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Abstract

We describe Linear Programming, an important generalization of Linear Algebra. Lin-
ear Programming is used to successfully model numerous real world situations, ranging
from scheduling airline routes to shipping oil from refineries to cities to finding inexpen-
sive diets capable of meeting the minimum daily requirements. In many of these problems,
the number of variables and constraints are so large that it is not enough to merely to know
there is solution; we need some way of finding it (or at least a close approximation to it) in
a reasonable amount of time. We describe the types of problems Linear Programming can
handle and show how we can solve them using the simplex method. We discuss generaliza-
tions to Binary Integer Linear Programming (with an example of a manager of an activity
hall), and conclude with an analysis of versatility of Linear Programming and the types of
problems and constraints which can be handled linearly, as well as some brief comments
about its generalizations (to handle situations with quadratic constraints).
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1 Linear Programming

1.1 Introduction

We describe the ideas and applications of Linear Programming; our presentation is heavily
influenced by Joel Franklin’s excellent book,Methods of Mathematical Economics[Fr]. We
strongly recommend this book to anyone interested in a very readable presentation, replete with
examples and references.

Linear Programming is a generalization of Linear Algebra. It is capable of handling a variety
of problems, ranging from finding schedules for airlines or movies in a theater to distributing oil
from refineries to markets. The reason for this great versatility is the ease at which constraints
can be incorporated into the model. To see this, in the following section we describe a specific
problem in great detail, and in §3 we discuss how some quadratic (or higher order) constraints
can be handled as well.

1.2 The Canonical Linear Programming Problem

1.2.1 Statement of the Diet Problem

We consider a simple case of the diet problem first, and then discuss the generalization. Assume
for simplicity that there are only two foods, which for definiteness we shall assume are cereal
and steak. Further, we assume that there are only two products people need to stay alive, iron
and protein; each day a person must consume at least 60 units of iron and at least 70 units of
protein to stay alive. Let us assume that one unit of cereal costs$20 and contains 30 unit of
iron and 5 units of protein, and that one unit of steak costs$2 and contains 15 units of iron
and 10 units of protein. The goal is to find the cheapest diet which will satisfy the minimum
daily requirements.We have deliberately chosen absurd prices and levels of iron and protein
for cereal and steak to illustrate a point later.
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Let x1 represent the number of units of cereal that the person consumes a day, andx2 the
number of units of iron consumed. For the diet to meet the minimum requirements, we must
have

30x1 + 5x2 ≥ 60
15x1 + 10x2 ≥ 70

x1 ≥ 0
x2 ≥ 0. (1)

The left hand side of the first inequality represents the amount of iron the person consumes when
eatingx1 units of cereal andx2 units of steak; it must be at least 60 as otherwise not enough
iron is consumed. Similarly the left hand side of the second inequality represents the amount of
protein consumed, and must be at least 70. The last two inequalities represent the fact that we
cannot eat a negative amount of a food. The cost of the diet is

Cost(x1, x2) = 20x1 + 2x2, (2)

and the diet problem becomes:MinimizeCost(x1, x2), subject tox1, x2 satisfy(1). It is very
important that, not only are the constraints linear in the variables, but the function we are trying
to maximize is linear as well.

We may rewrite (1) in matrix form. Let

A =
(

30 5
15 10

)
, x =

(
x1

x2

)
, b =

(
60
70

)
. (3)

Then the diet problem is equivalent to

Minimize 20x1 + 2x2, subject to Ax ≥ b and x ≥ 0. (4)

The above is an example of a Linear Programming problem:

1. we have variablesxj ≥ 0 for j ∈ {1, . . . , N};
2. the variables satisfy linear constraints, which we can write asAx ≥ b;

3. the goal is to minimize alinear function of the variables:cT x = c1x1 + · · ·+ cNxN .

Note the similarity between (4) and a standard linear algebra problem. The differences
are that, instead ofAx = b we haveAx ≥ b, and instead of solving forx with Ax = b
we are solving forx satisfyingAx ≥ b which minimizes some linear function. Thus Linear
Algebra becomes a subset of Linear Programming. In fact, in the next section we show how, by
introducing additional variables, we may replace the constraintsAx ≥ b with new constraints
and new variables,A′x′ = b′.
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1.2.2 Definitions

Before defining the canonical Linear Programming problem, we first observe that it suffices
to consideronly cases where the constraints are greater than or equal to. This is because a
constraint such as

ai1x1 + · · ·+ aiNxN ≤ bi. (5)

may be re-written as
−ai1x1 − · · · − aiNxN ≥ −bi; (6)

the entries of the matrixA are allowed to be any real number. Thus there is no loss in gener-
ality in assuming all the constraints are greater than or equal to. Further, at the cost of adding
additional variables, we may assume all the constraints are actually equalities.

Consider some constraint

ai1x1 + · · ·+ aiNxN ≥ bi. (7)

We introduce a new variablezi ≥ 0, and change the above constraint to

−ai1x1 − · · · − aiNxN + zi = bi. (8)

Thus for each constraint inAx ≥ b with a greater than sign, at the cost of adding a new variable
zi ≥ 0 we may replace the greater than sign with an equality. The variablezi is addedonly to a
constraint, not to the linear function we are trying to minimize.

We note that we may assume each variablexj ≥ 0. To do this may require adding additional
constraints and additional variables (and the additional variables will also be non-negative).
Assume we wantxj ≥ mj (we allowmj to equal−∞). If mj ≥ 0 and is finite then we simply
add the constraintxj ≥ mj . If mj ≤ 0 and is finite we replace the variablexj with zj by
settingzj = xj −mj with zj ≥ 0; note we still have a linear function to minimize. Finally, if
mj = −∞ we introduce two new variablesuj , vj ≥ 0, and we replacexj with uj − vj .

Finally, say that instead of minimizing the linear functioncT x we want to maximize it. As
minimizing the linear function−cT x is the same as maximizing the functioncT x, there is no
loss in generality in assuming we want to minimize a linear function.

The above arguments shows that we may takeanyLinear Programming problem and write
it in the following form:

Definition 1.1 (Canonical Linear Programming Problem). The canonical Linear Programming
problem is of the following form:

1. we have variablesxj ≥ 0 for j ∈ {1, . . . , N};
2. the variables satisfy linear constraints, which we can write asAx = b (whereA is a

matrix withM rows andN columns, andb is a column vector withM components);

3. the goal is to minimize a linear function of the variables:cT x = c1x1 + · · ·+ cNxN .

If x satisfies the constraints (Ax = b, x ≥ 0) then we callx a feasiblesolution to the
canonical Linear Programming problem; if furtherx minimizes the linear functioncT x, thenx
is called anoptimal solution to the canonical Linear Programming problem.

We discuss some pathological cases. Consider the following canonical Linear Programming
problems.
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1. The constraints arex1 = −2007, with x1 ≥ 0 and minimize10x1. There are no feasible
solutions; thus there are no optimal solutions.

2. The constraints are2x1 − 5x2 = 0, with x1, x2 ≥ 0 and minimize−17x1. There are
infinitely many feasible solutions: any(x1, x2) works withx1 = 2.5x2; however, there is
no optimal solution (sendx1 →∞).

3. The constraints arex1 + x2 = 1, with x1, x2 ≥ 0 and minimizex1 + x2. Here there are
infinitely many feasible solutions, and each feasible solution is also an optimal solution.

The above examples show some care is required. A general Linear Programming problem
need not have a feasible solution. If it does have a feasible solution, it need not have an optimal
solution. Further, even if it does have an optimal solution, it need not have a unique optimal
solution.

Exercise 1.2.Assume there areP plants (i.e., Alaska, Texas, Mexico,. . . ) that produce oil and
there areM markets that need oil (i.e., Boston, London, Tokyo,. . . ). Let cij denote the cost of
shipping one barrel of oil from planti to marketj (thusc12 is the cost of shipping one barrel of
oil from our plant in Texas to London). Assume cityj needsdj barrels of oil each day, and plant
i can supplysi barrels of oil a day. Write the Linear Programming problem corresponding to
this situation: find the constraints, and find the quantity to be minimized.

1.2.3 Solution to the Diet Problem

In Figure 1 we graph the four constraints to the Diet Problem considered earlier (see (4);A, x
andb are defined in (3)). Before finding an optimal solution, we first find all possible feasible
solutions. Note that if(x1, x2) is a feasible solution than it must be in the region in the first
quadrant above both lines. Thus there are infinitely many candidates for the optimal solution (or
solutions!).

Fortunately, we may greatly winnow down the candidate list for optimal solutions. The
idea is somewhat similar in spirit to optimization problem from calculus; here we first show the
optimal solutionscannotoccur in the interior and thereforemustoccur on the boundary of the
polygon, and then show that theymustoccur at a vertex.

We are trying to minimize the linear cost function20x1 + 2x2. Consider the function
Cost(x1, x2) = 20x1+2x2. We look at contours where the function is constant:Cost(x1, x2) =
c; we sketch some constant cost contours in Figure 2. Note that the contours of constant cost are
parallel; this is clear as they are of the form20x1 + 2x2 = c. Further, the smaller the value ofc,
the smaller the cost. Thus, given the choice between two lines, to minimize cost we choose the
lower line.

Therefore, if we start at any pointinside the polygon (the set of feasible solutions), by
flowing on a line of constant cost we may move to a point on the boundary with the same cost.
Thus, to findanoptimal solution, it suffices to check the feasible solutions on the boundary; this
is a general feature of linear programming problems.

Additionally, it is enough to check theverticesof the polygon. This is because if we are
on one of the edges of the polygon, if we move to the left the cost decreases. Thus it suffices
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Figure 2: Plot of constraints for Diet Problem
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Figure 3: Plot of constraints for Diet Problem

to check the three vertices to find the cheapest diet which contains the minimum daily require-
ments. Because of the cost of a unit of cereal ($20) and steak ($2), the slope of the line is such
that the cheapest diet hasno cereal, and only steak. This is why we chose such unreasonable
numbers for the cost of cereal and steak, so that we could check our first solution with our
intuition.

Let us now consider a more reasonable set of prices. Let the cost function beCost(x1, x2) =
x1 + x2 (so the two products both cost$1 per unit). We plot some cost lines in Figure 3. Note
now that the optimal solution, while still one of the vertex points, isnot x1 = 0.

Exercise 1.3.Find the optimal solution to the Diet Problem when the cost function isCost(x1, x2) =
x1 + x2.

Exercise 1.4.There are three vertices on the boundary of the polygon (of feasible solutions);
we have seen two choices of cost functions that lead to two of the three points being optimal
solutions; find a linear cost function which has the third vertex as an optimal solution.

Exercise 1.5.Generalize the diet problem to the case when there are three or four types of food,
and each food contains one of three items a person needs daily to live (for example, calcium,
iron, and protein). The region of feasible solutions will now be a subset ofR3. Show that an
optimal solution is again a point on the boundary.
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1.3 Duality and Basic Solutions

1.3.1 Duality

Recall the canonical Linear Programming problem may be assumed to be in the following form:

1. variablesx = (x1, . . . , xN ) ≥ 0;

2. linear constraintsAx = b, with b = (b1, . . . , bM );

3. minimize the linear functioncT x.

Definition 1.6 (Dual Problem). Given a canonical Linear Programming problem, the Dual
Problem is defined by

1. variablesy = (y1, . . . , yM ) ∈ RM ;

2. linear constraintsyT A ≤ cT ;

3. maximize the linear functionyT b.

We shall see later that it is often useful to pass from the original problem to the dual problem;
we give an example here to show how a dual problem can often be easier to study. Consider
the following chess problem: place 5 queens on a5 × 5 chessboard such that there are three
squares where we may place pawns so that no queen attacks any pawn (remember a queen
attacks horizontally, vertically, and diagonally). We depict one configuration of five queens
which allows three pawns to be placed safely on a5× 5 board:

P P
P

Q
Q Q
Q Q

(9)

One way to attack the problem is to look at all the different ways 5 queens may be placed on
the5× 5 chessboard. Sadly, however, there are

(
25
5

)
= 53, 130 possibilities to check! One can

cut down on this by exploiting symmetry (there are only 6 inequivalent places to place the first
queen, not 25), though even if we do this, the number of possibilities is large enough so that it
is undesirable to check all by hand.

The principle of duality is applicable here – we replace the problem we are studying with
an easier, equivalent one. Instead of trying to put down 5 queens so that 3 pawns can be placed
safely on the5 × 5 chessboard, consider theDual Problem, where we try to place 3 queens
on the board so that 5 pawns can be placed safely. Why is this equivalent? If we are able to
do this, say the 3 queens are at(xi, yi) (for i ∈ {1, 2, 3}) and the 5 pawns are at(ui, vi) (for
i ∈ {1, . . . , 5}). Then all we need do is replace each pawn at(xi, yi) with a queen, and each
queen at(ui, vi) with a pawn.

The advantage is clear: rather than having to investigate
(
25
5

)
possibilities, now we need

only study
(
25
3

)
= 2, 300 (and we may further reduce the number of possibilities by symmetry

arguments).
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Exercise 1.7.Prove the Dual Problem of the Dual Problem is the original Linear Programming
problem.

We give a simple example of how the Dual Problem can provide information about the
original problem. Assumey is a feasible solution of the Dual Problem. ThusyT A ≤ cT . We
immediately find that, ifx is a feasible solution of the original Linear Programming problem,
then

yT Ax = (yT A)x ≤ cT x (10)

and
yT Ax = yT (Ax) = yT b. (11)

Thus
yT b ≤ cT x, (12)

and any feasible solution of the Dual Problem gives a lower bound for the linear function we are
trying to maximize in the canonical Linear Programming problem. This leads to the following
test for optimality:

Lemma 1.8. Consider a canonical Linear Programming problem with a feasible solutionx̂, and
its Dual Problem with a feasible solution̂y. If cT x̂ = ŷT b thenx̂ is also an optimal solution.

Proof. Let x be any feasible solution to our Linear Programming problem. From (12) we know
that ŷT b ≤ cT x; however, by assumption we havecT x̂ = ŷT b, which implies thatcT x̂ ≤ cT x
for x any feasible solution to our Linear Programming problem. Thusx̂ is an optimal solution,
minimizing our linear function.

1.3.2 Basic Solutions

Let x be a feasible solution for the canonical Linear Programming problem with constraints
Ax = b. While all the coordinates ofx are non-negative, some may be zero. Letxj1 , xj2 ,
. . . , xjk

denote the coordinates ofx that arepositive. If the corresponding columnsAj1 , . . . , Ajk

are linearly independent, then we say thatx is a basic solution1 to the Linear Programming
problem. The following simple observation is crucial to efficiently solving Linear Programming
problems.

Lemma 1.9. There are only finitely many basic solutions to a canonical Linear Programming
problem.

Proof. Let A haveM rows andN columns. There are only finitely many subsets of columns (in
fact, there are2N − 1 non-empty subsets ofk columns ofA, 1 ≤ k ≤ N ). Consider one such
subset; letAj1 , . . . , Ajk

denote a set ofk linearly independent columns ofA. We are reduced
to showing that there are only finitely many(xj1 , . . . , xjk

) (with each coordinate positive) such
that

Aj1xj1 + · · ·+ Ajk
xjk

= b. (13)

1We assume thatb 6= 0; if b = 0 thenx = 0 is also considered a basic solution.
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We do this by showing there is at most one such solution. We may rewrite (13) as

A′x′ = b, (14)

whereA′ = (Aj1 Aj2 · · · Ajk
) hasM rows andk columns. NoteM ≥ k, because ifM < k

then thek columns cannot be linearly independent. We would like to sayx′ = A′−1b; however,
A′ is not necessarily a square matrix (and if it is not a square matrix, it cannot be invertible). We
remedy this by multiplying both sides byA′T , obtaining

A′T A′x′ = A′T b; (15)

asM ≥ k, thek × k matrixA′T A′ is invertible. Therefore

x′ = (A′T A′)−1A′T b, (16)

proving that for every set ofk linearly independent columns, there is at most one basic solution
(there is only a basic solution if all the coordinates ofx′ are positive).

For example, if

A =




1 2 3
2 5 7
2 3 5


 , (17)

then we may takeA′ to be the first two columns, and we find

A′T A′ =
(

9 18
18 38

)
, det(A′T A′) = 18. (18)

Exercise 1.10.Prove that ifA′ has M rows andk columns, withM ≥ k, thenA′T A′ is
invertible.

The above arguments show that there are only finitely many basic solutions to a canonical
Linear Programming problem. We will show that whenever there is a feasible solution then there
is a basic feasible solution (i.e., a feasible solutions which is also a basic solution); similarly, we
will show that whenever there is an optimal solution then there is also a basic optimal solution.
Thus, rather than having to check infinitely many possibilities, we are reduced to checking a
finite set.

While this is a terrific simplification (any finite number is significantly less than infinity!), in
order for this to beusefulwe must have an efficient algorithm for checking all the basic feasible
and basic optimal solutions. In many problemsM andN (the size of the constraints matrix)
are quite large. The number of possible basic solutions (remember that if a basic solution hask
components thenM ≥ k) can be as large as

∑M
k=1

(
N
k

)
. For largeM andN , it is infeasible to

directly check each possibility.

Exercise 1.11.For fixedM , find some lower bounds for the size of
∑M

k=1

(
N
k

)
. If M = N =

1000 (which can easily happen for real world problems), how many basic feasible solutions
could there be? There are less than1090 sub-atomic objects in the universal (quarks, photons,
et cetera). Assume each such object is a supercomputer capable of checking1020 basic solutions
a second (this is much faster than current technology!). How many years would be required to
check all the basic solutions?
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Theorem 1.12.Consider a canonical Linear Programming problem. If there is a feasible solu-
tion, then there is a basic feasible solution; if there is an optimal solution, then there is a basic
optimal solution.

Proof. Chooseanyfeasible solution with the fewest number of positive components (remember
each component is non-negative). By assumption a feasible solution exists; the number of
positive components is between0 andN , and thus it makes sense to talk about feasible solutions
with as few positive components as possible. For definiteness, say that the fewest positive
components a feasible solution has isk. Letx be a feasible solution withk positive components,
sayxj1 , . . . , xjk

. We must show that the corresponding columnsAjl
, . . . , Ajk

of A are linearly
independent. Assume not. Then there are numbersγj`

such that

γj1Aj1 + · · ·+ γjk
Ajk

= 0; (19)

without loss of generality we may assumeγj1 is non-zero and positive (by relabeling we may
assumeγj1 6= 0, as at least two of theγj`

’s are non-zero; by possibly multiplying by−1 we
may ensure thatγj1 > 0). Sincex is a feasible solution,Ax = b. As the components ofx that
are zero do not matter,Ax = b is the same as

xj1Aj1 + · · ·+ xjk
Ajk

= b. (20)

We multiply (19) byλ and subtract this from the previous equation, obtaining

(xj1 − λγj1)Aj1 + · · ·+ (xjk
− λγjk

)Ajk
= b. (21)

If λ = 0 then all thexj`
− λγj`

are positive, hence by continuity these will still be positive
if |λ| is small. We take the largestλ such that (21) holds with all components non-negative.
Such aλ exists, asλ ≤ xj1/γj1 (which is positive asxj1 andγj1 are positive). The largest
suchλ results in one of thexj`

− λγj`
equaling zero. Thus we obtain a feasible solution to the

Linear Programming problem with at mostk − 1 positive components (there might be fewer
positive components if two or morexj`

− λγj`
vanish for the maximalλ); this contradicts the

minimality ofx. Therefore the columnsAj1 , . . . , Ajk
are linearly independent, and the existence

of a feasible solution implies the existence of a basic feasible solution.
The proof of the existence of an optimal solution implying the existence of an optimal so-

lution proceeds similarly. Letx be an optimal solution with fewest positive components (say
xj1 , . . . , xjk

). The proof is completed by showing the corresponding columnsAj1 , . . . , Ajk
are

linearly independent. As before, we may findλ andγj`
’s such that

(xj1 − λγj1)Aj1 + · · ·+ (xjk
− λγjk

)Ajk
= b; (22)

we may assumeγj1 > 0. Thus (in obvious notation)x−λγ is a new feasible solution, with cost

cT x− λ(cj1γj1 + · · ·+ cjk
γjk

); (23)

for |λ| sufficiently small all components ofx − λγ are positive. The new cost must equal the
old cost, asx is an optimal solution (if the new cost did not equal the old cost, by choosing the
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sign ofλ appropriately, for smallλ we could produce a new feasible solution with lower cost,
contradictingx being an optimal solution). Thus

cj1γj1 + · · ·+ cjk
γjk

= 0. (24)

As before, we take the largestλ such thatx − λγ has non-negative components (noteλ ≤
xj1/γj1). The cost of all these solutions are independent ofλ, and equal to the minimum cost.
Thus we have found a new optimal solution with at mostk− 1 positive components, contradict-
ing the minimality ofx; thus the columnsAj1 , . . . , Ajk

are linearly independent and there is a
basic optimal solution.

Note the above proof is non-constructive proof by contradiction2: there are basic feasible
and basic optimal solutions, but we do not know what they are. Later we shall see how to
(efficiently!) find them.

1.4 Solving the Canonical Linear Programming Problem: The Simplex Method

Our arguments above show that it suffices to check finitely many potential solutions to find the
optimal solution (if one exists!) of a canonical Linear Programming problem. We now describe
the Simplex Method, which is an efficient way to find optimal solutions. See [Da, Fr] for more
details.

We assume we are studying a non-degenerate canonical Linear Programming problem,
and we make the following assumptions from here on:

• If A hasM rows andN columns, thenM < N . This implies that there are more un-
knowns then equations, so the systemAx = b is undetermined and can have infinitely
many solutions; ifM ≤ N there is at most one solution.

• TheM rows ofA are linearly independent. If the rows are not linearly independent, then
either we cannot solveAx = b, or if we can then at least one of the rows is unnecessary.

• We assumeb is not a linear combination of fewer thanM columns ofA. If b is a combina-
tion of fewer thanM columns, this will create a technical difficulty in the simplex method.
Fortunately this is a very weak condition: if we change some of the entries ofb by small
amounts (less than10−10, for example3), this should suffice to break the degeneracy.

The simplex method has two phases:

2For another example of a non-constructive proof by contradiction, recall Euclid’s proof of the infinitude of
primes. Assume there are only finitely many primes, sayp1, . . . , pN . Consider the numberp1 · · · pN + 1. If this is
prime, our list is incomplete and we are done. If it is composite, it must be divisible by a prime; however, as it has
remainder1 upon division byp1, p2, . . . , pN , it must be divisible by a prime not in our list, and again we obtain that
our list is incomplete. Therefore there are infinitely many primes, though we have not constructed infinitely many
primes.

3There might be some problems with changes this small, as computers can have round-off errors and we may need
to worry about numerical precision. In practice, however, this condition almost always met, and we shall assume it
holds.
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1. Phase I: Find a basic feasible solution (or prove that none exists);

2. Phase II: Given a basic feasible solution, find a basic optimal solution (or prove none
exists). If no optimal solution exists, Pase II produces a sequence of feasible solutions
with cost tending to minus infinity.

We now describe the algorithms for these steps, and then comment on the run-time. Re-
member it is not enough to find an optimal solution – we need to find an optimal solution in a
reasonable amount of time! However, for many complicated systems, instead of finding optimal
solutions we must lower our goals and find an almost optimal solution.

For example, imagine we own a major airline. Contrary to what many people might believe,
our goal isnot to fly people from one city to another; our goal is to maximize profit (which is
done by flying people, of course). Thus we would be willing to fly less people if we can charge
more. We have many planes, and can estimate the demand for flying between cities and what
people will pay for flights. We have numerous constraints, ranging from the obvious (once a
plane takes off, we cannot use it for another flight until it lands), to ones imposed on us (a flight
crew must rest for a minimum ofH hours before they are allowed to fly another plane). We need
to find a schedule each day; further, we must announce these schedules far enough in advance
so that people may purchase tickets. Let us assume we know that the maximum possible profit
we can make in a month is $150,000,000. After a few hours of computation we find a schedule
that would earn us $149,999,982, and we calculate that it would take a year to check all the
remaining possible schedules. While this is not an optimal schedule, it is so close (differing by
just $18), that it is not worth waiting a year (and thus flying no planes and earning no revenue)
to potentially earn at most another $18 for that month.

1.4.1 Phase I of the Simplex Method

We first show how, if we can do Phase II of the simplex method, then we can do Phase I; in the
next section we will show how to do Phase 2.

Thus our goal is to find a basic feasible solution (or show none exists) to the canonical Linear
Programming problem

Ax = b, x ≥ 0, min
x

cT x. (25)

We assume we know how to do Phase II, namely given a basic feasible solution to a canon-
ical Linear Programming problem, we can find a basic optimal one (or prove none exists by
constructing a sequence of feasible solutions with costs tending to minus infinity).

The constraints of the canonical Linear Programming problem are

N∑

j=1

aijxj = bi, i ∈ {1, . . . , M}, (26)

where the variablesxj are non-negative. Consider now the following canonical Linear Program-
ming problem (which is clearly related to our initial problem):

1. the variables arexj ≥ 0 for j ∈ {1, . . . , N} andzi ≥ 0 for i ∈ {1, . . . , M};
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2. the linear constraints are


N∑

j=1

aijxj


 + zi = bi, i ∈ {1, . . . , M}, (27)

which can be written asA′x′ = b with A′ = (A I) a matrix with firstN columns those of
A and finalM columns theM ×M identity matrix, andx′ = (x1, . . . , xN , z1, . . . , zM ).

3. the linear function to minimize is

z1 + · · ·+ zm. (28)

Remember the goal is to find a basic feasible solution to (25), and we are assuming we know
how to do Phase II (given a basic feasible solution, we can find a basic optimal solution, or prove
one does not exist by constructing a sequence of feasible solutions with costs tending to minus
infinity). For the new canonical Linear Programming problem, it is easy to find a basic feasible
solution: takexj = 0 for eachj, and4 zi = bi for eachi. This is clearly a feasible solution;
to show that it is a basic solution we must show that the columns of the matrixA′ = (A I)
corresponding to the positive components of the feasible solution are linearly independent. This
follows immediately from the fact that the only non-zero components are among thezi, and
the corresponding columns are columns of anM × M identity matrix and therefore linear
independent.

We now perform Phase II to the basic feasible solution

(x1, . . . , xN , z1, . . . , zM ) = (0, . . . , 0, b1, . . . , bM ). (29)

This problemmust5 have an optimal solution, which we denote

(xop,1, . . . , xop,N , zop,1, . . . , zop,M ). (30)

There are two cases for our optimal solution:

1. If
min

z
(z1 + · · ·+ zM ) = zop,1 + · · ·+ zop,M = 0, (31)

then we have found a basic feasible solution to the original Linear Programming problem,
namely the firstN components of (30);

2. If
min

z
(z1 + · · ·+ zM ) = zop,1 + · · ·+ zop,M > 0 (32)

(it clearly cannot be negative as eachzi ≥ 0), there is no basic feasible solution to the
original Linear Programming problem (if there were a basic feasible solution to the origi-
nal Linear Programming problem, that would lead to a lower cost for the related problem,
as that would allow us to take eachzi = 0 and thus reduce the cost to zero).

4We must be careful, as eachzi must be non-negative. Without loss of generality we may assume eachbi in the
initial Linear Programming problem is non-negative, as if any were negative we could multiply the corresponding
constraint by−1.

5The cost is justz1 + · · · + zM , andzi ≥ 0. Thus the cost is non-negative. If there were no optimal solution,
then Phase II would produce a sequence of solutions with cost tending to minus infinity; as the cost cannot be less
than zero, this cannot happen. Therefore there is an optimal solution for this Linear Programming problem.
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We are therefore reduced to showing how to do Phase II.

1.4.2 Phase II of the Simplex Method

We now describe an algorithm for Phase II, namely how to pass from a basic feasible solution to
a basic optimal solution (or prove one does not exist by constructing a sequence of basic feasible
solutions with costs tending to minus infinity). We first note

Lemma 1.13. Letx be a basic feasible solution;x must have exactlyM non-zero entries.

Proof. This follows from our assumptions (A is anM ×N matrix with M ≤ N , b is a vector
with M components which cannot be written as a linear combination of fewer thanM columns
of A).

We first show thatx has at mostM positive entries. The rank ofA is at mostM , and the
columns corresponding to the positive entries of the feasible solutionx must be independent.
Thusx cannot have more thanM positive components.

Further,x must have at leastM positive components; if it did not, thenb could be written
as the sum of fewer thanM columns ofA.

We continue with the description of how to perform Phase II. We may assume that we have
a basic feasible solutionx with exactlyM non-zero entries. LetB = {j : xj > 0}; note
|B| = M by the above lemma. We callB the basis. LetxB = (xj1 , . . . , xjm) be the positive
components ofx, and letAB denote the matrix of columnsAj of A wherej ∈ B; we callAB

the basis matrix. Thus we have
ABxB = b. (33)

Further, AB is an invertible matrix (it is anM × M matrix with M linearly independent
columns). Thus we can also study the linear system of equations

yT AB = cT
B, (34)

which has the unique solution
y = cT

BA−1
B . (35)

There are two possibilities for this vectory: either it is a feasible solution to the Dual Problem
(the dual of the original Linear Programming problem), or it is not a feasible solution to the
Dual Problem.

Case 1:y is feasible for the Dual Problem.(See Definition 1.6 for the statement of the Dual
Problem.) Ify is feasible6 for the Dual Problem, then from (33) and (34) we have

yT b = yT ABxB = cT
BxB = cT x. (36)

By Lemma 1.8, the fact thatyT b = cT x means thatx is an optimal solution of our Linear Pro-
gramming problem. Asx is a basic feasible solution, this meansx is a basic optimal solution.

6It is easy to check and see ify is feasible. We need only check thatyT Aj ≤ cj for all j ∈ {1, . . . , M}. By
construction this holds forj ∈ B; thus we need only check these conditions forj 6∈ B.
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Case 2:y is not feasible for the Dual Problem. As y is not a feasible solution for the Dual
Problem, for somes we haveyT As > cs; by construction we knows 6∈ B. The idea is that we
can lower the cost by bringing the columnAs into the basis matrixAB.

As theM columns of theM ×M matrix AB are linearly independent, andAs is a vector
with M components, we have

As =
∑

j∈B

tjAj , (37)

or
As = ABt, t = A−1

B As. (38)

From the relations ∑

j∈B

xjAj = b, As −
∑

j∈B

tjAj = 0, (39)

we find that
λAs +

∑

j∈B

(xj − λtj)Aj = b; (40)

for λ sufficiently small and positive, we have a new feasible solutionx′ to the original Linear
Programming problem, with

x′j =





λ if j = s

xj − λtj if j ∈ B

0 otherwise.

(41)

The original cost (associated to the feasible solutionx) is
∑

j∈B

xjcj ; (42)

the new cost (associated to the feasible solutionx′) is

λcs +
∑

j∈B

(xj − λtj)cj . (43)

We now show that the new cost is less than the old cost. The new cost minus the old cost is

λ


cs −

∑

j∈B

tjcj


 ; (44)

asλ > 0, we need only show thatcs <
∑

j∈B tjcj to show the new cost is less than the old cost.
From (34) we haveyT AB = cT

B, and from (38) we haveAs = ABt. These relations imply
∑

j∈B

tjcj = yT ABt = yT As > cs, (45)

where the last inequality follows from our assumption thaty is not feasible for the Dual Prob-
lem7.

There are two possibilities: either alltj ≤ 0, or at least one is positive.

7The assumption thaty is not feasible for the Dual Problem means thatyT As > cs.
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1. Case 2: Subcase (i):Assume alltj ≤ 0 in (38). Then we may takeλ to beanypositive
number in (40), and each positiveλ gives us another feasible solution. Therefore the
cost in (44) tends to minus infinity asλ tends to infinity. This implies we can construct
a sequence of feasible solutions to the original Linear Programming problem with costs
tending to minus infinity, and therefore the original Linear Programming problem does
not have an optimal solution.

2. Case 2: Subcase (ii):Suppose now at least onetj > 0. The largest positiveλ we may
take and still have a feasible solution is

λ∗ = min
j∈B

(
xj

tj
: tj > 0

)
. (46)

We may assume the minimum forλ∗ occurs forj = p. Note thatp is unique; if not,
we would find thatb is a linear combination of fewer thanM columns, contradicting
our assumption onb (we are basically swapping thepth column for thesth column). We
have thus found a new feasible basic solution (we leave it to the reader to check that our
solution, in addition to being feasible, is also basic) with exactlyM non-zero entries. We
now restart Phase II with our new basic feasible solution as our basic feasible solution,
and continue the search for a basic optimal solution.

We have described the algorithm for Phase II of the simplex method; we show that it must
terminate either in an optimal solution, or by constructing a sequence of basic feasible solutions
with costs tending to minus infinity. When we start Phase II, three things can happen: (1) we
end up in Case 1: if this happens, then we have found an optimal solution; (2) we end up in Case
2, Subcase (i): if this happens, there is no optimal solution (and we have a sequence of basic
feasible solutions with costs tending to minus infinity); (3) we end up in Case 2, Subcase (ii): if
this happens, we restart Phase II with the new basic feasible solution.

The only way Phase II would not terminate is if we always end up in Case 2, Subcase (ii)
each time we apply it. Fortunately, we can see this cannot occur.A is an M × N matrix
(M < N ). There are only finitely many sets ofM linearly independent columns ofA (there
are at most

(
N
M

)
). Each time we enter Case 2, Subcase (ii) we obtain a new feasible solution

with coststrictly less than the previous cost. This implies, in particular, that all the solutions
from Case 2, Subcase (ii) are distinct. As there are only finitely many possibilities, eventually
Phase II must terminate with either a basic optimal solution to the original Linear Programming
problem, or with a sequence of feasible solutions with costs tending to minus infinity. This
completes our analysis of the simplex method.

Exercise 1.14.Consider the following Linear Programming problem:xj ≥ 0,




1 4 5 8 1
2 2 3 8 0
3 2 1 6 0







x1

x2

x3

x4

x5




=




311
389
989


 , (47)

and we want to minimize
5x1 + 8x2 + 9x3 + 2x4 + 11x5. (48)
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Find (or prove one does not exist) an optimal solution.

1.4.3 Summary of the Simplex Method

While we have shown that the simplex method will terminate (with either a basic optimal solu-
tion or a sequence of feasible solutions with cost tending to minus infinity), we havenot shown
that it will terminate in a reasonable amount of time! It is imperative we show this if we are in-
terested in using the simplex method as a practical tool, and not merely to note it as a theoretical
curiosity. We encourage the interested reader to peruse [Fr] and the references therein for more
details, especially proofs of the efficiency of these methods.

1.5 Binary Integer Linear Programming

We have merely scratched the surface of a rich and very useful theory. Below we describe
another type of Linear Programming problem, Binary Integer Linear Programming.

For these problems, we have the additional restriction that each variablexj ∈ {0, 1}. There
are many situations where we would like to use binary variables. For example, we might take
as our binary variablesxj = xt,p,cu,cv , which are1 if at time t planep leaves from citycu to
city cv, and0 otherwise. Assigning values to thext,p,cu,cv is equivalent to designing an airline
schedule; we would then maximize revenue, which would be a function of the routes flown and
demand and ticket costs for those routes.

Binary Integer Linear Programming is, of course, a specific example of a more general
problem, namely Integer Linear Programming. Much of the difficulty of the subject stems from
the fact that a problem may have optimal real solutions and optimal integer solutions, but the
optimal integer solutions need not be close to the optimal real solutions. To see this, consider
the knapsack problem (we follow the presentation in [Fr], pages 127–128).

Imagine we have a knapsack that can hold at most 100 kilograms. There are three items
we can pack. The first weighs 51 kilograms and is worth $150 per unit; the second weights 50
kilograms and is worth $100 per unit; the third weighs 50 kilograms and is worth $99 per unit.
The goal is to pack as much as we can in the knapsack and maximize the value. Thus ifxj is
the amount of thejth item, we have the constraint

51x1 + 50x2 + 50x3 ≤ 100, xj ≥ 0 (49)

and we want to maximize
150x1 + 100x2 + 99x3. (50)

If we allow thexj ’s to be real numbers, the optimal answer isx1 = 100/51 andx2 = x3 = 0;
the value of the knapsack is about $294.12. The solution can be understood as the first product is
the best value per kilogram, and as we are free to take non-integral amounts, we just take the first
product. If we require thexj to be integers, the optimal solution isx2 = 2 andx1 = x3 = 0; the
value of the knapsack is $200. Thus not only is the optimal value significantly different when
thexj ’s are integers, but the answer is very different (rather than almost 2 units of the first item
and none of the second, we have 2 units of the second and none of the others).

We give an example of the type of problems amenable to Binary Integer Linear Program-
ming. Imagine that we are the manager of an Activity Hall or Community Center. There are
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various activities that we can schedule, and many constraints (we shall only give a few con-
straints, and leave it as an exercise to the reader to decide upon additional constraints which we,
as the manager, may want to impose).

We shall consider binary random variablesxj = xtar, where

xtar =

{
1 if at time t we start activitya in roomr

0 otherwise.
(51)

We assume

t ∈ {0, . . . , T}
a ∈ {1, . . . , A}
r ∈ {1, . . . , R}. (52)

Thus we assume the activity hall opens at time0 and closes at timeT ; perhaps each time period
represents 5 minutes or 10 minutes. We assume there areA different activities that could be
scheduled (perhaps they are bridge, chess, a movie, a lecture, and so on); note different activities
might run for different amounts of time. Finally, we assume there areR rooms.

We need certain inputs:

1. LetDtar be the number of people who would go to activitya if it starts in roomr at time
t. It is likely that for some activities the demand might be room independent; however,
even in this case it is likely that it would depend on the timet. Further (we will not get
into this now), it is natural to ask whether or not the demand of one activity depends on
what other activities are occurring at the same time.

2. Let ftar be the fee someone must pay to start activitya at timet in room r. It is likely
thatftar does not depend on the room, but it is easy to keep the added flexibility.

3. Let ctar be the capacity of roomr being used for activitya starting at timet. It is possible
that the capacity depends on the activity (if we use a room for a basketball game we would
probably have fewer people than if we used it for a chess tournament).

4. Let Ltar be the number of time units that it takes for activitya to finish, given that it
started at timet in roomr.

Our goal is to maximize revenue:

max
T∑

t=0

A∑

a=1

R∑

r=1

min(Dtar, ctar)ftarxtar. (53)

The above formula is fairly obvious; the only thing we must be careful about is that we cannot
have more people in a room than it is capable of handling (hence themin(Dtar, ctar) factor).
There are many possible constraints which we, as the manager, may want to impose. We list
merely a few.
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• At any time, in any room, at most one activity is running:

∀t, r :
A∑

a=1

t∑

t′=max(t−Ltar+1,0)

xt′ar ≤ 1. (54)

• At any time, each activity is running in at most one room:

∀t, a :
R∑

r=1

t∑

t′=max(t−Ltar+1,0)

xt′ar ≤ 1. (55)

If necessary, we might want to label activities such as bridge-1, bridge-2.

• We cannot have any activities running after the activity hall closes at timeT :

A∑

a=1

R∑

r=1

T∑

t=max(T−Ltar+1,0)

xt′ar = 0. (56)

• Everyb time blocks fromTs to Te, some activity starts in some room:

∀t′′ ∈ {0, . . . , Te − Ts} :
max(b−1+t′′+Ts,T )∑

t′=t′′+Ts

A∑

a=1

R∑

r=1

xt′ar ≥ 1. (57)

The last constraint is of a different nature than the previous. The first three must be true for
a schedule to be valid; the last is a natural constraint that a manager might wish to impose, but is
not needed for a schedule to be realistic. The last constraint ensure that, if someone walks into
the activity hall, they need not wait more thanb time units before an activity will start.

Again, there are many additional constraints that a manager may wish to impose. We content
ourselves with the above discussion, which hopefully highlights the utility and flexibility of such
models.

Finally, it is not enough to model a program as a Binary Integer Linear Program; we need to
be able to solve such modelsquickly. We encourage the reader to consult the literature for more
on the subject.

Exercise 1.15.Consider the above scheduling problem for the activity hall. Assume (i) each
time block is 15 minutes and the hall is open for 10 hours a day; (ii) there are 10 different
activities, each activity can be started at any time in the day; (iii) there are 12 rooms in the hall.
How many binary integer variablesxtar are there? How many equations?

Exercise 1.16.Assume the activity hall has a concession stand. Letrtar be the amount of
concession revenue the activity hall earns from a person who starts activitya at timet in room
r. What is the new revenue function? Note that, once we start adding additional terms to
reflect concession revenue, other issues arise. For example, there is now the cost of staffing the
concession stand, and perhaps the amount of help hired is a function of the number of customers.
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2 Versatility of Linear Programming

In this section we show how linear programming is able to handle a variety of constraints and
situations. Explicitly, we describe how to handle

• Binary Indicator Variables;

• Or Statements;

• If-Then Statements;

• Truncation;

• Minimums and Maximums;

• Absolute Values.

Throughout this section, we assumeeveryexpressionA,B, . . . is bounded byN .
For definiteness, we might write things such asNA to show the constant depends
on A (A may either be one of our variables, or a linear combination of variables).
The fact that A is bounded byNA means |A| ≤ NA or −NA ≤ A ≤ NA. We
also assume each quantity is discrete, and the smallest non-negative unit isδ. This
means the possible values attained are0,±δ,±2δ, . . . .

2.1 Binary Indicator Variables

Theorem 2.1.Given a quantityA, the following constraints ensure thatzA is 1 if A ≥ 0
andzA is 0 otherwise:

1. zA ∈ {0, 1}.
2. A

NA
+ δ

2NA
≤ zA.

3. zA ≤ 1 + A
NA

.

Proof. The first condition ensures thatzA is a binary indicator variable, taking on the
values 0 or 1. The second condition implies that ifA ≥ 0 thenzA = 1; if A ≤ 0 this
condition provides no information onzA. The third condition implies that ifA < 0 then
zA = 0; if A ≥ 0 this condition provides no information onzA.

2.2 Or Statements

Often we want one of two constraints to hold. There is the exclusive or (exactly one of
two holds) and the inclusive or (both may hold, but at least one holds).

Theorem 2.2(Exclusive Or). The following constraints ensure thatzA = 1 if A ≥ 0 or
B ≥ 0 but not both, andzA = 0 otherwise:
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1. zA ∈ {0, 1}.
2. A

NA
+ δ

2NA
≤ zA.

3. zA ≤ 1 + A
NA

.

4. zB ∈ {0, 1}.
5. B

NB
+ δ

2NA
≤ zB.

6. zB ≤ 1 + B
NB

.

7. zA + zB = 1.

Proof. The first three conditions ensurezA is 1 if A ≥ 0 and0 otherwise; the next three
ensurezB is 1 if B ≥ 0 and0 otherwise. The last condition ensures that exactly one of
zA andzB is 1 (and the other is0). For example, ifzA = 0 then condition 2 implies that
A < 0, and ifzB = 1 then condition 6 implies thatB ≥ 0.

Theorem 2.3(Inclusive Or). The following constraints ensure thatzA = 1 if A ≥ 0 or
B ≥ 0 (and possibly both are greater than or equal to zero), andzA = 0 otherwise:

1. zA ∈ {0, 1}.
2. A

NA
+ δ

2NA
≤ zA.

3. zA ≤ 1 + A
NA

.

4. zB ∈ {0, 1}.
5. B

NB
+ δ

2NA
≤ zB.

6. zB ≤ 1 + B
NB

.

7. zA + zB ≥ 1.

Exercise 2.4.Prove the above theorem.

2.3 If-Then Statements

Theorem 2.5(If-Then). The following constraints allow us to program the statement:
IF (A < 0) THEN(B ≥ 0).

1. z ∈ {0, 1}.
2. NAz ≥ A.

3. A + (1− z)NA ≥ 0.

4. B ≥ −zNB.
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Proof. If A > 0, the second constraint makesz = 1. The third constraint is trivially
satisfied (asA > 0), and the fourth constraint becomesB ≥ −NB, which is trivially
satisfied (we are assuming|B| ≤ NB).

If A < 0, the third constraint is satisfied only whenz = 0. The fourth constraint
now becomesB ≥ 0.

If A = 0, the second and third constraints are always satisfied. Takingz = 1 we see
the fourth is satisfied.

Cost: If-Then can be handled by adding one binary variable and three constraints
(four if you count the binary declaration). We could also do IF(A < A0) THEN
(B ≥ 0) just as easily.

2.4 Truncation

Given an integer variable or expressionX, we show how to add constraints so a vari-
ableY equalsX if X ≥ X0, andY = 0 otherwise. We constantly use the If-Then
constraints.

Let z ∈ {0, 1}. IF (X < X0) THEN z = 0. IF (X > X0 − δ
2
) THEN z = 1. We

can do this: takeB = z − 1
2

in the If-Then section. Note the− δ
2

allows us to re-write
the IF condition asX ≥ X0.

The following three constraints finish the problem.

1. (Y −X) + NX(1− z) ≥ 0

2. Y −NXz ≤ 0

3. 0 ≤ Y ≤ X

If z = 0 (ie, X < X0), the first constraint holds. AsY is non-negative, the second
constraint forcesY = 0, and the third holds.

If z = 1 (ie, X ≥ X0), the first forcesY ≥ X which, combined with the third,
forcesY = X. As Y ≤ X ≤ NX , the second constraint holds.

2.5 Minimums and Maximums

Theorem 2.6(Minimums). The following constraints ensure thatY = min(A, B):

1. Y ≤ A.

2. Y ≤ B.

3. Y = A ORY = B.

Proof. The first condition forcesY ≤ A and the secondY ≤ B. Without loss of
generality, assumeA ≤ B. The third condition says eitherY = A or Y = B (or both).
If Y = B this contradicts the first condition. ThusY ≤ A is improved toY = A.
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Theorem 2.7(Maximums). The following constraints ensure thatY = max(A, B):

1. Y ≥ A.

2. Y ≥ B.

3. Y = A ORY = B.

Exercise 2.8.Prove the above theorem.

2.6 Absolute Values

Theorem 2.9.The following constraints ensure thatX = |A|:
1. A ≤ X.

2. −A ≤ X.

3. X ≤ A ORX ≤ −A.

Proof. The first two constraints forceX to be a non-negative number, of size at least
|A|. We just need to make sureX 6≥ |A|.

For the third constraint, ifA = 0, the two or clauses are the same, andX = 0.
If A 6= 0, asX is non-negative it can only be less than whichever ofA and−A is
non-negative.

One application is

Theorem 2.10.Assume|cT x + b| ≤ M for all x that are potential solutions of the
Integer Programming Problem, and assumec, x andb are integral. We may replace a
term|cT x+b|with y by introducing three new variables (y, z1 andz2) and the following
constraints:

1. z1, z2 ∈ {0, 1}.
2. cT x + b ≤ y

3. −(cT x + b) ≤ y

4. 0 ≤ y, y is an integer

5. y ≤ M

6. y − (cT x + b) ≤ 2z1M

7. y + (cT x + b) ≤ 2z2M

8. z1 + z2 = 1.

Exercise 2.11.Prove the above theorem.
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3 Removing Quadratic (and Higher Order) Terms

As the name implies, Linear Programming is about linear constraints and minimiz-
ing (or maximizing) linear objective functions; however, there are generalizations to
quadratic constraints or objective functions. To describe these techniques would take
us too far afield; however, we can quickly show how some of these constraints may be
linearized.

3.1 Problem Formulation

For definiteness, we shall consider the following example. We are the owner of a movie
theater, and our goal is to schedule movies. Let us say the time slots are in 10 minute
increments (labeled0, 1, . . . , T ), there areM movies (labeled1, . . . , M ) and there are
S screens (labeled1, . . . , S). We let

xtms =

{
1 if at time t we start moviem on screens

0 otherwise.
(58)

This problem is similar to the activity hall where we were the manager (see §1.5).
We now allow certain polynomial non-linearities in the objective function which we are
trying to maximize, and discuss how to linearize them. Although we are concentrat-
ing on non-linearities in the objective function (the revenue for a given schedule), the
method is identical for removing such non-linearities from the constraints.

For example, in the case of movies, let’s fix a timet and considerm = m1 + m2

movies. For convenience, we assume our two sets of movies are the firstm1 movies
and then the nextm2 movies, though the general case proceeds similarly.

We introduce some new variables:

ytm =

{
1 if movie m is playing at timet

0 otherwise.
(59)

We may have corrections to the objective function, depending on which movies are
being shown. For example, consider the case whenm1 = m2 = 1. Thus each set
contains just one movie. Imagine these two movies areboth action blockbusters. It
is reasonable to assume that the demand for each movie is affected by whether or not
the other movie is playing. For example, perhaps many people go to a theater without
having already chosen the movie they wish to see; perhaps they are just in the mood to
see an action movie. If only one of these two movies is playing at a certain time, then
anyone interested in an action moviemustsee that film; however, if both are playing
then the customer has a choice. Thus we want to penalize the demand for an action
movie if another action movie is playing at the same time.

Consider the polynomial
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p(x) =

m1∏
m=1

ytm

m1+m2∏
m=m1+1

(1− ytm)

=





1
if at time t moviesm1 throughm2 are being shown

and moviesm1 + 1 throughm1 + m2 are not being shown;

0 otherwise.

(60)

By considering all possible polynomials of this form, we can handle anym1-tuple
of movies playing andm2-tuple of movies not playing. Note that every variable occurs
to either the zeroth or first power: asytm ∈ {0, 1}, yn

tm = ytm for any integern ≥ 1.
This is an extremely useful consequence of being a binary variables!

Our goal is to replace terms in the Objective Function of the form−Const· p(x)
with linear terms, possibly at the cost of additional variables and constraints.

In our example, thesem1 +m2 movies compete with each other for demand, and we
must adjust the demand of each movie based on the competition concurrently screened.

3.2 Linearizing Certain Polynomials

Say we have a term
∏m1

m=1 ytm

∏m1+m2

m=m1+1(1 − ytm). This is 1 or 0. Hence we can
introduce a new binary variableδt equal to the above.

Thusδt = 1 if the first m1 variablesytm are1 (the firstm1 movies are on at timet)
and the lastm2 variablesytm are0 (the nextm2 movies are not on at timet), andδt = 0
otherwise. We can replace the product withδt as follows:

1.
∑m1

m=1 ytm +
∑m1+m2

m=m1+1(1− ytm)− (m1 + m2)δt ≥ 0

2.
∑m1

m=1 ytm +
∑m1+m2

m=m1+1(1− ytm)− δt ≤ m1 + m2 − 1.

If the firstm1 variablesytm are1 and the nextm2 variablesytm are0, then condition
1 doesn’t constrainδt, but condition2 forcesδt = 0 (as desired). If either one of the first
m1 variablesytm is 0 or one of the lastm2 variablesytm is 1, the first condition forces
δt = 0 and the second condition doesn’t constrainδt. Therefore these two conditions
encodeδt linearly!

3.3 Example: Applications to Scheduling

Initially, we assumed the demand of a movie was independent of which movies were
concurrently being shown. For simplicity we only partially worry about what screen a
movie is shown on.
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Let’s assume movies compete for demand if they are shown within a certain amount
of time (T0) of each other. As always,xtms is 1 if we start showing moviem at timet
on screens, and0 otherwise.

We initially have terms likemin(Dtm, Cs)xtms in the revenue function, whereDtm

is the demand for moviem at timet (we assume all movie demands are independent)
andCs is the capacity of screens. We want to modify this to allow movies to compete
with each other for demand.

We must subtract off corrections (to the demands) based on what movies are starting
around the same time. One has to be a little careful with wrap-around time effects, but
this is just meant as a rough sketch. Define

ytm =
S∑

s=1

t+T0∑

t′=t

xtms. (61)

Thusytm is 1 if we start moviem on any screen betweent andt + T0, and0 otherwise.
We then define polynomials

p(x) =

m1∏
m=1

ytm

m1+m2∏
m=m1+1

(1− ytm) (62)

as before, and multiply by a suitable constant which will include the loss of revenue
from all the movies. This might not be the best way to go. It might be better to modify
the demands of each individual movie. This would lead to terms such as

min (Dtmxtms − Const· p(x), Csxtms) . (63)

Of course, the minimum function isn’t immediately in Integer Linear Programming,
but it is trivial to handle (see §2.5):

1. Y ≤ Dtmxtms − Const· p(x)

2. Y ≤ Csxtms

3. Y ≥ 0, Y is an integer

3.4 Summary

As remarked, we have only touched the beginning of a very important generalization
of Linear Programming. It is important to analyze thecostof linearizing our problem,
specifically, for real world problems can the linearized problems be solved (or approxi-
mately solved) in a reasonable amount of time?

We are reminded of a quote from Abraham Maslow, who remarked that if all one
has is a hammer, pretty soon all problems look like nails. Once we know how to do and
solve Linear Programming problems, it is tempting to convert other problems to Linear
Programming problems. While this will be a reasonable solution in many situations,
there are additional techniques that are better able to handle many of these problems.
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