + 1, and there are

(
N
n1

)
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such strings, each occurring with probability pn1qN−n1 . Thus the expected number of runs µu(p) is

µu =
N∑

n1=0

[
2n1(N − n1)

N
+ 1

]
·
(

N

n1

)
pn1qN−n1

= 2
N∑

n1=0

n1(N − n1)
N

N !
n1!(N − n1)!

pn1qN−n1 +
N∑

n1=0

(
N

n1

)
pn1qN−n1

= 2pq
N−1∑

n1=1

(N − 1)!
(n! − 1)!(N − n1 − 1)!

pn1−1qN−n1−1 + (p + q)N

= 2pq(N − 1)
N−1∑

n1=1

(N − 2)!
(n1 − 1)!(N − n1 − 1)!

pn1−1qN−n1−1 + (p + q)N

= 2p(1− p)(N − 1)(p + q)N−2 + (p + q)N . (4.44)

As q = 1− p the above becomes

µu(p) = 2pq(N − 1) + 1. (4.45)

In the special case that p = q = 1
2 we have

µu

(
1
2

)
=

N + 1
2

. (4.46)

Exercise 4.10. Calculate the variance of µu(p).

A Proofs by Induction

Assume for each positive integer n we have a statement P (n) which we desire to show is true. P (n)
is true for all positive integers n if the following two statements hold:

• Basis Step: P (1) is true;

• Inductive Step: whenever P (n) is true, P (n + 1) is true.

This technique is called Proof by Induction, and is a very useful method for proving results. The
reason the method works follows from basic logic. We assume the following two sentences are true:

P (1) is true

∀n ≥ 1, P (n) is true implies P (n + 1) is true. (A.1)

Set n = 1 in the second statement. As P (1) is true, and P (1) implies P (2), P (2) must be true. Now
set n = 2 in the second statement. As P (2) is true, and P (2) implies P (3), P (3) must be true. And so
on, completing the proof. Verifying the first statement the basis step and the second the inductive step.
In verifying the inductive step, note we assume P (n) is true; this is called the inductive assumption.
Sometimes instead of starting at n = 1 we start at n = 0, although in general we could start at any n0

and then prove for all n ≥ n0, P (n) is true.

19



Theorem A.1. For n a non-negative integer,

n∑

k=1

k =
n(n + 1)

2
. (A.2)

Proof. Let P (n) be the statement
n∑

k=1

k =
n(n + 1)

2
. (A.3)

Basis Step: P (1) is true, as both sides equal 1.

Inductive Step: Assuming P (n) is true, we must show P (n + 1) is true. By the inductive assumption,∑n
k=1 k = n(n+1)

2 . Thus

n+1∑

k=1

k = (n + 1) +
n∑

k=1

k

= (n + 1) +
n(n + 1)

2

=
(n + 1)(n + 1 + 1)

2
. (A.4)

Thus, given P (n) is true, then P (n + 1) is true.

Exercise A.2. Prove
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
. (A.5)

Find a similar formula for the sum of k3. See also Remark A.3.

Remark A.3. In general,
∑n

k=0 kp = fp(n), where fp(x) is a polynomial of degree p+1 with leading
term xp+1

p+1 ; one can find the coefficients by evaluating the sums for n = 0, 1, . . . , p because specifying
the values of a polynomial of degree p at p + 1 points uniquely determines the polynomial.

Exercise A.4. Notation as in Remark A.3, assuming fp(n) is a polynomial in n, use the integral test
from calculus to show the leading term is np+1

p+1 .

Exercise A.5. Show the sum of the first n odd numbers is n2, i.e.,

n∑

k=1

(2k − 1) = n2. (A.6)
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B The Binomial Theorem

We prove the Binomial Theorem. First, recall that

Definition B.1 (Binomial Coefficients). Let n and k be integers with 0 ≤ k ≤ n. We set
(

n

k

)
=

n!
k!(n− k)!

. (B.1)

Note that 0! = 1 and
(
n
k

)
is the number of ways to choose k objects from n (with order not counting).

Lemma B.2. We have (
n

k

)
=

(
n

n− k

)
,

(
n

k

)
+

(
n

k − 1

)
=

(
n + 1

k

)
. (B.2)

Exercise B.3. Prove Lemma B.2.

Theorem B.4 (The Binomial Theorem). For all positive integers n we have

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (B.3)

Proof. We proceed by induction.

Basis Step: For n = 1 we have

1∑

k=0

(
1
k

)
x1−kyk =

(
1
0

)
x +

(
1
1

)
y = (x + y)1. (B.4)

Inductive Step: Suppose

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk. (B.5)

Then using Lemma B.2 we find that

(x + y)n+1 = (x + y)(x + y)n

= (x + y)
n∑

k=0

(
n

k

)
xn−kyk

=
n∑

k=0

(
n

k

)
xn+1−kyk +

(
n

k

)
xn−kyk+1

= xn+1 +
n∑

k=1

{(
n

k

)
+

(
n

k − 1

)}
xn+1−kyk + yn+1

=
n+1∑

k=0

(
n + 1

k

)
xn+1−kyk.

(B.6)

This establishes the induction step, and hence the theorem.
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C Summing pth powers of integers

Using Induction (Appendix A), it is possible to prove results such as

Theorem C.1. For p a positive integer
n∑

k=1

kp = fp(n), (C.1)

where fp(x) is a polynomial of degree p + 1 in x with rational coefficients, and the leading term is
xp+1

p+1 .

See Remark A.3 for more details. It is also possible to prove these results without resorting to
induction! Namely, we can prove these results by differentiating identities. We need the following
result about finite geometric series:

Lemma C.2. For any x ∈ R,

1 + x + x2 + · · ·+ xn =
xn+1 − 1

x− 1
. (C.2)

Proof. If x = 1 we evaluate the right hand side by L’Hospital’s Rule, which gives n+1
1 = n + 1. For

other x, let S = 1 + x + · · ·+ xn. Then

S = 1 + x + x2 + · · ·+ xn

xS = x + x2 + · · ·+ xn + xn+1. (C.3)

Therefore
xS − S = xn+1 − 1 (C.4)

or

S =
xn+1 − 1

x− 1
. (C.5)

We now show how to sum the pth powers of the first n integers. We first investigate the case when
p = 1 and provide an alternate proof of Theorem A.1. Consider the identity

n∑

k=0

xk =
xn+1 − 1

x− 1
. (C.6)

We apply the operator x d
dx to each side and obtain

x
d

dx

n∑

k=0

xk = x
d

dx

xn+1 − 1
x− 1

n∑

k=0

kxk = x
(n + 1)xn · (x− 1)− 1 · (xn+1 − 1)

(x− 1)2

n∑

k=0

kxk = x
nxn+1 − (n + 1)xn + 1

(x− 1)2
. (C.7)
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If we set x = 1, the left hand side becomes the sum of the first n integers. To evaluate the right hand
side we use L’Hospital’s rule, as when x = 1 we get 1 · 0

0 . As long as one of the factors has a limit, the
limit of a product is the product of the limits. As x → 1, the factor of x becomes just 1 and we must
study limx→1

nxn+1−(n+1)xn+1
(x−1)2

. We find

lim
x→1

nxn+1 − (n + 1)xn + 1
(x− 1)2

= lim
x→1

n(n + 1)xn − n(n + 1)xn−1

2(x− 1)
. (C.8)

As the right hand side is 0
0 when x = 1 we apply L’Hospital again and find

lim
x→1

nxn+1 − (n + 1)xn + 1
(x− 1)2

= lim
x→1

n2(n + 1)xn−1 − n(n + 1)(n− 1)xn−1

2

=
n(n + 1)

2
. (C.9)

Therefore, by differentiating the finite geometric series and using L’Hospital’s rule we were able
to prove the formula for the sum of integers without resorting to induction. The reason we used the
operator x d

dx and not d
dx is this leaves the power of x unchanged. While this flexibility is not needed

to compute sums of first powers of integers, if we want to calculate sums of kp for p > 1, this will
simplify the formulas.

Theorem C.3. For n a positive integer,

n∑

k=0

k2xk =
n(n + 1)(2n + 1)

6
. (C.10)

Proof. To find the sum of k2 we apply x d
dx twice to (C.6) and get

x
d

dx

[
x

d

dx

n∑

k=0

xk

]
= x

d

dx

[
x

d

dx

xn+1 − 1
x− 1

]

x
d

dx

n∑

k=0

kxk = x
d

dx

[
x

nxn+1 − (n + 1)xn + 1
(x− 1)2

]

n∑

k=0

k2xk = x
d

dx

[
nxn+2 − (n + 1)xn+1 + x

(x− 1)2

]

n∑

k=0

k2xk = x

[
n(n + 2)xn+1 − (n + 1)2xn + 1

] · (x− 1)2

(x− 1)4

−x

[
nxn+2 − (n + 1)xn+1 + x

] · 2(x− 1)
(x− 1)4

. (C.11)

Simple algebra (multiply everything out on the right hand side and collect terms) yields

n∑

k=0

k2xk = x
n2xn+2 − (2n2 + 2n− 1)xn+1 + (n2 + 2n + 1)xn − x− 1

(x− 1)3
. (C.12)
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The left hand side is the sum we want to evaluate; however, the right hand side is 0
0 for x = 1. As

the denominator is (x− 1)3 it is reasonable to expect that we will need to apply L’Hospital’s rule three
times; we provide a proof of this in Remark C.4.

Applying L’Hospital’s rule three times to the right hand side we find the right hand side is

n2(n + 2)(n + 1)nxn−1 − (2n2 + 2n− 1)(n + 1)n(n− 1)xn−2 + (n2 + 2n + 1)n(n− 1)(n− 2)xn−3

3 · 2 · 1 .

(C.13)
Taking the limit as x → 1 we obtain

n∑

k=0

k2xk =
n2(n + 2)(n + 1)n− (2n2 + 2n− 1)(n + 1)n(n− 1) + (n2 + 2n + 1)n(n− 1)(n− 2)

6

=
n(n + 1)(2n + 1)

6
, (C.14)

where the last line follows from simple algebra.

Remark C.4. While we are able to obtain the correct formula for the sum of squares without resorting
to induction, the algebra is starting to become tedious, and will get more so for sums of higher powers.
After applying x d

dx twice we had g(x)
(x−1)3

, where g(x) is a polynomial of degree n + 2 and g(1) = 0.
It is natural to suppose that we need to apply L’Hospital’s rule three times as we have a factor of
(x− 1)3 in the denominator. However, if g′(1) or g′′(1) is not zero, then we do not apply L’Hospital’s
rule three times but rather only once or twice. Thus we really need to check and make sure that
g′(1) = g′′(1) = 0. While a straightforward calculation will show this, a moment’s reflection shows
us that both of these derivatives must vanish. If one of them was non-zero, say equal to a, then we
would have a

0 which is undefined; however, clearly the sum of the first n squares is finite. Therefore
these derivatives will be zero and we do have to apply L’Hospital’s rule three times.

Remark C.5. For those concerned about the legitimacy of applying L’Hospital’s rule and these for-
mulas when x = 1, we can consider a sequence of x’s, say xN = 1− 1

N with N →∞. Everything is
then well-defined, and it is of course natural to use L’Hospital’s rule to evaluate limN→∞

g(xN )
(xN−1)3

.

D Divergence of the Harmonic Series

Instead of considering (1.3):

∞∑

n=1

n · xn−1 = 1 + 2x + 3x2 + 4x3 + · · · , (D.1)

let us consider ∞∑

n=1

xn

n
=

x

1
+

x2

2
+

x3

3
+

x4

4
+ · · · . (D.2)

Taking x = 1 yields the famous harmonic series

1 +
1
2

+
1
3

+
1
4

+ · · · . (D.3)
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There are many proofs of the divergence of the harmonic series (one simple one is to group terms 2k

through 2k+1− 1 together, note each term is at least 1
2k so their sum is at least 1; another is to multiply

by 1
2 and subtract and note that the sum of the reciprocals of the odd numbers is greater than the

sum of the reciprocals of the even numbers); we present a proof based on differentiating (or actually
integrating) identities. Let

F (x) =
∞∑

n=1

xn

n
=

x

1
+

x2

2
+

x3

3
+

x4

4
+ · · · . (D.4)

If |x| < 1 then the above series converges. We now differentiate and note that if |x| < 1 then we can
interchange differentiation and summation, and we find

f(x) = F ′(x) =
∞∑

n=1

xn−1 = 1 + x + x2 + x3 + · · · =
1

1− x
, (D.5)

where the last equality follows by the geometric series formula. We now integrate the above from 0 to
u for u ∈ (0, 1) (so we may interchange integration and summation). We find

F (u) =
∞∑

n=1

un

n
=

∫ u

0

dx

1− x
= − log(1− u). (D.6)

We have therefore shown that for u ∈ (0, 1) that

u

1
+

u2

2
+

u3

3
+

u4

4
+ · · · = − log(1− u). (D.7)

We now take the limit as u → 1 from below; let us write u as u = 1− e−t with t positive and t →∞.
Then the left hand side of (D.7) as t →∞ is just the harmonic sum,

1 +
1
2

+
1
3

+
1
4

+ · · · . (D.8)

For a fixed t, the right hand side is − log(e−t) = t. Thus as u → 1 from below t → ∞ and
− log(1− u) →∞. Thus the harmonic series diverges.

Exercise D.1. Use the above arguments to show that the sum of the first N terms of the harmonic
series is of size log N .

E Interchanging Differentiation and Summation

We first recall Fubini’s Theorem, which states when we may interchange orders of integration.

Theorem E.1 (Fubini). Assume f is continuous and

∫ b

a

∫ d

c
|f(x, y)|dxdy < ∞. (E.1)
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Then ∫ b

a

[∫ d

c
f(x, y)dy

]
dx =

∫ d

c

[∫ b

a
f(x, y)dx

]
dy. (E.2)

Similar statements hold if we instead have

N1∑

n=N0

∫ d

c
f(xn, y)dy,

N1∑

n=N0

M1∑

m=M0

f(xn, ym). (E.3)

For a proof in special cases, see [BL, VG]; an advanced, complete proof is given in [Fol]. One
cannot always interchange orders of integration. For simplicity, we give a sequence amn such that∑

m(
∑

n am,n) 6= ∑
n(

∑
m am,n) (although it is trivial to modify this to an example involving inte-

grals).

Exercise E.2. For m,n ≥ 0 let

am,n =

{ 1 if n = m
−1 if n = m + 1

0 otherwise.
(E.4)

Show that the two different orders of summation yield different answers.

We now study when we can justify interchanging orders of differentiation and summation. We
know the geometric series formula gives

∞∑

n=0

xn =
1

1− x
, |x| < 1. (E.5)

We show that we may interchange differentiation and summation above. The derivative of the right
hand side (with respect to x) is just (1− x)−2. We want to say the derivative of the left hand side is

∞∑

n=0

nxn−1, (E.6)

but do to so requires us to justify
d

dx

∞∑

n=0

xn =
∞∑

n=0

d

dx
xn. (E.7)

A standard way to justify statements like this is as follows. We note that
∑∞

n=0 nxn−1 converges for
|x| < 1; if we can show that for any ε > 0 that this is within ε of (1−x)−2, then we will have justified
the interchange.

To see this, fix an ε > 0. For each N , we may write

∞∑

n=0

xn =
N∑

n=0

xn +
∞∑

n=N+1

xn

=
N∑

n=0

xn +
xN+1

1− x
=

1
1− x

. (E.8)
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We can differentiate each side, and we can justify interchanging the differentiation and the summation
because we have finite sums. Specifically, there are only N + 2 terms (N + 1 from the sum and then
one more, xN+1

1−x ). Therefore we have

d

dx

N∑

n=0

xn +
d

dx

xN+1

1− x
=

d

dx

1
1− x

N∑

n=0

nxn−1 +
(N + 1)xN (1− x)− xN+1(−1)

(1− x)2
=

1
(1− x)2

N∑

n=0

nxn−1 +
(N + 1)(1− x) + x

(1− x)2
xN =

1
(1− x)2

(E.9)

As |x| < 1, given any ε > 0 we can find an N0 such that for all N ≥ N0,
∣∣∣∣
(N + 1)(1− x) + x

(1− x)2
xN

∣∣∣∣ ≤
ε

2
. (E.10)

Similarly we can find an N1 such that for all N ≥ N1 we have
∣∣∣∣∣

∞∑

n=N+1

nxn−1

∣∣∣∣∣ ≤
ε

2
. (E.11)

Therefore we have shown that for every ε > 0 we have
∣∣∣∣∣

1
(1− x)2

−
∞∑

n=0

nxn−1

∣∣∣∣∣ ≤ ε, (E.12)

proving the claim. Instead of studying these sums for a specific x, we can consider x ∈ [a, b] with
−1 < a ≤ b < 1, and N0, N1 will just depend on a, b and ε.

One situation where we cannot interchange differentiation and summation is when we have se-
ries that are conditionally convergent but not absolutely convergent. This means

∑
an converges but∑ |an| does not. For example, consider

∞∑

n=0

xn

n
. (E.13)

If x = −1 this series conditionally converges but not absolutely; in fact, as

− log(1− x) = x +
x2

2
+

x3

3
+ · · · =

∞∑

n=1

xn

n
, (E.14)

then (E.13) with x = −1 is just − log 2. What happens if we try to differentiate? We have

d

dx
[− log(1− x)] =

d

dx

[ ∞∑

n=1

xn

n

]
. (E.15)
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The left hand side is easy to differentiate for x ∈ [−1, 0], giving 1
1−x . But if we interchange the

differentiation and summation we would have

d

dx

[ ∞∑

n=1

xn

n

]
=

∞∑

n=1

xn−1, (E.16)

and this does not converge when x = −1 (aside: the sum oscillates between 1 and 0; in some sense it
can be interpreted as 1

2 , which is what 1
1−x equals when x = −1!).

Sometimes, however, conditionally convergent but absolutely divergent series can be managed.
Consider ∞∑

n=1

xn

n log n
. (E.17)

This series converges conditionally when x = −1 but diverges upon inserting absolute values. If we
interchange differentiation and summation we get

∞∑

n=1

xn−1

log n
, (E.18)

and this sum does converge (conditionally, not absolutely) when x = −1.
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